Helmholtz Gemeinschaft


Gene function prediction from synthetic lethality networks via ranking on demand

Item Type:Article
Title:Gene function prediction from synthetic lethality networks via ranking on demand
Creators Name:Lippert, C. and Ghahramani, Z. and Borgwardt, K.M.
Abstract:Motivation: Synthetic lethal interactions represent pairs of genes whose individual mutations are not lethal, while the double mutation of both genes does incur lethality. Several studies have shown a correlation between functional similarity of genes and their distances in networks based on synthetic lethal interactions. However, there is a lack of algorithms for predicting gene function from synthetic lethality interaction networks. Results: In this article, we present a novel technique called kernelROD for gene function prediction from synthetic lethal interaction networks based on kernel machines. We apply our novel algorithm to Gene Ontology functional annotation prediction in yeast. Our experiments show that our method leads to improved gene function prediction compared with state-of-the-art competitors and that combining genetic and congruence networks leads to a further improvement in prediction accuracy.
Keywords:Algorithms, Fungal Genome, Gene Regulatory Networks, Genomics, Lethal Genes, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Page Range:912-918
Date:1 April 2010
Official Publication:https://doi.org/10.1093/bioinformatics/btq053
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library