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ABSTRACT

The identification of orthologous genes forms the
basis for most comparative genomics studies.
Existing approaches either lack functional annota-
tion of the identified orthologous groups, hampering
the interpretation of subsequent results, or are
manually annotated and thus lag behind the rapid
sequencing of new genomes. Here we present
the eggNOG database (‘evolutionary genealogy of
genes: Non-supervised Orthologous Groups’),
which contains orthologous groups constructed
from Smith–Waterman alignments through identifi-
cation of reciprocal best matches and triangular
linkage clustering. Applying this procedure to 312
bacterial, 26 archaeal and 35 eukaryotic genomes
yielded 43 582 course-grained orthologous groups
of which 9724 are extended versions of those
from the original COG/KOG database. We also
constructed more fine-grained groups for selected
subsets of organisms, such as the 19 914 mamma-
lian orthologous groups. We automatically
annotated our non-supervised orthologous groups
with functional descriptions, which were derived by
identifying common denominators for the genes
based on their individual textual descriptions,
annotated functional categories, and predicted
protein domains. The orthologous groups in
eggNOG contain 1 241 751 genes and provide at
least a broad functional description for 77% of them.
Users can query the resource for individual genes
via a web interface or download the complete set
of orthologous groups at http://eggnog.embl.de.

INTRODUCTION

The vast majority of the functionally annotated genes in
genomes or metagenomes are derived by comparative
analysis and inference from existing functional knowledge
via homology. With the sequencing of entire genomes,
it became possible to increase the resolution of the
functional transfer by distinguishing between orthologs
and paralogs, that is gene pairs that trace back to
speciation and gene duplication events, respectively (1).
These concepts have since been extended and refined to
include orthologous groups (2), in-paralogs and out-
paralogs (3,4), but the identification and classification
of homologous genes remains very difficult. In contrast to
the definition of orthology, the classification of genes into
orthologous groups is always with respect to a taxonomic
position: two paralogous genes from human and mouse
may be orthologs of the same gene in fruit fly and will
belong to either the same or different orthologous groups
depending on whether these are defined with respect to the
last common ancestor of metazoans or mammals. This is
further complicated by evolutionary processes such as
gene fusion and domain shuffling, due to which each
domain of a multi-domain protein is not guaranteed to
have evolved through the same series of speciation and
duplication events. Finally, because we do not know how
each gene evolved, one in practice always relies on
operational definitions rather than the evolutionary
definitions given above.

Numerous methods have been developed to derive
orthologs and orthologous groups, ranging from the
simple reciprocal-best-hit approach, via InParanoid (5),
MultiParanoid (6), identification best-hit triangles (2,7,8)
and clustering-based approaches (9), to tree-based meth-
ods (10–13). By contrast, there has been only one major
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effort to provide functionally annotated orthologous
groups, namely the COG/KOG database (2,8), but it
lacks phylogenetic resolution and is not regularly updated
due to the manual labor required. There is thus a need
for a hierarchical system of orthology classification with
function annotation.

Here, we provide such a system, eggNOG, which (1) can
be updated without the requirement for manual curation,
(2) covers more genes and genomes than existing
databases, (3) contains a hierarchy of orthologous
groups to balance phylogenetic coverage and resolution
and (4) provides automatic function annotation of similar
quality to that obtained through manual inspection.

CONSTRUCTION OF HIERARCHICAL
ORTHOLOGOUS GROUPS

We assemble proteins into orthologous groups using an
automated procedure similar to the original COG/KOG
approach (2,8). When constructing coarse-grained ortho-
logous groups across all three domains of life or for all
eukaryotes, we first assign the proteins encoded by the
genomes in eggNOG to the respective COGs or KOGs
based on best hits to the manually assigned sequences
in the COG/KOG database. In case of multiple hits to the
same part of the sequence, only the best hit was
considered. The many proteins that cannot be assigned
to existing COGs or KOGs are subsequently assembled
into non-supervised orthologous groups using the proce-
dure described below. When constructing more fine-
grained orthologous groups, this initial step is skipped.

Briefly, we first compute all-against-all
Smith–Waterman similarities among all proteins in
eggNOG. We then group recently duplicated sequences
into in-paralogous groups, which are subsequently treated
as single units to ensure that they will be assigned to the
same orthologous groups. To form the in-paralogous
groups, we first assemble highly related genomes into
clades, usually encompassing all sequenced strains of a
particular species in a single clade, but also other close
pairs such as human and chimpanzee. In these clades, we
join into in-paralogous groups all proteins that are more
similar to each other (within the clade), than to any other
protein outside the clade. For this, there is no fixed
cutoff in similarity, but instead we start with a stringent
similarity cutoff and relax it a step-wise fashion until
all in-paralogous proteins are joined, requiring that all
members of a group must align to each other with at least
20 residues.

After grouping in-paralogous proteins, we start assign-
ing orthology between proteins, by joining triangles
of reciprocal best hits involving three different species
(here, in-paralogous groups are represented by their best-
matching member). Again, we start with a stringent
similarity cutoff and relax it to identify groups of proteins
that all align to each other by at least 20 residues.
This procedure occasionally causes an orthologous group
to be split in two; such cases are identified by an
abundance of reciprocal best hits between groups, which
are then joined. Next, we relax the triangle criterion

and allow remaining unassigned proteins to join a group
by simple bidirectional best hits. Finally, we automatically
identify gene fusion events by searching for proteins
that bridge otherwise unrelated orthologous groups. In
these cases, the different parts of the fusion protein are
assigned to their respective orthologous groups. This step
is a distinguishing feature of our approach and is crucial
for the analysis of eukaryotic multi-domain proteins,
as these would otherwise cause unrelated orthologous
groups to be fused.
To construct a hierarchy of orthologous groups,

the procedure described above was applied to several
subsets of organisms. To make a set of course-grained
orthologous groups across all three domains of life, we
constructed non-supervised orthologous groups (NOGs)
from the genes that could not be mapped to a COG or
KOG. Focusing on eukaryotic genes, we constructed more
fine-grained eukaryotic NOGs (euNOGs) from the genes
that could not be mapped to a KOG. Finally, we build sets
of NOGs of increasing resolution for five eukaryotic
clades, namely fungi (fuNOGs), metazoans (meNOGs),
insects (inNOGs), vertebrates (veNOGs) and mammals
(maNOGs).

AUTOMATIC ANNOTATION OF PROTEIN
FUNCTION

An important feature of eggNOG is that it provides
functional annotations for the orthologous groups.
These annotations are produced by a pipeline, which
summarizes the available functional information on the
proteins in each cluster: (1) the textual annotation for
these proteins, (2) their annotated Gene Ontology
(GO) terms (14), (3) their membership to KEGG path-
ways (15) and (4) the presence of protein domains from
SMART (16) and Pfam (17). As the textual descriptions
allow for the most fine-grained annotation of protein
function, we first use Ukkonen’s algorithm (18) to identify
the longest common subsequence (LCS) between the
description lines of any two proteins within a cluster.
We then score each LCS based on the number of protein
descriptions matched within the cluster, the number of
occurrences of each word of the LCS in these descriptions,
and the presence of words such as ‘hypothetical’,
‘putative’ or ‘unknown’. These scores are finally normal-
ized against a score distribution based on randomized
clusters of the same size, and the highest scoring LCS is
chosen, provided that it scores above a threshold.
For each orthologous group, our pipeline also searches

for overrepresented GO terms, KEGG pathways or
protein domains. To find terms that are sufficiently
specific and at the same time are likely to describe the
entire orthologous group, we devised a scoring function
that takes into account term frequency within the
group, background frequency, and the ratio of the two
(i.e. the fold overrepresentation). In case no satisfactory
LCS was found, a description line is constructed based
on the highest scoring GO term or KEGG pathway. As a
single domain may not properly reflect the function of
a complete protein, description lines are constructed
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Figure 1. Statistics on the content of the eggNOG database. The eggNOG assignments for 373 complete genomes [19] were mapped onto the tree of
life. The stacked bar charts outside the tree show the proportion of genes from each genome that can be assigned to a functionally annotated
orthologous group (green), to an unannotated orthologous group (orange) or to no orthologous group (grey). The length of each bar is proportional
to the logarithm of the number of genes in the respective genome. The pie charts inside the tree show the fractions of orthologous groups at each
level in the hierarchy that could be annotated with a function description (green for NOGs, light green for extended COGs and KOGs) and that
could not be functionally annotated (orange for NOGs, light orange for extended COGs and KOGs). The areas of the pie charts are proportional to
the number of orthologous groups at the phylogenetic level in question. This figure was made using iTOL [20].
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based on overrepresented domains only if all other options
have been exhausted.

QUALITY ASSESSMENT AND SUMMARY
STATISTICS

To assess the quality of the function annotations provided
by our automated pipeline, we manually checked a
random sample of 100 NOGs and 100 euNOGs and
classified their annotations into three categories: 87.5%
were correct (i.e. they describe a function that the proteins
have in common), 12.5% were uninformative (i.e. they do
not describe a function) and, due to our stringent rule set,
no wrong functions were assigned. Uninformative annota-
tions of orthologous groups are in many cases due to
a lack of functional knowledge on the corresponding
proteins.

Our function annotation pipeline enables us to provide
description lines for 6583 of the 33 858 (19%) coarse-
grained NOGs. Combined with the 9724 COGs and
KOGs, this yields 43 582 global orthologous groups of
which 14 356 (33%) have an annotated function. In
addition, eggNOG contains 94 240 more fine-grained
orthologous groups of which 55 753 (59%) could be
functionally annotated. This enables us to assign 1 241 751
of 1 513 782 genes (82% of the genes in the analyzed
genomes) to an orthologous group and to provide at least

a broad functional description of 951 918 of them (77% of
the genes that could be assigned to an orthologous group).
The corresponding numbers for each set of orthologous
groups as well as for each individual genome are
summarized in Figure 1.

USING eggNOG

The eggNOG resource is accessible via a web interface at
http://eggnog.embl.de. The main page allows the user to
input the names of one or more genes or orthologous
groups and to optionally select the organism of interest.
Alternatively, the user can choose to upload a set of
protein sequences to be searched against the full-length
sequences in eggNOG. In case of ambiguous names or
query sequences with multiple hits, the user is prompted to
disambiguate the input.
Figure 2 shows the result of a query for the three

G1-type cyclins in budding yeast, which belong to two
distinct fungal orthologous groups. Function descriptions
are displayed for both the orthologous groups and for the
individual genes. The web interface enables the user to
view the complete set of genes that belong to each
orthologous group and provides external links to addi-
tional information on the protein products.
By default, eggNOG shows the most fine-grained ortho-

logous groups that are possible given the input: just like

Figure 2. Screenshot of the main results page. The eggNOG database was queried for the three G1-type cyclins in budding yeast, namely Cln1–Cln3.
These have been correctly assigned to two fungal orthologous groups. The navigation tree at the top of the page allows the user to change the view
to more coarse-grained orthologous groups, for example the eukaryotic orthologous groups in which these cyclins are all grouped together.
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entering a set of genes from budding yeast results in fungal
orthologous groups being shown, a set of human genes
will yield mammalian orthologous groups, whereas a
combination of human and fruit fly genes will yield
metazoan orthologous groups. A navigation tree at the
top of the page (Figure 2) allows the user to select more
coarse-grained orthologous groups if desired; for example,
selecting ‘eukaryotes’ reveals that the three budding yeast
cyclins all belong to the same eukaryotic orthologous
group. This key feature enables the user to choose the
balance between phylogenetic coverage and resolution
within our hierarchy of orthologous groups.
Whereas the web interface is convenient for small-scale

studies, users interested in genome-wide analyses will be
better served by downloading the complete content of
the underlying relational database. For this reason, the
orthologous groups, functional annotations and protein
sequences are all available from the eggNOG download
page under the Creative Commons Attribution 3.0
License.
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