Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB
[thumbnail of Supplementary Information] Other (Supplementary Information)
104kB

Item Type:Article
Title:Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data
Creators Name:Gheorghiță, B.A., Itu, L.M., Sharma, P., Suciu, C., Wetzl, J., Geppert, C., Ali, M.A.A., Lee, A.M., Piechnik, S.K., Neubauer, S., Petersen, S.E., Schulz-Menger, J. and Chițiboi, T.
Abstract:Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced.
Keywords:Cine Magnetic Resonance Imaging, Computer-Assisted Image Processing, Computer Neural Networks, Deep Learning, Heart Ventricles, Left Ventricular Function, Stroke Volume
Source:Scientific Reports
ISSN:2045-2322
Publisher:Nature Publishing Group
Volume:12
Number:1
Page Range:2391
Date:14 February 2022
Official Publication:https://doi.org/10.1038/s41598-022-06315-3
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library