Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Multistep signaling and transcriptional requirements for pituitary organogenesis in vivo

Item Type:Review
Title:Multistep signaling and transcriptional requirements for pituitary organogenesis in vivo
Creators Name:Rosenfeld, M.G., Briata, P., Dasen, J., Gleiberman, A.S., Kioussi, C., Lin, C., O'Connell, S.M., Ryan, A., Szeto, D.P. and Treier, M.
Abstract:During development of the mammalian pituitary gland, specific hormone-producing cell types, critical in maintaining homeostasis, emerge in a spatially and temporally specific fashion from an ectodermal primordium. We have investigated the molecular basis of generating diverse cell phenotypes from a common precursor, providing in vivo and in vitro evidence that development of these cell types involves at least four sequential phases of signaling events and the action of a gradient at an ectodermal boundary. In the first phase, we hypothesize that this notochord induces invagination of Rathke's pouch from the oral ectoderm. This is followed by appearance of an ectodermal boundary, formed with exclusion of Shh from the nascent pouch. Next, signals from the ventral diencephalon--expressing BMP4, Wnt5a, FGF10, and FGF8--in concert with Shh represent critical in vivo signals for pituitary determination. Subsequently, a dorsal-ventral BMP2 signal gradient emanates from a ventral pituitary organizing center, forming at the boundary to oral ectoderm region from which Shh expression is selectively excluded. In concert with a dorsal FGF8 signal, this creates opposing gradients that generate overlapping patterns of specific transcription factors that underlie cell lineage specification events. The mechanisms by which these transient gradients of signaling molecules lead to the appearance of four ventral pituitary cell types appear to involve the reciprocal interactions of two transcription factors, Pit-1 and GATA-2, which are epistatic to the remainder of the cell type-specific transcription programs and serve as a molecular memory of the transient signaling events. Unexpectedly, this program includes a DNA-binding-independent function of Pit-1, suppressing the ventral GATA-2-dependent gonadotrope program by inhibiting GATA-2 binding to gonadotrope- but not thyrotrope-specific genes. This indicates that both DNA-binding-dependent and-independent actions of abundant determining factors contribute to generate distinct cell phenotypes. In the fourth phase, temporally specific loss of the BMP2 signal is required to allow terminal differentiation. The consequence of these sequential organ and cellular determination events is that each of the pituitary cell types--gonadotropes, thyrotropes, somatotropes, lactotropes, corticotropes, and melanotropes appears to be determined, in a ventral to dorsal gradient, respectively, apparently based on a combinatorial code of transcription factors induced by the gradient of specific signaling molecules.
Keywords:Bone Morphogenetic Protein 2, Bone Morphogenetic Proteins, DNA-Binding Proteins, Fibroblast Growth Factor 8, Fibroblast Growth Factors, GATA2 Transcription Factor, Genetic Transcription, Pituitary Gland, Signal Transduction, Transcription Factor Pit-1, Transcription Factors, Transforming Growth Factor Beta, Animals, Mice
Source:Recent Progress in Hormone Research
ISSN:0079-9963
Publisher:Endocrine Society
Volume:55
Page Range:1-13; discussion 13-14
Date:2000
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library