Group by:
Date |
Item TypePreprint
Detecting unforeseen data properties with diffusion autoencoder embeddings using spine MRI data.
Graf, R., Hunecke, F., Pohl, S., Atad, M., Moeller, H., Starck, S., Kroencke, T., Bette, S., Bamberg, F., Pischon, T., Niendorf, T., Schmidt, C., Paetzold, J.C., Rueckert, D. and Kirschke, J.S.
arXiv
: 2410.10220.
14 October 2024
Insights, opportunities and challenges provided by large cell atlases.
Hemberg, M., Marini, F., Ghazanfar, S., Al Ajami, A., Abassi, N., Anchang, B., Benayoun, B.A., Cao, Y., Chen, K., Cuesta-Astroz, Y., DeBruine, Z., Dendrou, K.A., De Vlaminck, I., Imkeller, K., Korsunsky, I., Lederer, A.R., Meysman, P., Miller, C., Mullan, K., Ohler, U., Patikas, N., Schuck, N., Siu, J.H.Y., Triche, T.J., Tsankov, A., van der Laan, S.W., Yajima, M., Yang, J., Zanini, F. and Jelic, I.
arXiv
: 2408.06563.
13 August 2024
Quantification of multi-compartment flow with spectral diffusion MRI.
Liu, M.M., Dyke, J., Gladytz, T., Jasse, J., Bolger, I., Calle, S., Pavaluri, S., Crews, T., Seshan, S., Salvatore, S., Stillman, I., Muthukuma, T., Taouli, B., Farouk, S., Lewis, S. and Bane, O.
arXiv
: 2408.06427.
12 August 2024
The IBEX Knowledge-Base: Achieving more together with open science.
Radtke, A.J., Anidi, I., Arakkal, L., Arroyo-Mejias, A., Beuschel, R.T., Börner, K., Chu, C.J., Clark, B., Clatworthy, M.R., Colautti, J., Croteau, J., Denha, S., Dever, R., Dutra, W.O., Fritzsche, S., Fullam, S., Gerner, M.Y., Gola, A., Gollob, K.J., Hernandez, J.M., Hor, J.L., Ichise, H., Jing, Z., Jonigk, D., Kandov, E., Kastenmüller, W., Koenig, J.F.E., Kothurkar, A., Kreins, A.Y., Lamborn, I., Lin, Y., Luciano Pereira Morais, K., Lunich, A., Luz, J.C.S., MacDonald, R.B., Makranz, C., Maltez, V.I., Moriaty, R.V., Ocampo-Godinez, J.M., Olyntho, V.M., Padhan, K., Remmert, K., Richoz, N., Schrom, E.C., Shang, W., Shi, L., Shih, R.M., Speranza, E., Stierli, S., Teichmann, S.A., Veres, T.Z., Vierhout, M., Wachter, B.T., Wade-Vallance, A.K., Williams, M., Zangger, N., Germain, R.N. and Yaniv, Z.
arXiv
: 2407.19059v1.
26 July 2024
Predicting brain-age from raw T(1)-weighted magnetic resonance imaging data using 3D convolutional neural networks.
Fisch, L., Ernsting, J., Winter, N.R., Holstein, V., Leenings, R., Beisemann, M., Sarink, K., Emden, D., Opel, N., Redlich, R., Repple, J., Grotegerd, D., Meinert, S., Wulms, N., Minnerup, H., Hirsch, J.G., Niendorf, T., Endemann, B., Bamberg, F., Kröncke, T., Peters, A., Bülow, R., Völzke, H., von Stackelberg, O., Sowade, R.F., Umutlu, L., Schmidt, B., Caspers, S., Kugel, H., Baune, B.T., Kircher, T., Risse, B., Dannlowski, U., Berger, K. and Hahn, T.
arXiv
: 2103.11695.
22 March 2021
Harnessing spatial homogeneity of neuroimaging data: patch individual filter layers for CNNs.
Eitel, F., Albrecht, J.P., Weygandt, M., Paul, F. and Ritter, K.
arXiv
: 2007.11899.
23 July 2020
Portability of scientific workflows in NGS data analysis: a case study.
Schiefer, C., Bux, M., Brandt, J., Messerschmidt, C., Reinert, K., Beule, D. and Leser, U.
arXiv
: 2006.03104.
4 June 2020
This list was generated on Thu Nov 21 11:38:51 2024 UTC.