Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain

Item Type:Article
Title:Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain
Creators Name:Jacob, J. and Storm, R. and Castro, D.S. and Milton, C. and Pla, P. and Guillemot, F. and Birchmeier, C. and Briscoe, J.
Abstract:Monoaminergic neurons include the physiologically important central serotonergic and noradrenergic subtypes. Here, we identify the zinc-finger transcription factor, Insm1, as a crucial mediator of the differentiation of both subtypes, and in particular the acquisition of their neurotransmitter phenotype. Insm1 is expressed in hindbrain progenitors of monoaminergic neurons as they exit the cell cycle, in a pattern that partially overlaps with the expression of the proneural factor Ascl1. Consistent with this, a conserved cis-regulatory sequence associated with Insm1 is bound by Ascl1 in the hindbrain, and Ascl1 is essential for the expression of Insm1 in the ventral hindbrain. In Insm1-null mutant mice, the expression of the serotonergic fate determinants Pet1, Lmx1b and Gata2 is markedly downregulated. Nevertheless, serotonergic precursors begin to differentiate in Insm1 mutants, but fail to produce serotonin because of a failure to activate expression of tryptophan hydroxylase 2 (Tph2), the key enzyme of serotonin biosynthesis. We find that both Insm1 and Ascl1 coordinately specify Tph2 expression. In brainstem noradrenergic centres of Insm1 mutants, expression of tyrosine hydroxylase is delayed in the locus coeruleus and is markedly deficient in the medullary noradrenergic nuclei. However, Insm1 is dispensable for the expression of a second key noradrenergic biosynthetic enzyme, dopamine beta-hydroxylase, which is instead regulated by Ascl1. Thus, Insm1 regulates the synthesis of distinct monoaminergic neurotransmitters by acting combinatorially with, or independently of, Ascl1 in specific monoaminergic populations.
Keywords:Hindbrain, Neuron, Serotonin, Noradrenaline, Animals, Mice
Source:Development
ISSN:0950-1991
Publisher:Company of Biologists
Volume:136
Number:14
Page Range:2477-2485
Date:July 2009
Official Publication:https://doi.org/10.1242/dev.034546
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library