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ABSTRACT

KorA is a global repressor in RP4 which regulates
cooperatively the expression of plasmid genes
whose products are involved in replication, conjuga-
tive transfer and stable inheritance. The structure of
KorA bound to an 18-bp DNA duplex that contains
the symmetric operator sequence and incorporates
5-bromo-deoxyuridine nucleosides has been deter-
mined by multiple-wavelength anomalous diffrac-
tion phasing at 1.96-Å resolution. KorA is present
as a symmetric dimer and contacts DNA via a
helix–turn–helix motif. Each half-site of the symmet-
ric operator DNA binds one copy of the protein in
the major groove. As confirmed by mutagenesis,
recognition specificity is based on two KorA side
chains forming hydrogen bonds to four bases
within each operator half-site. KorA has a unique
dimerization module shared by the RP4 proteins
TrbA and KlcB. We propose that these proteins
cooperate with the global RP4 repressor KorB in a
similar manner via this dimerization module and
thus regulate RP4 inheritance.

INTRODUCTION

Plasmids of the incompatibility group IncP are capable of
transfer and stable inheritance in most Gram-negative
bacteria (1). Besides various bacterial hosts, they can
also transfer to yeast (2) and some higher eukaryotic
cells (3). IncP-1 plasmids are divided into several sub-
groups, a, b, g and d (4,5). The best-studied family mem-
bers share a common backbone and fall in the a and b
subgroups (6): RP4 (indistinguishable from RK2, R18,
R68 and RP1) for IncP-1a (7) and R751 for IncP-1b (8).
Their regulatory circuit, which coordinates partition, rep-
lication and transfer functions, is controlled by the global
repressor proteins KorA, KorB and TrbA, each repressing

several operons, while each operon is regulated by more
than one repressor (9).
The stable maintenance of low-copy genomes like RP4

(60 099 bp with four to seven copies per chromosome) is
based on accurate DNA segregation before cell division.
This active partition (par) system of RP4 is encoded in the
complex korAB operon. It carries the genes of its tran-
scriptional repressors KorA and KorB (7) as well as the
gene responsible for incompatibility, incC (10). IncC is
made in two forms by two different translational starts
in the same reading frame (11). The incC1 (full-length
gene product of 364 aa) and incC2 (encoding an N-term-
inally truncated version of 259 aa) starting regions are
overlapped by the start and stop codon of korA, respec-
tively, in the second reading frame. This remarkable
korA/incC1/incC2 arrangement of overlapping genes, by
tandem in-frame initiation regions or by using the coding
capacity of a different reading frame is conserved through-
out the P-plasmids (7). While KorA contains a HTH
motif, IncC1 is neither a DNA-binding protein nor a tran-
scriptional repressor.
KorA consists of 101 residues (11 306Da, pI=10.4)

and exists as a dimer in solution. It recognizes and binds
a 12-bp symmetric operator OA (consensus sequence
50-GTT TAG CTA AAC-30) found at seven promoter
sites on RP4 with different affinities (12). At five promoter
regions a KorB operator site (OB) is also present, sepa-
rated from OA center-to-center by 32 bp (korAp), 33 bp
(trfAp, klaAp), 36 bp (kfrAp) or 92 bp (kleAp). Interaction
of both proteins is important to accomplish strong repres-
sion. KorB acts very flexibly and cooperates with other
repressor proteins from various distances with no partic-
ular helical position required (13,14). KorA interacts with
KorB directly through its C-terminus (15). This domain
exhibits a high level of conservation between KorA and
two other RP4 proteins, TrbA and KlcB (16,17).
To elucidate the binding of the KorA repressor protein

to its operator sequence and reveal the molecular determi-
nants of gene regulation by KorA, we have analyzed the
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structure of the KorA homodimer complexed to an 18-bp
oligonucleotide containing the operator binding site OA.
The architecture of the KorA–operator complex leads us
to propose a model for gene regulation at OA/OB pro-
moters in which KorB binds to the KorA dimerization
interface from various distances through interactions
involving the KorB N-terminus, while both proteins
bind their operator sites.

MATERIALS AND METHODS

Recombinant expression, protein purification, complex
formation and crystallization

The coding region for the KorA protein (residues 1–101)
was inserted into the bacterial expression vector
pMS470�8 (18). Mutant variants were generated using
the QuikChange mutagenesis protocol (Stratagene,
Heidelberg). Escherichia coli BL21 (DE3) carrying the
appropriate wild-type (wt) or mutant korA expression
plasmid was cultured at 378C. Transcription in cells was
induced at A600=0.8 by addition of 1mM isopropyl-
1-thio-b-D-galactopyranoside. Growth was continued for
4 h.
After harvesting, cells were resuspended in 20mM

Tris–HCl (pH 7.5), 1M NaCl, 10% (v/v) glycerol, 1mM
DTT and 1mM Pefablock and lysed using a French Press.
KorA and mutants were purified essentially according to
(12). In the final purification step, the proteins were sub-
jected to size-exclusion chromatography (Superdex 75,
Pharmacia), equilibrated with 20mM Tris/HCl (pH 8.0),
100mM NaCl and 3mM MgCl2. The proteins migrate
as a single peak and elute as dimers at a volume corre-
sponding to 22 kDa. Proteins were further concentrated
in a 5-K-cutoff Ultrafree Millipore membrane. The full-
length wt KorA was stable in solution as confirmed by
mass spectrometry and analytical ultracentrifugation. It
did not crystallize under any condition tested.
HPLC-purified 18-bp oligonucleotides (OA

�,
50-CBrUBrU GTT TAG CTA AAC ABrUT-30 and
50-AAT GTT TAG CTA AAC AAG-30), purchased
from BioTeZ (Berlin), were used for crystallization. The
brominated DNA was kept in the dark at all time. Strands
were mixed in 1:1 ratio, annealed and purified on a gel-
filtration column (Superdex 75, Pharmacia), equilibrated
with 20mM Tris/HCl (pH 8.0), 100mM NaCl and
3mM MgCl2. KorA and DNA were mixed in a 2.5:1
molar ratio, incubated at 378C for 20min, and sub-
jected to size-exclusion chromatography to separate the
KorA–OA complex at 33 kDa from free DNA and
protein. Ultracentrifugation confirmed that one KorA
dimer binds to one OA site. The complex was concentrated
to 3.8mg/ml.
Crystallization conditions were identified by the

hanging-drop vapor diffusion method. The best crystals
of the complex were obtained by mixing 2 ml of
KorA–OA

� complex (3.8mg/ml) with 1 ml of reservoir
solution of 0.5M (NH4)2SO4, 0.1M Na+ citrate (pH
5.6) and 1.0M Li2SO4. Monoclinic crystals grew in 3–5
days at 208C in the dark.

In vitro binding assays

The 436-bp DNA fragment containing OA1 was PCR-
amplified using RP4 as template. The primers used are
OA1_cw (50-AAT GTT AGT TAA CAG CTG TGT
GGC TTC CCA TCG ACT AA-30) and OA1_ccw
(50-AAT GTT AGT TAA AAG CTT ATC GGC GCG
ATC CTG GCG-30). The competitor DNA (348 bp,
745 bp and 1082 bp) without the OA sequence was also
generated by PCR.

The standard reaction mixture (10 ml) contained 20mM
Tris/HCl (pH 8.0), 100mM NaCl and 3mM MgCl2. We
used 0.15 pmol of each PCR construct throughout. The
reactions were then incubated with purified protein at a
molar ratio of 1:50 for 20min at 378C. After incubation
the reactions were analyzed by electrophoresis on a non-
denaturing 7.5% polyacrylamide gel in 1�TBE running
buffer at 8V/cm, stained with ethidium bromide.

Isothermal titration calorimetry (ITC) measurements

For ITC experiments, purified KorA and 18-bp oligonu-
cleotides (OA, 5

0-CTT GTT TAG CTA AAC ATT-30 and
50-AAT GTT TAG CTA AAC AAG-30), were dialyzed
against the buffer, 20mM Tris/HCl pH 8, 100mM NaCl
and 3mM MgCl2. Samples were degassed for �5min by
vacuum aspiration prior to loading, and all titrations were
carried out at 310K. Experiments were performed on a
VP MicroCal VP-ITC titration calorimeter (MicroCal
Inc., Northampton, MA) using the VPViewer 2000 soft-
ware for instrument control and data acquisition. KorA
solution measuring 40 mM was filled in a stirred (310
r.p.m.) reaction cell of 1.4ml. Injections, each of 10-ml
volume (first injection always 5-ml volume) and 10-s dura-
tion with a 4-min interval between injections, were carried
out using a syringe filled with 200 mM 18-mer OA

(Figure 5C) solution. Thermogram analysis was per-
formed using the software ORIGIN (version 7.0) provided
by the manufacturer.

X-ray data collection and processing

Two crystals were frozen in liquid nitrogen, and the solu-
tion for cryoprotection contained the reservoir solution
with 15% (v/v) of glycerol. A two-wavelength MAD
experiment was carried out at 100K in the dark using
synchrotron radiation at beamline BL 14.1 (19) at
BESSY (Berlin) on a fast scanning 225mm CCD-mosaic
detector from MAR Research (Norderstedt). Following
the fluorescence scan the program ‘CHOOCH’ (20) calcu-
lated the anomalous scattering curves, and the wave-
lengths for the peak and inflection point were chosen.
Data processing and scaling were carried out with XDS
(21). The refinement statistics are given in Table 1. The
KorA–OA

� complex crystallized in space group P21 with
cell parameters of a=44.83 Å, b=115.45 Å, c=49.88 Å,
b=114.08. The asymmetric unit contains one copy of the
33-kDa complex, with a solvent content of 65%.

Structure analysis and refinement

The structure of the complex containing KorA (1–101)
and the 18-bp OA

� oligomer, in which three thymine
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residues were replaced by 5-bromodeoxyuracil
(Figure 4A), was solved by multiple-wavelength anoma-
lous diffraction (MAD). The program HKL2MAP (22)
located six heavy atom sites, differing in relative occu-
pancy and anomalous contribution. The number and
position of the bromine sites was the first indication of a
2-fold disorder of the OA

� duplex.
To improve the quality of the electron density map, the

density modification program DM (23) was used. The
noncrystallographic symmetry (NCS) of the heavy atoms
in the ASU permitted subsequent phase improvement by
DM, including automatic solvent and NCS masking as
well as solvent flattening. warpNtrace implemented in
the ARP/wARP software package (24) automatically
built a first protein model (chain A 4–31, A 34–54, B
25–37 and B 47–61). This model was then manually
adjusted and extended in O (25). Superposition of the A
and B chains of KorA in LSQKAB (26) helped extend the
model (chain A 3–61 and B 12–62). It was refined using
Refmac5 and loose NCS restraints (27). Five percent of
the reflections were set aside for cross-validation, and Rfree

was used to monitor model refinement strategy and pro-
gress. After five runs of warpNtrace an 18-mer DNA
model (strands E and F), created with MAKE-NA
(http://structure.usc.edu/make-na/), was inserted manu-
ally into the positive Fo–Fc difference density and adjusted,
guided by three bromine positions. Water molecules
were added to the model (chains A 3–93 and B 5–93)
using ARP/wARP. Strong positive density was observed
at the three terminal base pairs on both ends (Figure 4C).
This was satisfied by superimposing the DNA duplex in

two orientations, and fitting the second double strand into
the density using the three nonoccupied bromine posi-
tions. The occupancy of all DNA atoms was adjusted to
0.5, and the six bromine positions were set to 0.25.
Although the light-sensitive brominated oligonucleotides
were kept in the dark during purification, crystallization
and the MAD experiments, the heavy atom sites were thus
not fully occupied. Final refinement steps resulted in Rfree

and Rwork of 20.1% and 17.0%, respectively (Table 1).
Diffraction data and atomic coordinates are available
from the RCSB Protein Data Bank under 2w7n.
The refined structure shows excellent stereochemistry

according to PROCHECK (28) and WHATCHECK
(29) and contains one KorA (chains A 2–95 and B 3–97)
dimer, one complete 18-bp OA

� duplex with a 2-fold dis-
order, and 317 solvent molecules. Figures were generated
with PyMOL (30). Surface charges were calculated with
APBS (31) in a range from �10 kT (red) to +10 kT (blue).

RESULTS

Structure determination

We crystallized the full-length transcriptional repressor
KorA (residues 1–101) bound to a pseudo-symmetric
18-bp oligonucleotide, OA

�, of sequence 50-CBrUBrU GT
TTAG CTA AAC ABrUT-30 (OA consensus sequence
underlined). Outside of the 12-bp operator sequence
three 5-bromo-deoxyuridine nucleosides were introduced
into one DNA strand, and the crystal structure was solved
by MAD phasing at a resolution of 1.96 Å (Figure 1).

Table 1. Data collection and refinement statistics

Data set Peak Inflection point Native-like merged peak

Data collection

Wavelength (Å) 0.91991 0.92004 0.91991
Resolution range (Å)a 50–1.96 (2.08–1.96) 50–1.96 (2.08–1.96) 50–1.96 (2.08–1.96)
Total reflectionsa,b 229 922 (19 830) 216 313 (18 556) 230 648 (20 085)
Unique reflectionsa 60 942 (7376)b 60 954 (7347)b 31 085 (3817)
Completeness (%)a 92.6 (68.4) 92.5 (68.0) 93.3 (70.1)
<I/s(I)>a 32.2 (12.7) 37.1 (11.4) 42.5 (17.4)
Rsym (%)a 2.5 (6.5) 2.2 (7.5) 2.7 (7.4)
Rmeas (%)a,c 2.9 (8.3) 2.5 (9.7) 2.9 (8.2)

Refinement

Resolution range (Å) 50–1.85
Rwork (%) 17.0
Rfree (%) 20.1
Reflections in Rwork 32 666
Reflections in Rfree 1753
R.m.s. deviations

Bond lengths (Å) 0.006
Bond angles (8) 1.522

No. of atoms
Protein and DNA 2961
Water oxygens 317

Ramachandran (%)
Most favored 98.8
Additional allowed 1.2

aValues in parentheses are for the highest resolution shell.
bFriedel pairs not merged.
cMultiplicity-corrected Rsym as defined by Diederichs and Karplus (41).
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The asymmetric unit of the crystal contains one KorA
dimer bound to OA

�. The structure was refined to
Rwork=17.0% and Rfree=20.1% (Table 1). The electron
density of the complex is well defined. Alternative side
chain conformations were observed for Glu63 (chains A
and B of KorA) as well as Glu25 and Asp64 (chain B).
These three solvent-exposed residues are not involved in
KorA dimerization or DNA binding, and therefore the
arrangement of the complex is not affected. All protein
residues could be built into the electron density apart
from several N- and C-terminal residues, so that the
final model contains residues 2–95 of chain A and 3–97
of chain B.

KorA structure

The KorA monomer is composed of two distinct domains
connected by a linker consisting of residues 66–69. A four-
helical assembly (a1, residues 7–14; a2, 21–31; a3, 37–44;
a4, 48–65) forms the N-terminal DNA-binding unit. The
predicted HTH motif is comprised of a3, the scaffold helix
and a4, the recognition helix. On one side, the recognition
helix is flanked by the three short helices a1–a3, going up
and down perpendicular to a4. One right-twisted b-strand
(b1, 72–78) and the adjacent C-terminal helix (a5, 80–97)
form the dimerization module. The helix a5 is positioned
antiparallel to b1 resulting in a gripper-like shape
(Figure 1A).

KorA dimerization

With their C-terminal gripper the KorA monomers inter-
lock into a very tight homodimer. The b-strands associate
to form an antiparallel b-ladder, and the C-terminal
a-helices form a two-helical bundle with an interaxial
angle of �208 (Figure 1B). In this arrangement, the helices
stretch out along the curved surface of the b-sheet, and
residues within the entire length of the a5-helices interact
with residues of the b-sheet. Interactions modeling the
dimer interface initiate in the linker region at residue
Leu67 and continue toward the C-terminus of each
monomer. The surface area buried in the dimerization
interface covers 14.7% (2115 Å2) of the total solvent-
accessible surface area, ASA, (14 345 Å2) for both KorA
monomers, calculated using the PISA server (32) with a
probe radius of 1.4 Å. Across the interface, side chain
interactions are hydrophobic in the core region with the
tightly packed aliphatic side chains of Val74, Leu78 and
Val86 (Figure 2A). The strongest van der Waals inter-
actions (�ASA> 40 Å2) arise from residues Tyr71-Pro79
of the b1-strand, and the a5 residues Gln82 and
Val86-Glu90, symmetrically contributed by each mono-
mer. The b-strands are connected to an antiparallel
b-ladder by eight hydrogen bonds formed between oppo-
site main chain atoms (Ala72, Val74, Ala76 and Leu78)
and the hydrogen bonded side chains of Thr75 directly in
the center of the sheet. Hydrogen bonding between back-
bone atoms of Gly70 and Glu80 positions the N-terminus

Figure 1. Overall structure of the KorA-OA
� complex. (A) Schematic

representation of the KorA monomer with the N-terminal DNA-
binding domain (yellow), the linker (cyan) and the C-terminal dimer-
ization module (orange). (B) Image of the KorA dimer (yellow and red)
on a semitransparent molecular surface bound to its operator site,
looking down the DNA axis. For clarity, the DNA (gray) is shown
in only one of the two orientations present in the complex. (C) Pseudo-
continuously stacked operator DNA bound to the KorA dimer (yellow
and red). The DNA is shown with strands E (gray) and F (green) of
one duplex.

Figure 2. Interactions within the KorA dimerization module. (A) Stereo
image of the KorA dimerization interface. All residues involved in
dimerization are shown for both monomers (yellow and red). (B)
Stereo representation of the KorA dimerization module (yellow and
red). Residues involved in stabilization of the ring-like assembly are
shown as sticks.
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of helices a5 and a50 on top of the N-terminus of the
strands b10 and b1, respectively.

Ring-like complex assembly

In the crystal structure, the dimerization module of the
KorA dimer is displaced from the DNA-binding
domain, bound to its operator OA. The C-terminal
domain is elevated above the DNA-binding part of
KorA and stabilized through various interactions. First,
residues from the linker and dimerization region are
involved in stacking-like van der Waals interactions.
Side chains of Pro68-A, Tyr71-A and Pro79-B are
arranged on top of each other in a sandwich formation
with Tyr71-A positioned in the center (Figure 2A). This
arrangement is continued with stacking-like van der Waals
interactions of Gln82-B, contacting Pro79-B and
Trp89-A. Due to the 2-fold pseudo-symmetry of dimeric
KorA, these interactions occur twice in the interface.
Second, the hydrogen bonded side chains of Asp64 and
Arg73, each belonging to a different subdomain within
one KorA monomer, are stabilizing the assembly. In
chain B this interaction is water mediated (Figure 2B).
The spatial separation of the dimerization subdomain

from the major groove of the DNA results in a ring-like
appearance of the complex assembly with an inner diam-
eter of �20 Å (Figure 1 B).
In solution, the ring-like assembly of the KorA–DNA

complex may be expected to be deformable, and a flexible
attachment of the C-terminal domain to the DNA-bound
core of the protein is most likely biologically relevant.
KorA is known to cooperate with another major RP4
repressor protein, KorB, via its C-terminal domain from
various distances (33). For these direct interactions the
ring-like assembly could potentially serve as an adaptable
anchor site.

Proposed KorA–KorB interaction site

To understand the interaction between KorA and
KorB in transcriptional regulation of RP4 genes we
aligned the sequences of RP4 and R751 proteins KorA,
TrbA and KlcB, all known to cooperate with KorB (16)
using CLUSTALW (34). KorA and TrbA are global
repressors in these plasmids, but the function of
KlcB is still unknown (17). Over the length of the
matched sequences, a variable degree of sequence conser-
vation is observed (Figure 3A), indicating similar

Figure 3. The dimerization module of KorA. (A) Multiple sequence alignment of RP4 and R751 (R751 members marked with 8) proteins KorA,
TrbA and KlcB (accession numbers as listed above and shared identity toward full-length KorARP4: P03052, 100%; Q57423, 79%; Q01716, 51%;
Q56468, 59%; P52605, 32%; and P52604, 41%). The secondary structure elements of KorA are represented above the aligned sequences. Identical
and similar residues are highlighted in green and yellow, respectively. Dots mark KorA residues specifically involved in DNA interaction. Sequences
corresponding to the HTH or dimerization motifs are enclosed in boxes. (B) The molecular surface of the KorA dimerization region (top view)
reveals a patch of highly conserved residues. Side chains of identical and similar residues, as seen in the sequence alignment (A), are highlighted in
green and yellow, respectively. Residues of one KorA monomer are labeled with the same color (black or white). (C) Electrostatic surface potential of
the KorA dimerization region (top view); positive charge in blue, negative charge in red. Residues possibly involved in protein–protein interactions
are labeled in black and white.
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three-dimensional structures. The repressor proteins
KorA and TrbA share a predicted HTH motif. Sequence
conservation within this motif is limited, reflecting the dif-
ferent operator sequences on the RP4 or R751 genomes to
which the repressors bind. A strikingly high degree of
sequence conservation characterizes the dimerization
module with identical residues at 10 sequence positions
between Pro68 and Lys96 of KorARP4. For the KorA
and TrbA proteins this conservation is found at the
C-terminus, KlcBRP4 and KlcBR751 include additional
116 or 154 residues, respectively, adjacent to this region.
Highlighting the preserved region on the exposed

molecular surface of KorA reveals a large patch of iden-
tical and type-conserved amino acids at the top of the
dimer region (Figure 3B). Positioned directly in the
center are the exposed hydrophobic side chains of Ile85
and the polar aromatic residues Trp89, His81 and Tyr84
of each monomer (Figure 3C). All four residues are known
to favor protein–protein interface locations (35).
Together, they create a surface patch which could serve
as the site of interaction with KorB, a finding, which is
consistent with a recent NMR study that identified Tyr84
as a critical residue for KorA-KorB cooperativity (15). It
would seem formally possible that, alternatively, protein
interactions would involve the opposite, inner side of the
dimerization region which faces the DNA. In KorA, the
distance between this inner surface and the DNA helix is
large enough to permit further intermolecular interactions,
also possible for TrbA, which seems to include a longer
linker region, resulting in a considerably increased diam-
eter of its ring-like assembly. KlcB has no predicted
DNA-binding ability and therefore retains no ring-like
conformation. However, in the KorA structure the
exposed residues of the inner side of the dimerization
module are Arg73 and Thr75 (Figure 2B). These residues
show no conservation in our alignment (Figure 3A). We
conclude, therefore, that the outer surface of the dimeriza-
tion regions of KorA, TrbA and KlcB serves as contact
site for the flexible and structurally unknown N-terminal
domain of KorB.

DNA-binding domain

In the DNA-binding domain of KorA four compactly
folded helices (a1–a4) are arranged around a core of
hydrophobic residues, oriented toward the interior of the
bundle. Sharp turns between the four helices are mediated
by three glycine residues, Gly16, Gly34 and Gly45. Helices
a1 and a3 sandwich a2, all three being positioned on one
side of a4. The three N-terminal helices are tethered to a4
by van der Waals interactions, stabilizing the relative ori-
entation of the scaffold and recognition helices (a3 and a4)
of the HTH motif. Glu12 of a1 forms hydrogen bonds
with the C-terminal Lys65 and Asn66 side chains of a4,
and also the Thr23 (a2) and Arg57 (a4) side chains are
hydrogen bonded.
Structural similarity searches using DALI (36) found no

homolog for the full-length KorA. If the search is limited
to the DNA-binding unit (residues 2–65) a good resem-
blance to the YlxM/p13-like family can be found, such as
the hypothetical UPF0122 transcription factor SAV1236

from Staphylococcus aureus (PDB entry 1xsv) with a
DALI Z-score of 7.7 and an r.m.s. deviation of 2.2 Å. If
the search is focused on the DNA recognition region, the
orientation of the scaffold and the recognition helix reveal
structural homology to the C-terminal s4 domain of FliA
(s28) from Aquifex aeolicus (1rp3) and to the C-terminal
HTH motif of the GerE-like TraR from Agrobacterium
tumefaciens (1h0m) with Z-scores of 4.1 and 3.6, and
r.m.s. deviations of 1.3 Å and 1.8 Å, respectively. Sigma
factors and members of the GerE-like family are key reg-
ulators of bacterial transcription; s4 specifically recognizes
the �35 promoter element with its HTH motif.

Orientation of the operator site

The synthetic 18-bp OA
� DNA duplex is perfectly symmet-

ric within the 12-bp operator site. The 3 bp on both ends
outside the consensus sequence lack in symmetry. They
contain three brominated deoxyuridine nucleosides at
positions 2, 16 and 17 on the antisense strand
(Figure 4A). Upon analyzing the heavy-atom substruc-
ture, six bromine sites were detected, permitting to fit
the DNA into the electron density in two alternative orien-
tations. After refining the complex with only one orienta-
tion present, prominent difference density at the terminal
base pairs occurred (Figure 4C). The DNA thus adopts a
2-fold disorder with �50% occupancy for each orienta-
tion (Figure 4B). The structures of the two oligonucleo-
tides (strands EF and GH) superimpose well with an
r.m.s. deviation of 1.068 Å for all atoms, as calculated
with LSQKAB (26). Within the symmetric 12-bp operator
site the r.m.s. deviation reduces to 0.659 Å for all atoms.
In the crystal, the 18-bp oligonucleotides are stacked with
negative twist at the junction along the crystallographic
b axis, giving rise to a pseudo-continuous double helix
(Figure 1C).

The KorA dimer binds to the operator site

KorA binds the 18-mer DNA as a dimer, with each mono-
mer contacting one half-site of the operator fragment. The
electrostatic surface potential of the DNA-binding
domain reveals a positively charged patch facing the
bound DNA (Figure 4B). KorA recognizes the operator
sequence specifically through the recognition helix, which
is inserted into consecutive major grooves of the operator
site, as observed in many prokaryotic HTH-containing
proteins. The N-terminus of the recognition helix is
imbedded in the major groove making direct base contacts
through its side chains. The recognition helix is oriented
perpendicular to the helical axis of the DNA and pro-
foundly penetrates into the major groove. The DNA is
bent so as to allow full access of KorA side chains
into the adjacent major grooves. The position of the rec-
ognition helix is stabilized by hydrogen bonds between
residues at the N-termini of helices a1–a3 and the sugar-
phosphate backbone of the DNA, sealing the major
groove above the contact site of the recognition helix.
Contacts to the minor groove of the DNA are not
observed.
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Arg48 and Gln53 are essential for specific DNA binding

In the structure each KorA monomer engages in a total of
27 identical contacts, of which 13 are direct and 14 are
water mediated (Figure 4A). The 2-fold disorder of the
DNA does not affect protein–DNA interactions, because
KorA contacts only the perfectly palindromic 12-bp oper-
ator sequence and not the flanking three terminal base
pairs, which lack in symmetry.

The specificity of KorA for its OA site is primarily based
on two side chain interactions from the recognition helix
(a4) reaching deep into the major groove to make several
base contacts (Figure 5A, Table 2). The Arg48 side chain
binds to the O6 and N7 atoms of G4, and Gln53 contacts
the three bases T7 (O4), C10 (N4) and T11 (O4). This is
consistent with the finding that the seven KorA operators
fall into two classes. Class I operators (korAp, klaAp and
trfAp) are perfectly symmetric with KD values of 13–20
nM while class II operators (klcAp, kfrAp, kleAp and
kleCp), with more then 10-fold higher KD values, are lack-
ing either G4 (contacted by Arg48) or T7 (contacted by
Gln53) in one half-site of the consensus sequence (12).
Each specific contact is made to the up- and to the

down-oriented DNA duplex with very similar hydrogen
bond lengths (Table 2).
The importance of specific contacts between KorA and

the operator OA is supported by electrophoretic mobility
shift assays. Four KorA variants were designed. In two
mutants exactly one of the two specific DNA-binding resi-
dues was changed to alanine (R48A and Q53A), in a
third we replaced both specific binders (R48A/Q53A).
According to the binding observed in the crystal structure
(Figure 5A), truncation of the Arg48 side chain would
remove two hydrogen bonds per operator half-site, and
the Q53A mutation would lead to the loss of three hydro-
gen bonds per half-site. Furthermore, we changed Gln53
to the isosteric Glu53, causing the loss of two out of three
hydrogen bonds.
We purified wt and mutants of KorA and tested for

binding to a 436-bp DNA duplex containing the class I
OA site of korAp (Figure 5B). wt KorA associates specif-
ically with OA, and no retardation was observed with the
nonspecific control DNA fragments that do not carry
an OA site. The introduction of Q53A, R48A/Q53A
and Q53E mutations completely abolished the ability

Figure 4. KorA binds its operator binding site. (A) OA
� with the central 12-bp consensus operator sequence in red and green. (In OA the BrU bases

are replaced by T.) The symmetric operator has two half-sites, each of which binds one KorA monomer in identical geometry. Two different types of
protein–DNA interactions are shown in the two half-sites. In the top half-site (green), only direct protein–DNA contacts are shown, whereas water-
mediated interactions are shown in the bottom half-site. Both types of interactions occur simultaneously in both half-sites of the operator DNA.
Amino acids circled in red are from the HTH motif of KorA. Direct hydrogen-bonded contacts, involving protein side chains and DNA, are
indicated by black solid arrows, those between protein backbone and DNA by black dotted arrows. Contacts mediated by water molecules are
marked by blue arrows, those between protein side chains and DNA by blue solid lines, and those between protein backbone and DNA by blue
dotted lines. (B) Electrostatic surface potential of KorA; positive charge of the protein in blue and negative charge in red. The DNA is bound to the
KorA dimer in two orientations with duplexes EF (gray) and GH (green). (C) Two-fold disorder of KorA-bound OA

� DNA. Left, base pair
A2-BrU17 with electron density before allowing for 2-fold disorder of the KorA-bound DNA. Right, A2-BrU17 base pairs of the superimposed
DNA duplexes EF (red) and GH (blue) after refinement. The 2Fo–Fc density (gray) is contoured at 1.0 s, the Fo–Fc difference density (green) is
contoured at 3.0 s.
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of KorA to bind specifically to OA in all cases. R48A
retains reduced capability to shift the operator fragment
and shows some nonspecific binding in addition. As a
whole, the gel-shift assays strongly suggest that the bind-
ing mode observed in the crystal reflects the mode of oper-
ator recognition by KorA in solution and identifies Gln53
as the crucial residue for specific operator binding.
To validate the strong binding capacity of wt KorA,

we performed ITC-binding studies using the nonbromi-
nated 18-mer duplex OA containing the class I operator
sequence. ITC data yielded KD values of 23.3� 0.7 nM for
KorA:DNA (2:1) binding at 378C (Figure 5C).

DNA conformation of OA

CURVES 5.3 analysis (37) shows that the DNA in the
crystal is smoothly bent by 148 and adopts, essentially, a
standard B-DNA form with a mean twist of 33.38 and rise
of 3.3 Å per base-pair step. The major grooves are

widened from 11 to 15 Å upon insertion of the recognition
helix. The binding of the Arg48 side chain to the G4 base
is associated with a local overwinding of the DNA helix at
the G4-T5/A14-C15 and the T5-T6/A13-A14 base-pair
steps (twist values of 368 and 428, respectively).
Similarly, the Gln53 binding to bases T7, C10 and T11
is linked with a slight overwinding of the helix at these
base-pair steps (Figure 4A).

DISCUSSION

The expression of RP4 genes is tightly controlled, and
reacts very sensitively to fluctuations in repressor levels.
During exponential growth of the host there are �2000
KorA and 1500 KorB dimers in the cell (12,14) binding to
three different classes of operator sites with different affi-
nities. It is not clearly understood, if second- or third-class
operators only play a supporting role in this control cir-
cuit, and how crucial cooperativity between repressor pro-
teins really is. Interaction between repressor molecules
probably increases association rates by helping proteins
to locate and bind their operator sites more easily, espe-
cially at low protein concentrations. This is important,
because KorA or KorB alone might arrest transcription
of their own genes at the korAp site (class I) before any of
the low-affinity binding sites are bound.

The structure of the KorA–OA
� complex shows a

remarkable structural complementarity between the
repressor’s DNA-binding domain and the 12-bp opera-
tor-binding site. KorA binds the palindromic DNA sym-
metrically with its HTH motif. Each monomer contacts
the major groove on one half-site of OA. The crystal
structure indicates that the KorA dimer is very stable.
This is supported by gel filtration and analytical

Figure 5. Specific binding of KorA to its operator-binding site. (A) Specific KorA-OA
� contacts in the crystal. Arg48 and Gln53 of the recognition

helix (a4) of one KorA monomer form specific hydrogen bonds to G4, T7, C10 and T11, in one half-site of the symmetric operator sequence.
(B) In vitro binding assay of purified wt KorA and mutants binding to DNA. The 436-bp fragment carries the class I OA site (korAp) of plasmid
RP4, the other fragments serve as competitor DNA; 7.5 pmol of wt and each mutant protein were applied. The DNA mixture contained 0.15 pmol of
each fragment. OA, DNA fragment containing OA; OA8, complex of OA with wt KorA; M, 100-bp DNA ladder. (C) Calorimetric titration of KorA
with 18-bp OA. The panel shows the integrated heat released after correction of dilution (data points, squares) and the curve of best fit (red) for one
KorA dimer binding to a single OA site.

Table 2. Specific binding of Arg48 and Gln53 to OA

KorA OA
� Bond lengths (Å)a

R48 (NZ2) G4 (O6) 3.11� 0.15

R48 (N") G4 (N7) 3.08� 0.11

Q53 (O"1) C10 (N4) 3.07� 0.31

Q53 (N"2) T11 (O4) T7 (O4) 2.92� 0.06 2.90� 0.17

aCalculated from four different bond lengths derived from contacts
of the symmetric KorA dimer to the 2-fold disordered 18-bp OA

�

DNA.
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ultracentrifugation experiments where KorA was always
found to be dimeric (data not shown).

KorARP4 and KorAR751 (Figure 3A; sequence identity
79%) recognize the exact same operator sequence but
prefer binding to their own plasmid-specific OA sites
which only differ in the flanking DNA sequences (38).
All residues of KorARP4 seen to participate in direct pro-
tein–DNA contacts in the crystal structure (Figure 4B) are
identical in both proteins except for Arg48, shown above
to be important for operator recognition which is a lysine
residue in KorAR751. Moreover, His56, involved in water-
mediated DNA interactions, is found to be a serine in
KorAR751. Mutagenesis of H56S in KorARP4 leads to an
increased affinity for all operators, especially for OA/R751

(38). Most likely, both KorA proteins exhibit the same
fold. Replacing Arg48 by a long and flexible lysine residue
would probably also result in specific recognition of the
G4 base within the OA site, but one hydrogen bond will be
lost. It seems unlikely, however, that Ser56 could contact
the DNA phosphate backbone in the same way as His56.
Therefore, the DNA needs to be bent more than seen in
our crystal structure, and maybe the flanking sequences of
the operator sites, AT-rich in RP4 and GC-rich in R751,
are important for the extent of DNA bending. It remains
noteworthy that both KorA repressors function only sub-
optimally on their own plasmids, but equally strong if
compared to each other.

The structure of the KorA–OA
� complex provides the

first view of a global transcriptional regulator of the RP4
plasmid that cooperates with the repressor protein KorB.
Our findings reveal how KorA dimerizes and how the
KorA dimer specifically contacts its operator site, suggest-
ing a plausible model for the complicated repressor coop-
eration mechanism in RP4.
On the molecular surface of the KorA dimerization

domain we identified a prominent patch of residues
favoring protein–protein interactions, which are con-
served in RP4 repressor proteins that interact with
KorB. The crystal structure of the C-terminal dimeriza-
tion region of KorB, KorB-C, with interlocking SH3-like
domains (aa 299–358) (39), and the DNA-binding domain
KorB-O (aa 137–252) (40) are known. The highly flexible
N-terminal domain (aa 1–136) could not be crystallized.
We propose that KorB contacts KorA via its mobile
N-terminus, which could permit repressor–repressor
interactions over variable OB–OA distances. The center-
to-center distance between the operator sites varies from
32 bp (korAp) to 33 bp (trfAp and klaAp) and 36 bp
(kfrAp). Assuming standard B-form, as seen in the
KorA and KorB operator complexes, also for the linker
DNA, the flexible N-terminal domains of KorB and
the interacting surface on the KorA dimerization module
are located at nearly opposite sides of the DNA helix in
korAp (Figure 6). As the operator sites are moving further
apart to 33 or 36 bp in trfAp/klaAp and kfrAp, the helix
twist puts the interacting repressor moieties successively
on the same side of the DNA, keeping the effective
KorB–KorA separation approximately constant. Given
the observed flexibility of the KorB N-terminus, this
model may explain the cooperation between KorB and
KorA at RP4 promoters with variably spaced OB and
OA sites and may be a structural template for KorB’s
interaction with the TrbA repressors and KlcB that
share the predicted interaction surface. The reported
cooperation between KorA and KorB over a spacing of
92 bp at the kleA promoter is not explained by this model
and may require looping of the DNA as suggested by
Bingle et al. (13).
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Figure 6. Model for the interaction between KorA and KorB at RP4
promoters. Crystal structures of the RP4 repressor proteins KorA
(yellow, orange and red, each representing the molecular surface of
one dimer, respectively) and KorB (chain A, blue, and chain B, light
blue; PDB entries 1r71 for DNA-binding domain KorB-O, residues
137–252, and 1igu for the C-terminal domain, residues 299–358)
(40,39) bound to their operator sites. OA (black) and OB (magenta)
were joined by standard B-form DNA (gray), generated with MAKE-
NA (http://structure.usc.edu/make-na/) representing the linker region at
the korAp site. OA and OB midpoints are separated by 32 bp
(KorA=yellow), by 33 bp (trfAp and klaAp, KorA=orange) and by
36 bp (kfrAp, KorA=red). The structurally unknown N-terminal resi-
dues 1–136 of each KorB monomer are symbolized by two ellipsoids in
blue and light blue. The distances between the KorB N-terminal region
and the KorA dimerization domains in their different settings are indi-
cated by green dashed lines.
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