Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Cxcl10(+) monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation

Item Type:Article
Title:Cxcl10(+) monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation
Creators Name:Giladi, A. and Wagner, L.K. and Li, H. and Dörr, D. and Medaglia, C. and Paul, F. and Shemer, A. and Jung, S. and Yona, S. and Mack, M. and Leutz, A. and Amit, I. and Mildner, A.
Abstract:Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10(+) and Saa3(+) monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10(+) and Saa3(+) pathogenic cells were not derived from Ly6C(+) monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10(+) and Saa3(+) monocytes, could be used for targeted therapeutic interventions.
Keywords:Autoimmunity, Cell Differentiation, Central Nervous System, Chemokine CXCL10, Cultured Cells, Dendritic Cells, Experimental Autoimmune Encephalomyelitis, Inbred C57BL Mice, Monocytes, Multiple Sclerosis, Neurogenic Inflammation, Phagocytes, Serum Amyloid A Protein, Single-Cell Analysis, Transcription Factors, Transgenic Mice, Animals, Mice
Source:Nature Immunology
ISSN:1529-2908
Publisher:Nature Publishing Group
Volume:21
Number:5
Page Range:525-534
Date:May 2020
Additional Information:Erratum in: Nat Immunol 21(8): 962.
Official Publication:https://doi.org/10.1038/s41590-020-0661-1
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library