Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Adaptation of cellular metabolism to anisosmotic conditions in a glial cell line, as assessed by 13C-NMR spectroscopy

Item Type:Article
Title:Adaptation of cellular metabolism to anisosmotic conditions in a glial cell line, as assessed by 13C-NMR spectroscopy
Creators Name:Floegel, U. and Willker, W. and Engelmann, J. and Niendorf, T. and Leibfritz, D.
Abstract:13C-NMR spectroscopy of perchloric acid and lipid extracts of F98 glioma cells showed that volume-regulatory processes under anisosmotic conditions were accompanied by marked alterations in cellular metabolism. Production of alanine, glutamate, and glycine from [U-13C]-glucose is decreased under hypotonic stress and is oppositely increased under hypertonic stress. In contrast, degradation of these molecules is raised under hypotonic conditions and reduced under hypertonic conditions. Furthermore, phospholipid synthesis is decreased under hypertonic stress and increased under hypotonic stress. Obviously, glial metabolism is directed under hypertonic conditions to maintain a high level of small, osmotically active molecules, whereas under hypotonic conditions molecular fragments are increasingly incorporated into the phospholipids and so do not contribute to the osmotic pressure. The latter is evoked by the activation of membrane synthesis process to compensate for stretching and/or damaging of the membranes due to cell swelling.
Keywords:13C-NMR, Glial Glucose Metabolism, Osmotic Stress, Phospholipid Biosynthesis, Volume Regulation
Source:Developmental Neuroscience
ISSN:0378-5866
Publisher:Karger
Volume:18
Number:5-6
Page Range:449-459
Date:1996
Official Publication:https://doi.org/10.1159/000111440
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library