Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Fasting intervention and its clinical effects on the human host and microbiome

[img]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
949kB
[img] Other (Supporting Information)
20kB

Item Type:Review
Title:Fasting intervention and its clinical effects on the human host and microbiome
Creators Name:Forslund, S.K.
Abstract:Experimental trials in organisms ranging from yeast to humans have shown that various forms of reducing food intake (caloric restriction) appear to increase both overall and healthy lifespan, delaying the onset of disease and slowing the progression of biomarkers of aging. The gut microbiota is considered one of the key environmental factors strongly contributing to the regulation of host health. Perturbations in the composition and activity of the gut microbiome are thought to be involved in the emergence of multiple diseases. Indeed, many studies investigating gut microbiota have been performed and have shown strong associations between specific microorganisms and metabolic diseases including overweight, obesity, and type 2 diabetes mellitus as well as specific gastrointestinal disorders, neurodegenerative diseases, and even cancer. Dietary interventions known to reduce inflammation and improve metabolic health are potentiated by prior fasting. Inversely, birth weight differential host oxidative phosphorylation response to fasting implies epigenetic control of some of its effector pathways. There is substantial evidence for the efficacy of fasting in improving insulin signaling and blood glucose control, and in reducing inflammation, conditions for which, additionally, the gut microbiota has been identified as a site of both risk and protective factors. Accordingly, human gut microbiota, both in symbiont and pathobiont roles, have been proposed to impact and mediate some health benefits of fasting and could potentially affect many of these diseases. While results from small-N studies diverge, fasting consistently enriches widely recognized anti-inflammatory gut commensals such as Faecalibacterium and other short-chain fatty acid producers, which likely mediates some of its health effects through immune system and barrier function impact.
Keywords:Fasting, Gastrointestinal Tract, Immune, System, Metabolism, Microbiota, Animals, Mice
Source:Journal of Internal Medicine
ISSN:0954-6820
Publisher:Wiley
Date:22 October 2022
Official Publication:https://doi.org/10.1111/joim.13574
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library