Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

The apoptosis promoting Bcl-2 homologues Bak and Nbk/Bik overcome drug resistance in Mdr-1-negative and Mdr-1-overexpressing breast cancer cell lines

Item Type:Article
Title:The apoptosis promoting Bcl-2 homologues Bak and Nbk/Bik overcome drug resistance in Mdr-1-negative and Mdr-1-overexpressing breast cancer cell lines
Creators Name:Radetzki, S. and Koehne, C.H. and von Haefen, C. and Gillissen, B. and Sturm, I. and Doerken, B. and Daniel, P.T.
Abstract:We previously demonstrated that the forced expression of pro-caspase-3 can revert acquired chemoresistance in MT1-Adr breast cancer cells which show a defective activation of the mitochondrial pathway of apoptosis. We now asked whether the manipulation of mitochondrial apoptosis signaling can revert different types of drug resistance, i.e. the resistance due to impaired mitochondrial activation in the MT1-Adr cells and the resistance in MT3-Adr cells which is caused by increased expression of the Mdr-1/p-glycoprotein ABC transporter. Here we show that Bcl-2 overexpression is the underlying cause for the resistant phenotype in the MT1-Adr cells. Overexpression of the apoptosis-promoting Bax homologue Bak or the BH3 only protein Nbk/Bik reverts, as expected, acquired drug resistance in the MT1-Adr cells as recently demonstrated for pro-caspase-3. Moreover, we show that both apoptosis-promoters, Nbk/Bik and Bak, antagonize acquired chemoresistance for epirubicin-mediated apoptosis in MT3-Adr breast cancer cells. Neither drug uptake nor drug efflux were influenced by Bak or Nbk/Bik. Thus, our data show that manipulation of the downstream apoptosis signaling cascade by Bak and Nbk/Bik can overcome not only drug resistance due to mitochondrial apoptosis deficiency (in the MT1-Adr cells) but also classical, i.e. efflux-mediated, resistance for drug-induced cell death in the MT3-Adr cell line. Nbk/Bik and Bak could therefore be target genes to increase chemosensitivity and overcome different types of drug resistance.
Keywords:Bak, Nbk, Bik, Apoptosis, Drug Resistance, Breast Cancer
Source:Oncogene
ISSN:0950-9232
Publisher:Nature Publishing Group (U.K.)
Volume:21
Number:2
Page Range:227-238
Date:10 January 2002
Official Publication:https://doi.org/10.1038/sj/onc/1205010
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library