Helmholtz Gemeinschaft


Quantifying technical confounders in microbiome studies

Item Type:Article
Title:Quantifying technical confounders in microbiome studies
Creators Name:Bartolomaeus, T.U.P. and Birkner, T. and Bartolomaeus, H. and Löber, U. and Avery, E.G. and Mähler, A. and Weber, D. and Kochlik, B. and Balogh, A. and Wilck, N. and Boschmann, M. and Müller, D.N. and Markó, L. and Forslund, S.K.
Abstract:AIMS: Recent technical developments have allowed the study of the human microbiome to accelerate at an unprecedented pace. Methodological differences may have considerable impact on the results obtained. Thus, we investigated how different storage, isolation and DNA extraction methods can influence the characterization of the intestinal microbiome, compared to the impact of true biological signals such as intraindividual variability, nutrition, health and demographics. METHODS AND RESULTS: An observative cohort study in 27 healthy subjects was performed. Participants were instructed to collect stool samples twice spaced by a week, using six different methods (naive and Zymo DNA/RNA Shield on dry ice, OMNIgene GUT, RNALater, 95% ethanol, Zymo DNA/RNA Shield at room temperature). DNA extraction from all samples was performed comparatively using QIAamp Power Fecal and ZymoBIOMICS DNA kits. 16S rRNA sequencing of the gut microbiota as well as qPCRs were performed on the isolated DNA. Metrics included alpha diversity as well as multivariate and univariate comparisons of samples, controlling for covariate patterns computationally. Interindividual differences explained 7.4% of overall microbiome variability, whereas the choice of DNA extraction method explained a further 5.7%. At phylum level, the tested kits differed in their recovery of gram-positive bacteria, which is reflected in a significantly skewed enterotype distribution. CONCLUSIONS: DNA extraction methods had the highest impact on observed microbiome variability, and were comparable to interindividual differences, thus may spuriously mimic the microbiome signatures of various health and nutrition factors. Conversely, collection methods had a relatively small influence on microbiome composition. The present study provides necessary insight into the technical variables which can lead to divergent results from seemingly similar study designs. We anticipate that these results will contribute to future efforts towards standardization of microbiome quantification procedures in clinical research. TRANSLATIONAL PERSPECTIVES: By applying a framework which is typical for the investigation of the microbiome in cardiovascular disease patients, we assess the role of these confounders under realistic circumstances. Our work allows quality control and design improvement for upcoming translational microbiome studies such as the search for disease biomarkers or efficacy predictors for personalized treatment regimes.
Source:Cardiovascular Research
Publisher:Oxford University Press
Page Range:863-875
Date:1 March 2021
Official Publication:https://doi.org/10.1093/cvr/cvaa128
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library