Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Discovery of a non-canonical GRHL1 binding site using deep convolutional and recurrent neural networks

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB
[thumbnail of Supplementary material] Other (Supplementary material)
10MB

Item Type:Article
Title:Discovery of a non-canonical GRHL1 binding site using deep convolutional and recurrent neural networks
Creators Name:Proft, S., Leiz, J., Heinemann, U., Seelow, D., Schmidt-Ott, K.M. and Rutkiewicz, M.
Abstract:BACKGROUND: Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it is unclear whether such approaches can uncover novel non-canonical, hitherto unexpected TFBSs relevant to human transcriptional regulation. RESULTS: In this study, we trained a convolutional recurrent neural network with HT-SELEX data for GRHL1 binding and applied it to a set of GRHL1 binding sites obtained from ChIP-Seq experiments from human cells. We identified 46 non-canonical GRHL1 binding sites, which were not found by a conventional PWM approach. Unexpectedly, some of the newly predicted binding sequences lacked the CNNG core motif, so far considered obligatory for GRHL1 binding. Using isothermal titration calorimetry, we experimentally confirmed binding between the GRHL1-DNA binding domain and predicted GRHL1 binding sites, including a non-canonical GRHL1 binding site. Mutagenesis of individual nucleotides revealed a correlation between predicted binding strength and experimentally validated binding affinity across representative sequences. This correlation was neither observed with a PWM-based nor another deep learning approach. CONCLUSIONS: Our results show that convolutional recurrent neural networks may uncover unanticipated binding sites and facilitate quantitative transcription factor binding predictions.
Keywords:Machine Learning, Neural Networks, Genetics, Transcription Factor Binding, Grainyhead-Like 1
Source:BMC Genomics
ISSN:1471-2164
Publisher:BioMed Central
Volume:24
Number:1
Page Range:736
Date:4 December 2023
Official Publication:https://doi.org/10.1186/s12864-023-09830-3
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library