Item Type: | Article |
---|---|
Title: | A H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation |
Creators Name: | Sabbattini, P., Sjoberg, M., Nikic, S., Frangini, A., Holmqvist, P.H., Kunowska, N., Carroll, T., Brookes, E., Arthur, S.J., Pombo, A. and Dillon, N. |
Abstract: | Methylated histone H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterised. We show that H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and in cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen and stress activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in ES cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and of the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilises repressed states. |
Keywords: | Chromatin, Differentiation, Gene Repression, Methyl-Phospho Switch, Polycomb, Animals, Mice |
Source: | Molecular Biology of the Cell |
ISSN: | 1059-1524 |
Publisher: | American Society for Cell Biology |
Volume: | 25 |
Number: | 6 |
Page Range: | 904-915 |
Date: | March 2014 |
Official Publication: | https://doi.org/10.1091/mbc.E13-10-0628 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page