Item Type: | Article |
---|---|
Title: | Global transcriptomic analysis of murine embryonic stem cell-derived brachyury+ (T) cells |
Creators Name: | Doss, M.X., Wagh, V., Schulz, H., Kull, M., Kolde, R., Pfannkuche, K., Nolden, T., Himmelbauer, H., Vilo, J., Hescheler, J. and Sachinidis, A. |
Abstract: | Brachyury+ mesodermal cell population with purity over 79% was obtained from differentiating brachyury embryonic stem cells (ESC) generated with brachyury promoter driven enhanced green fluorescent protein and puromycin-N-acetyltransferase. A comprehensive transcriptomic analysis of brachyury+ cells enriched with puromycin application from 6-day-old embryoid bodies (EBs), 6-day-old control EBs and undifferentiated ESCs led to identification of 1573 uniquely up-regulated and 1549 uniquely down-regulated transcripts in brachyury+ cells. Furthermore, transcripts up-regulated in brachyury+ cells have overrepresented the Gene Ontology annotations (cell differentiation, blood vessel morphogenesis, striated muscle development, placenta development and cell motility) and Kyoto Encyclopedia of Genes and Genomes pathway annotations (mitogen-activated protein kinase signaling and transforming growth factor beta signaling). Transcripts representing Larp2 and Ankrd34b are notably up-regulated in brachyury+ cells. Knockdown of Larp2 resulted in a significantly down-regulation BMP-2 expression, and knockdown of Ankrd34b resulted in alteration of NF-H, PPAR gamma and PECAM1 expression. The elucidation of transcriptomic signatures of ESCs-derived brachyury+ cells will contribute toward defining the genetic and cellular identities of presumptive mesodermal cells. Furthermore, there is a possible involvement of Larp2 in the regulation of the late mesodermal marker BMP-2. Ankrd34b might be a positive regulator of neurogenesis and a negative regulator of adipogenesis. |
Keywords: | Activated Receptor alpha, Mesoderm Formation, In Vitro, Gene, Expression, Protein, Differentiation, Commitment, Database, Animals, Xenopus |
Source: | Genes to Cells |
ISSN: | 1356-9597 |
Publisher: | Wiley-Blackwell |
Volume: | 15 |
Number: | 3 |
Page Range: | 209-228 |
Date: | March 2010 |
Official Publication: | https://doi.org/10.1111/j.1365-2443.2010.01390.x |
Repository Staff Only: item control page