Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Lack of the Ig cell adhesion molecule BT-IgSF (IgSF11) induced behavioral changes in the open maze, water maze and resident intruder test

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB
[thumbnail of Supporting Information] Other (Supporting Information)
16kB

Item Type:Article
Title:Lack of the Ig cell adhesion molecule BT-IgSF (IgSF11) induced behavioral changes in the open maze, water maze and resident intruder test
Creators Name:Montag, D., Pelz, L. and Rathjen, F.G.
Abstract:The brain- and testis-specific Ig superfamily protein (BT-IgSF, also termed IgSF11) is a homotypic cell adhesion protein. In the nervous system, BT-IgSF regulates the stability of AMPA receptors in the membrane of cultured hippocampal neurons, modulates the connectivity of chandelier cells and controls gap junction-mediated astrocyte-astrocyte communication. Here, we performed behavioral tests in BT-IgSF-deficient mice. BT-IgSF-deficient mice were similar to control littermates with respect to their reflexes, motor coordination and gating, and associative learning. However, BT-IgSF-deficient mice displayed an increased tendency to stay in the central illuminated areas in the open field and O-Maze paradigms suggesting reduced anxiety or increased scotophobia (fear of darkness). Although BT-IgSF-deficient mice initially found the platform in the water maze their behavior was compromised when the platform was moved, indicating reduced behavioral flexibility. This deficit was overcome by longer training to improve their spatial memory. Furthermore, male BT-IgSF-deficient mice displayed increased aggression towards an intruder. Our results show that specific behaviors are modified by the lack of BT-IgSF and demonstrate a contribution of BT-IgSF to network functions.
Keywords:Aggression, Anxiety, Cell Adhesion, Cell Adhesion Molecules, Fear, Knockout Mice, Maze Learning, Animals, Mice
Source:PLoS ONE
ISSN:1932-6203
Publisher:Public Library of Science
Volume:18
Number:1
Page Range:e0280133
Date:6 January 2023
Official Publication:https://doi.org/10.1371/journal.pone.0280133
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library