Helmholtz Gemeinschaft


Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle

[thumbnail of 14353oa.pdf] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Item Type:Article
Title:Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle
Creators Name:Czajkowski, M.T., Rassek, C., Lenhard, D., Bröhl, D. and Birchmeier, C.
Abstract:Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.
Keywords:Craniofacial Muscles, Notch Signaling, Myogenic Progenitor Cells, Dll1, Pax7, Animals, Mice
Source:Developmental Biology
Publisher:Elsevier / Academic Press
Page Range:307-3016
Date:15 November 2014
Official Publication:https://doi.org/10.1016/j.ydbio.2014.09.005
PubMed:View item in PubMed

Repository Staff Only: item control page


Downloads per month over past year

Open Access
MDC Library