Helmholtz Gemeinschaft


Functional organization of the yeast proteome by systematic analysis of protein complexes

Item Type:Article
Title:Functional organization of the yeast proteome by systematic analysis of protein complexes
Creators Name:Gavin, A.C. and Boesche, M. and Krause, R. and Grandi, P. and Marzioch, M. and Bauer, A. and Schultz, J. and Rick, J.M. and Michon, A.M. and Cruciat, C.M. and Remor, M. and Hoefert, C. and Schelder, M. and Brajenovic, M. and Ruffner, H. and Merino, A. and Klein, K. and Hudak, M. and Dickson, D. and Rudi, T. and Gnau, V. and Bauch, A. and Bastuck, S. and Huhse, B. and Leutwein, C. and Heurtier, M.A. and Copley, R.R. and Edelmann, A. and Querfurth, E. and Rybin, V. and Drewes, G. and Raida, M. and Bouwmeester, T. and Bork, P. and Seraphin, B. and Kuester, B. and Neubauer, G. and Superti-Furga, G.
Abstract:Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
Keywords:Cultured Cells, Affinity Chromatography, Gene Targeting, Macromolecular Substances, Proteome, Recombinant Fusion Proteins, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sensitivity and Specificity, Species Specificity, Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
Publisher:Nature Publishing Group
Page Range:141-147
Date:10 January 2002
Official Publication:https://doi.org/10.1038/415141a
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library