Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Adaptive and reversible resistance to Kras inhibition in pancreatic cancer cells

[thumbnail of Accepted Manuscript (final draft)]
Preview
PDF (Accepted Manuscript (final draft)) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
13MB
[thumbnail of Supplemental Material] Other (Supplemental Material)
49MB

Item Type:Article
Title:Adaptive and reversible resistance to Kras inhibition in pancreatic cancer cells
Creators Name:Chen, P.Y., Muzumdar, M.D., Dorans, K.J., Robbins, R.A., Bhutkar, A., Del Rosario, A.M., Mertins, P., Qiao, J., Schaefer, C., Gertler, F.B., Carr, S.A. and Jacks, T.
Abstract:Activating mutations in KRAS are the hallmark genetic alterations in pancreatic ductal adenocarcinoma (PDAC) and the key drivers of its initiation and progression. Longstanding efforts to develop novel KRAS inhibitors have been based on the assumption that PDAC cells are addicted to activated KRAS, but this assumption remains controversial. In this study, we analyzed the requirement of endogenous Kras to maintain survival of murine PDAC cells, using an inducible shRNA-based system that enables temporal control of Kras expression. We found that the majority of murine PDAC cells analyzed tolerated acute and sustained Kras silencing by adapting to a reversible cell state characterized by differences in cell morphology, proliferative kinetics, and tumor-initiating capacity. While we observed no significant mutational or transcriptional changes in the Kras-inhibited state, global phosphoproteomic profiling revealed significant alterations in cell signaling, including increased phosphorylation of focal adhesion pathway components. Accordingly, Kras-inhibited cells displayed prominent focal adhesion plaque structures, enhanced adherence properties, and increased dependency on adhesion for viability in vitro. Overall, our results call into question the degree to which PDAC cells are addicted to activated KRAS, by illustrating adaptive non-genetic and non-transcriptional mechanisms of resistance to Kras blockade. However, by identifying these mechanisms, our work also provides mechanistic directions to develop combination strategies that can help enforce the efficacy of KRAS inhibitors.
Keywords:Pancreatic Cancer, Cell Adhesion, Cell Signaling, Protein Tyrosine Kinases, Animal Models of Cancer, Gene Expression Profiling, Oncogenes, Tumor Suppressor Genes, Gene Products as Targets for Therapy, Novel Mechanisms, Animals, Mice
Source:Cancer Research
ISSN:0008-5472
Publisher:American Association for Cancer Research
Volume:78
Number:4
Page Range:985-1002
Date:15 February 2018
Additional Information:Copyright © 2017 American Association for Cancer Research.
Official Publication:https://doi.org/10.1158/0008-5472.CAN-17-2129
External Fulltext:View full text on PubMed Central
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library