Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Skin sodium measured with (23)Na MRI at 7.0 T

[thumbnail of Manuscript (final draft)] PDF (Manuscript (final draft)) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3MB

Item Type:Article
Title:Skin sodium measured with (23)Na MRI at 7.0 T
Creators Name:Linz, P., Santoro, D., Renz, W., Rieger, J., Ruehle, A., Ruff, J., Deimling, M., Rakova, N., Muller, D.N., Luft, F.C., Titze, J. and Niendorf, T.
Abstract:Skin sodium (Na(+)) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23)Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution 23 Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with 23 Na MRI using a high in-plane resolution of 0.9 x 0.9 mm2 . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23)Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with (23)Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na(+) storage function of skin.
Keywords:MRI, Ultrahigh-Field MR, Radiofrequency Coil, Salt, Sodium, Skin, Hypertension, Salt Balance
Source:NMR in Biomedicine
ISSN:0952-3480
Publisher:Wiley-Blackwell
Volume:28
Number:1
Page Range:54-62
Date:January 2015
Official Publication:https://doi.org/10.1002/nbm.3224
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library