Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

TapA acts as specific chaperone in TasA filament formation by strand complementation

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB
[thumbnail of Supporting Information]
Preview
PDF (Supporting Information) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
14MB

Item Type:Article
Title:TapA acts as specific chaperone in TasA filament formation by strand complementation
Creators Name:Roske, Y., Lindemann, F., Diehl, A., Cremer, N., Higman, V.A., Schlegel, B., Leidert, M., Driller, K., Turgay, K., Schmieder, P., Heinemann, U. and Oschkinat, H.
Abstract:Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of β-sandwich subunits. The secondary structure around the intercalated N-terminal strand β0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.
Keywords:Bacillus subtilis, Biofilm, TasA, apA/YqxM, Structure
Source:Proceedings of the National Academy of Sciences of the United States of America
ISSN:0027-8424
Publisher:National Academy of Sciences
Volume:120
Number:17
Page Range:e2217070120
Date:25 April 2023
Official Publication:https://doi.org/10.1073/pnas.2217070120
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library