Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Quantifying the uncertainty in heritability

[thumbnail of 16532oa.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Item Type:Article
Title:Quantifying the uncertainty in heritability
Creators Name:Furlotte, N.A., Heckerman, D. and Lippert, C.
Abstract:The use of mixed models to determine narrow-sense heritability and related quantities such as SNP heritability has received much recent attention. Less attention has been paid to the inherent variability in these estimates. One approach for quantifying variability in estimates of heritability is a frequentist approach, in which heritability is estimated using maximum likelihood and its variance is quantified through an asymptotic normal approximation. An alternative approach is to quantify the uncertainty in heritability through its Bayesian posterior distribution. In this paper, we develop the latter approach, make it computationally efficient and compare it to the frequentist approach. We show theoretically that, for a sufficiently large sample size and intermediate values of heritability, the two approaches provide similar results. Using the Atherosclerosis Risk in Communities cohort, we show empirically that the two approaches can give different results and that the variance/uncertainty can remain large.
Keywords:Bayesian Estimation, Heritability, Mixed-Models
Source:Journal of Human Genetics
ISSN:1434-5161
Volume:59
Number:5
Page Range:269-275
Date:May 2014
Official Publication:https://doi.org/10.1038/jhg.2014.15
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library