Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates

Item Type:Article
Title:The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates
Creators Name:Knauf, F. and Mohebbi, N. and Teichert, C. and Herold, D. and Rogina, B. and Helfand, S. and Gollasch, M. and Luft, F.C. and Aronson, P.S.
Abstract:A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.
Keywords:Aging, Anion exchange, Citrate, Dicarboxylate, Indy, Succinate
Source:Biochemical Journal
ISSN:0264-6021
Publisher:Portland Press (U.K.)
Volume:397
Page Range:25-29
Date:1 July 2006
Official Publication:https://doi.org/10.1042/BJ20060409
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library