Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces

Item Type:Article
Title:Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces
Creators Name:Poole, K. and Khairy, K. and Friedrichs, J. and Franz, C. and Cisneros, D.A. and Howard, J. and Mueller, D.
Abstract:Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not known. We have investigated the structural features of collagen that are required for directional motility of mouse dermal fibroblasts, by analysing cell movement on two-dimensional collagen surfaces. The surfaces were prepared with aligned fibrils of collagen type I, oriented in a predefined direction. These collagen-coated surfaces were generated with or without the characteristic 67 nm D-periodic banding. Quantitative analysis of cell morphodynamics showed a strong correlation of cell elongation and motional directionality with the orientation of D-periodic collagen microfibrils. Neither directed motility, nor cell body alignment, was observed on aligned collagen lacking D-periodicity, or on D-periodic collagen in the presence of peptide containing an RGD motif. The directional motility of fibroblast cells on aligned collagen type I fibrils cannot be attributed to contact guidance, but requires additional structural information. This allows us to postulate a physiological function for the 67 nm periodicity.
Keywords:Morphodynamics, D-Periodicity, Fibroblasts, Collagen, Animals, Mice
Source:Journal of Molecular Biology
ISSN:0022-2836
Publisher:Elsevier (The Netherlands)
Volume:349
Number:2
Page Range:380-386
Date:3 June 2005
Official Publication:https://doi.org/10.1016/j.jmb.2005.03.064
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library