Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Routing of Kv7.1 to endoplasmic reticulum plasma membrane junctions

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
7MB
[thumbnail of Supporting Information] Other (Supporting Information)
11MB

Item Type:Article
Title:Routing of Kv7.1 to endoplasmic reticulum plasma membrane junctions
Creators Name:Serrano-Novillo, C., Estadella, I., Navarro-Pérez, M., Oliveras, A., de Benito-Bueno, A., Socuéllamos, P.G., Bosch, M., Coronado, M.J., Sastre, D., Valenzuela, C., Soeller, C. and Felipe, A.
Abstract:AIM: The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the I(Ks) current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS: To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS: We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION: Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels.
Keywords:Adaptors, Cell Surface Targeting, ERPMj Inducers, Potassium Channels
Source:Acta Physiologica
ISSN:1748-1708
Publisher:Wiley
Volume:240
Number:3
Page Range:e14106
Date:March 2024
Official Publication:https://doi.org/10.1111/apha.14106
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library