Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Hybrid quantum-classical modeling of quantum dot devices

Item Type:Article
Title:Hybrid quantum-classical modeling of quantum dot devices
Creators Name:Kantner, M., Mittnenzweig, M. and Koprucki, T.
Abstract:The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Source:Physical Review B
ISSN:2469-9950
Publisher:American Physical Society
Volume:96
Number:20
Page Range:205301
Date:15 November 2017
Official Publication:https://doi.org/10.1103/PhysRevB.96.205301

Repository Staff Only: item control page

Open Access
MDC Library