Preview |
PDF (Original Article)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13MB |
Item Type: | Article |
---|---|
Title: | Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells |
Creators Name: | van der Meulen, T., Xie, R., Kelly, O.G., Vale, W.W., Sander, M. and Huising, M.O. |
Abstract: | The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3(+) beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3(+) hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3(+) alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. |
Keywords: | Insulin, Cell Differentiation, Glucagon, Endoderm, Pancreas, Medical Implants, Animals, Primates, Macaque, Mice |
Source: | PLoS ONE |
ISSN: | 1932-6203 |
Publisher: | Public Library of Science |
Volume: | 7 |
Number: | 12 |
Page Range: | e52181 |
Date: | 14 December 2012 |
Official Publication: | https://doi.org/10.1371/journal.pone.0052181 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page