Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis

[thumbnail of 14208oa.pdf] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3MB

Item Type:Article
Title:Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis
Creators Name:Schoening, J.C., Streitner, C., Meyer, I.M., Gao, Y. and Staiger, D.
Abstract:The Arabidopsis RNA-binding protein AtGRP8 undergoes negative autoregulation at the post-transcriptional level. An elevated AtGRP8 protein level promotes the use of a cryptic 5' splice site to generate an alternatively spliced transcript, as_AtGRP8, retaining the 5' half of the intron with a premature termination codon. In mutants defective in nonsense-mediated decay (NMD) abundance of as_AtGRP8 but not its pre-mRNA is elevated, indicating that as_AtGRP8 is a direct NMD target, thus limiting the production of functional AtGRP8 protein. In addition to its own pre-mRNA, AtGRP8 negatively regulates the AtGRP7 transcript through promoting the formation of the equivalent alternatively spliced as_AtGRP7 transcript, leading to a decrease in AtGRP7 abundance. Recombinant AtGRP8 binds to its own and the AtGRP7 pre-mRNA, suggesting that this interaction is relevant for the splicing decision in vivo. AtGRP7 itself is part of a negative autoregulatory circuit that influences circadian oscillations of its own and the AtGRP8 transcript through alternative splicing linked to NMD. Thus, we identify an interlocked feedback loop through which two RNA-binding proteins autoregulate and reciprocally crossregulate by coupling unproductive splicing to NMD. A high degree of evolutionary sequence conservation in the introns retained in as_AtGRP8 or as_AtGRP7 points to an important function of these sequences.
Keywords:Alternative Splicing, Amino Acid Motifs, Arabidopsis, Arabidopsis Proteins, Arginine, Cold Temperature, Down-Regulation, Glycine, Messenger RNA, Mutation, Nonsense Codon, Plant Gene Expression Regulation, RNA Precursors, RNA-Binding Proteins
Source:Nucleic Acids Research
ISSN:0305-1048
Publisher:Oxford University Press
Volume:36
Number:22
Page Range:6977-6987
Date:December 2008
Official Publication:https://doi.org/10.1093/nar/gkn847
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library