Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6MB
[thumbnail of Supplementary Materials] Other (Supplementary Materials)
2MB

Item Type:Article
Title:Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day
Creators Name:Basti, A., Yalçin, M., Herms, D., Hesse, J., Aboumanify, O., Li, Y., Aretz, Z., Garmshausen, J., El-Athman, R., Hastermann, M., Blottner, D. and Relógio, A.
Abstract:OBJECTIVES: In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. METHODS: 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. RESULTS: Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15-18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. CONCLUSION: Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.
Source:BMJ Open Sport & Exercise Medicine
ISSN:2398-9459
Publisher:BMJ Publishing Group
Volume:7
Number:1
Page Range:e000876
Date:10 February 2021
Official Publication:https://doi.org/10.1136/bmjsem-2020-000876
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library