Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment

[img]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
18MB
[img] MS Word (Supporting Information)
32MB

Item Type:Article
Title:CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment
Creators Name:Skroblyn, T. and Joedicke, J.J. and Pfau, M. and Krüger, K. and Bourquin, J.P. and Izraeli, S. and Eckert, C. and Höpken, U.E.
Abstract:The testis is the second most frequent extramedullary site of relapse in pediatric acute lymphoblastic leukemia (ALL). The mechanism for B-cell (B) ALL cell migration towards and survival within the testis remains elusive. Here, we identified CXCL12-CXCR4 as the leading signaling axis for B-ALL cell migration and survival in the testicular leukemic niche. We combined analysis of primary human ALL with a novel patient-derived xenograft (PDX)-ALL mouse model with testicular involvement. Prerequisites for leukemic cell infiltration in the testis were pre-pubertal age of the recipient mice, high surface expression of CXCR4 on PDX-ALL cells, and CXCL12 secretion from the testicular stroma. Analysis of primary pediatric patient samples revealed that CXCR4 was the only chemokine receptor being robustly expressed on B-ALL cells both at the time of diagnosis and relapse. In affected patient testes, leukemic cells localized within the interstitial space in close proximity to testicular macrophages. Mouse macrophages isolated from affected testes, in the PDX model, revealed a macrophage polarization towards a M2-like phenotype in the presence of ALL cells. Therapeutically, blockade of CXCR4-mediated functions using an anti-CXCR4 antibody treatment completely abolished testicular infiltration of PDX-ALL cells and strongly impaired the overall development of leukemia. Collectively, we identified a pre-pubertal condition together with high CXCR4 expression as factors affecting the leukemia permissive testicular microenvironment. We propose CXCR4 as a promising target for therapeutic prevention of testicular relapses in childhood B-ALL.
Keywords:B Cell Acute Lymphoblastic Leukemia, Testis Relapse, Chemokine Receptor CXCR4, Tumor Microenvironment, Macrophages, Animals, Mice
Source:Journal of Pathology
ISSN:0022-3417
Publisher:Wiley
Volume:258
Number:1
Page Range:12-25
Date:September 2022
Official Publication:https://doi.org/10.1002/path.5924
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library