PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
851kB |
Item Type: | Article |
---|---|
Title: | Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells |
Creators Name: | Bachmeier, B., Fichtner, I., Killian, P.H., Kronski, E., Pfeffer, U. and Efferth, T. |
Abstract: | Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFκB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFκB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors. |
Keywords: | Apoptosis, Artemisinins, bcl-2-Associated X Protein, Breast Neoplasms, Cell Survival, Electrophoretic Mobility Shift Assay, Matrix Metalloproteinase 1, Neoplasm Drug Resistance, NF-kappa B, Transcription Factor AP-1, Tumor Cell Line, Xenograft Model Antitumor Assays, Animals, Mice, Nude Mice |
Source: | PLoS ONE |
ISSN: | 1932-6203 |
Publisher: | Public Library of Science |
Volume: | 6 |
Number: | 5 |
Page Range: | e20550 |
Date: | 26 May 2011 |
Official Publication: | https://doi.org/10.1371/journal.pone.0020550 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page