Preview |
PDF (Original Article)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB |
Preview |
PDF (Supplementary Data)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
453kB |
Item Type: | Article |
---|---|
Title: | The developmental emergence of differential brainstem serotonergic control of the sensory spinal cord |
Creators Name: | Schwaller, F., Kanellopoulos, A.H. and Fitzgerald, M. |
Abstract: | Descending connections from brainstem nuclei are known to exert powerful control of spinal nociception and pain behaviours in adult mammals. Here we present evidence that descending serotonergic fibres not only inhibit nociceptive activity, but also facilitate non-noxious tactile activity in the healthy adult rat spinal dorsal horn via activation of spinal 5-HT(3) receptors (5-HT(3)Rs). We further show that this differential serotonergic control in the adult emerges from a non-modality selective system in young rats. Serotonergic fibres exert background 5-HT(3)R mediated facilitation of both tactile and nociceptive spinal activity in the first three postnatal weeks. Thus, differential descending serotonergic control of spinal touch and pain processing emerges in late postnatal life to allow flexible and context-dependent brain control of somatosensation. |
Keywords: | Analysis of Variance, Brain Stem, Evoked Potentials, Nociception, Nociceptors, Serotonergic Neurons, Serotonin, Serotonin Receptors, Spinal Cord, Animals, Rats |
Source: | Scientific Reports |
ISSN: | 2045-2322 |
Publisher: | Nature Publishing Group |
Volume: | 7 |
Number: | 1 |
Page Range: | 2215 |
Date: | 22 May 2017 |
Official Publication: | https://doi.org/10.1038/s41598-017-02509-2 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page