Helmholtz Gemeinschaft


Differential ripple propagation along the hippocampal longitudinal axis

PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Item Type:Article
Title:Differential ripple propagation along the hippocampal longitudinal axis
Creators Name:de Filippo, R. and Schmitz, D.
Abstract:Hippocampal ripples are highly synchronous neural events critical for memory consolidation and retrieval. A minority of strong ripples has been shown to be of particular importance in situations of increased memory demands. The propagation dynamics of strong ripples inside the hippocampal formation are, however, still opaque. We analyzed ripple propagation within the hippocampal formation in a large open access dataset comprising 267 Neuropixel recordings in 49 awake, head-fixed mice. Surprisingly, strong ripples (top 10% in ripple strength) propagate differentially depending on their generation point along the hippocampal longitudinal axis. The septal hippocampal pole is able to generate longer ripples that engage more neurons and elicit spiking activity for an extended time even at considerable distances. Accordingly, a substantial portion of the variance in strong ripple duration (R² = 0.463) is explained by the ripple generation location on the longitudinal axis, in agreement with a possible distinctive role of the hippocampal septal pole in conditions of high memory demand. Moreover, we observed that the location of the ripple generation has a significant impact on the spiking rate modulation of different hippocampal subfields, even before the onset of the ripple. This finding suggests that ripple generation location plays a crucial role in shaping the neural activity across the hippocampus.
Keywords:Hippocampal Ripples, Ripples Propagation, Animals, Mice
Publisher:eLife Sciences Publications
Page Range:e85488
Date:13 April 2023
Official Publication:https://doi.org/10.7554/elife.85488
PubMed:View item in PubMed

Repository Staff Only: item control page


Downloads per month over past year

Open Access
MDC Library