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Abstract 
The ability of the maximum-entropy method (in 
the program MAXENT) to estimate the distance- 
distribution function from high-resolution X-ray 
scattering data is studied. It is demonstrated that a 
key element for the successful application of 
M A X E N T  is the use of a good prior estimate for 
the distance-distribution function. For simulated as 
well as experimental data, the effects of different 
priors, noise levels, smearing and measuring intervals 
are investigated. For practical applications of 
MAXENT,  various methods for the calculation of 
priors are treated and a principle for the subsequent 
choice between the priors is suggested. It is 
demonstrated that, when the construction of the prior 
is given sufficient consideration, M A X E N T  provides 
a very useful method for estimating the distance 
distribution from the scattering data. 

1. Introduction 
There exist a large number of direct and indirect 
methods for data treatment and data evaluation of 
X-ray and neutron scattering experiments (for a 
review see Glatter, 1982). These procedures have been 
tested with theoretical and experimental examples for 
more than a decade. Recently, the maximum-entropy 
method (MAXENT) has been introduced for the 
analysis of small-angle scattering data (e.g. Daniell, 
Potton & Rainford, 1988a; Hansen & Pedersen, 
1991). MA XEN T should provide a powerful tool for 
the analysis of both small- and wide-angle scattering 
data. Whereas direct methods suffer from the necessity 
of explicit extrapolation of the scattering curve to zero 
and to very large scattering angles, in order to prevent 
termination errors, the indirect methods working with 
special functional systems suffer from stability 
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problems when particles of dimensions greater than 
10 nm and resolution better than 0.2 nm are studied 
(a task which requires small- as well as wide-angle 
scattering data). Furthermore, neither of the methods 
is able to use explicitly any a priori knowledge about 
the scattering system apart from that of the largest 
diameter. The maximum-entropy method does not 
suffer from these limitations. In order to investigate 
the performance of MAXENT,  we have used highly 
resolved theoretical scattering curves for biological 
macromolecules. The usual experimental effects 
encountered, such as quantum noise and data 
termination at small and large angles, have been 
simulated and the influences of these as well as of the 
sampling-point distance on the M A X E N T  estimate 
are investigated. The new problems that occur in 
connection with the use of known structure 
information, or with the handling of M A X E N T  
without any explicit structural information, are solved 
by the introduction of the concept of modelpriors and 
intrinsic priors. The structural resolution obtained in 
the distance-distribution function of a particle 
with largest diameter of about 8 nm is circa 0.15 nm. 
This limit is set by the present parameters 
chosen for the experimental simulation of the 
experimental conditions and not by M A X E N T  itself. 

2. Theory 

2.1. Small-angle scattering 

In small-angle scattering, the intensity I is measured 
as a function of the length of the scattering 
vector s = 4rr (sin 0)/,~., where ~. is the wavelength of 
the radiation and 0 is half the scattering angle. For 
scattering from a dilute solution of monodisperse 
molecules of maximum diameter D, the intensity can 
be written in terms of the distance-distribution 
function p(r): 

D 

I(s) = ~ p(r)[sin (sr)/sr] dr. (1) 
0 
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With the distance distribution function p(r) approxi- 
mated by P = (P~ . . . .  , PN) and the intensity measured 
at s = (s~ . . . . .  SM), the measured intensities are given 
by 

N 

l(si) = ~,  A o p  r + ei, (2) 
j = l  

where ei is the noise at data point i and the matrix 
A is given by Air = Ars in(s i rr ) / ( s i r j ) ,  where Ar  = 
rr - rr -  1. The aim of the indirect Fourier transforma- 
tion is to restore p, which by virtue of the Fourier 
transform contains the full information present in the 
scattering profile. 

2.2. M a x i m u m  en t ropy  

The theoretical background for M A X E N T  is well 
established [see e.g. Jaynes (1983) for a review] and 
just a few results relevant to the present application 
are mentioned here. 

The entropy for a positive additive distribution 
P = ( P l , . . . , P N )  with respect to a prior estimate 
m = ( m ~ , . . . , m N )  can be written 

N 

S(p, m) = ~ - - p j  In (pj /mr)  + pj - mj  (3) 
j = l  

[see Skilling (1988) for an axiomatic derivation of this 
result]. It can be shown that (3) can be obtained from 
the original entropy measure by assuming each p j  to 
be Poisson distributed with mean m r (Steenstrup, 
1985). In cases where the distribution of interest does 
not have to stay positive, a more appropriate model 
for the distribution may be obtained by assuming each 
p j  to be Gaussian distributed around a mean m r with 
width s r, and the corresponding expression for the 
entropy changes to 

N 

S(p, m) = - ~ (m r - pj)2/2s] (4) 
j = l  

[for a derivation of how the measure of the 
information content in a probability density function 
reduces to (3) and (4) see Kullback (1959)]. 

It should be noted that in the maximum-entropy 
method it is the probability distribution for the 
distribution to be estimated which has to stay 
non-negative - the distribution itself may take both 
positive and negative values. 

2 For sj = m r, (4) is the second-order approximation 
to (3), expressing the fact that the Poisson distribution 
may be approximated by a Gaussian. For the 
examples considered in this paper, (3) has been used, 
except where the prior assumed negative values. 

By maximization of the entropy S subject to the 
constraints from the measured data, the distribution 
p is found which is closest (as measured by the 
entropy) to the prior estimate m while simultaneously 

fulfilling the constraints from the data. Usually, the 
constraints from the data are expressed through ;(2 
given by 

;(2= ~_, I(si ) __ ~_, h i jP  j tTi, (5 )  

i=  j = l  

where a 2 is the standard deviation for the Gaussian 
noise at data point i. The value for ;(2 is required to 
be equal to a constant ;(2, which represents the degree 
of misfit considered acceptable. The maximization of 
the entropy subject to the constraint ;(2 = ;~2 is done 
by standard Lagrange-multiplier techniques through 
solution of the equations 

V(S - ~;(2) = 0, (6) 

which - with the equation ;(2= ;(a 2 _ yield (N + 1) 
equations in the (N + 1) unknowns (Pl ,P: . . . . .  PN, 2). 

Equation (6) is solved numerically by a successive 
over/under relaxation algorithm similar to that 
described by Steenstrup (1985). The algorithm works 

_ire + 1 from the iteratively by calculation of each new pj 
old #j-ire, for each j, assuming (6) to be an equation in 
only one unknown p j  (using p).te+ 1 for i < j and pl t¢ 
for i > j). At each iteration, py* ÷ ~ is updated according 
to/'r-i'~ +~ = (1 - co)p,.t~j + copr, where co is a relaxation 
factor (usually chosen equal to 0.5) and the Lagrange 
multiplier ). is determined by ~. = I VSI/I V;( 21(;(2/X~) 1/2. 

The typical CPU time used for a scattering 
spectrum of 500 data points and 500 points for the 
distance-distribution function was about 10 min on a 
DEC workstation (equivalent to the speed of a 486 
processor). The algorithm used was very stable and 
there were no problems with the convergence of the 
algorithm when an appropriate prior was used. If a 
prior far from the true solution was tried, the program 
sometimes had problems finding the solution, but no 
attempt was made to repair this as it did not cause 
any relevant problems (it simply served as a useful 
indicator that something was wrong). 

For this application of M A X E N T ,  the noise level 
(and from this the ;(~) should be known a priori .  If the 
noise level is not known, the Lagrange multiplier (and 
the corresponding ;(~) can be determined by Bayesian 
estimation as shown by Gull (1989). For the Bayesian 
method to give correct results, a 'good'  (in the sense 
of being close to the final estimate) prior is required, 
but it is also important that the data are free of 
systematic errors such as, for example, erroneous 
background subtraction, which may result in spurious 
structure in the estimated p(r). This last point is not 
trivial for practical applications of the method to 
experimental scattering data [see also Bryan (1990) 
for a further discussion of the Bayesian choice of the 
Lagrange multiplier]. For the present calculations, the 
noise level has either been estimated or is known a 
pr ior i  in the case of the simulated examples. 
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In M A X E N T ,  the estimation of the errors can be 
carried out in the conventional way using the usual 
curvature matrix for the g z but including the 
additional entropy-regularization term as described 
by Skilling (1989) and Gull (1989). An example of this 
is given below. However, it has to be noted 
that systematic contributions to the errors (un- 
certainty in the validity of the model, background 
subtraction etc.) are not included in the estimate of 
the error bars, which should therefore be interpreted 
conservatively. For the cases considered here, the 
error estimate is mainly determined by the entropy 
term. With respect to these problems, M A X E N T  is 
similar to other methods for indirect Fourier 
transformation where the error estimate is conditional 
on the special functional system chosen for represent- 
ing the distance-distribution function, the maximum 
diameter of the scatterer etc. 

For the determination of the prior, it has been 
shown by Skilling (1988) that the 'best '  (most likely) 
prior can be found by maximization of the entropy. 
This means that any unknown parameters in the prior 
can be found by maximization of the entropy. For 
example, if an ellipsoid of revolution is assumed as the 
prior, the two dimensions can be found as those giving 
the maximum entropy when the data are fitted to the 
s a m e  ,~2 for different choices of dimensions. Or, given 
the choice between several possible priors, the chosen 
one should be the one with the maximum-entropy 
solution when the data are fitted equally closely for 
the different priors. Examples of both of these 
situations are given below. 

In small-angle scattering, the maximum-entropy 
method has previously been used for estimation of size 
distributions (Daniell, Potton & Rainford 1988a,b; 
Morrison, Corcoran & Lewis, 1992) and distance- 
distribution functions (Hansen & Pedersen, 1991). To 
our knowledge, all previous applications of the 
maximum-entropy method to the determination of 
size distributions in small-angle scattering have used 
a uniform prior. Better results can be expected when 
using a correct prior as indicated by the present 
calculations (e.g. a Gaussian distribution using a free 
mean value and free width would be more appropriate 
as the prior). 

2.3. Direct modified Fourier transformation (DT) 

In order to study the performance of M A X E N T ,  
scattering curves of biological macromolecules have 
been calculated from their atomic coordinates stored 
in the Brookhaven Protein Data Bank (PDB; 
Bernstein et al., 1977). The improved cube method 
(Miiller, 1983) has been used to calculate the solution 
scattering, taking into account the solvent-excluded- 
volume of a molecule. The real-space distance 
distribution p(r) (Guinier & Fournet, 1955) has been 

calculated by a direct Fourier transformation using 
the theoretical scattered intensity up to s = 30 nm-  1 
Beyond 30 nm-1 ,  the scattered intensity corresponds 
to the scattering of the molecule in vacuum and 
oscillates around the independent-atoms' scattering. 
The scattered intensity has been damped against the 
scattering from independent atoms for s > 50 nm-  1 
with a Hamming window (Mtiller, Damaschun & 
Schrauber, 1990), being zero at s = 100 nm-  1. Finally, 
the independent scattering was subtracted from the 
scattered intensity of the whole molecule and the 
difference direct Fourier transformed (DT), corre- 
sponding to the inversion of (1)" 

i p(r) = (2r/rr) sI(s) sin (sr) ds. (7) 
o 

By subtraction of the scattering of the independent 
atoms, only the innermost part of p(r) for r < 0.4 nm 
is influenced, because the largest van der Waals radii 
used are half this size. The slit-length smearing was 
carried out by numerical integration 

lmax 

J(t) = 2 ~ P(t)I[(s 2 + t2) II2] dt, (8) 
o 

with the primary-beam-length profile 

P(t) = crc- 112 exp (--C212). (9) 

P(tmax)/P(O ) = 10- 5 and c was chosen to be 0.6863 nm. 
The addition of random noise, the slit-length smearing 
and the nonlinear curve fitting to rotational ellipsoids 
by Marquardt 's  (1963) procedure were carried out 
using the computer program package S A X S - P C  
(Mtiller, 1992). 

3. Resu l t s  

The first test example is the theoretical scattering 
curve of phenylalanine-specific transfer ribonucleic 
acid (tRNA Phc) using the coordinate set 4TRA 
deposited in the PDB by Westhof, Dumas & Moras 
(1988). Random noise has been added with a constant 
relative value of 10, 5 and 1% of the intensity, 
respectively. The full curves are shown in Fig. 1 for 
pin-hole collimation as well as for slit geometry. The 
main point before the investigation of the influences 
of the experimental restrictions on the results of the 
desmearing and transformation by M A X E N T  is the 
determination of a correct prior. Without a priori 
knowledge of the atomic model, several priors are 
possible, at first priors are derived from low-resolution 
models like homogeneous spheres, ellipsoids or 
aggregates of finite elements. By Marquardt 's  
curve-ftting procedure for 0 _< s _< 1.2 n m - l ,  an 
ellipsoid of revolution with half-axes A = 4.81 and 
B = C = 1.63 nm was found as a first crude model. 
From this ellipsoid, a structurally more realistic 
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triaxial ellipsoid, the inertia-equivalent ellipsoid 
(A = 4.6, B = 2.75, C = 1.38 nm), can be estimated 
from the scattering curve by calibration (Miiller & 
Schrauber, 1992). Both scattering curves are shown in 
Fig. 2. Ellipsoids do not fit the complicated tRNA 
structure and consequently their scattering curves are 
bad approximations. The corresponding distance- 
distribution functions of these models p(r) are used as 
priors and are shown in Fig. 3. Per definitionem, we 
call all priors derived from models model priors. Both 
model priors are far from the high resolution p(r) of 
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Fig. 1. Theoretical scattering curves of transfer ribonucleic acid 
tRNA P~ calculated from atomic coordinates of the PDB entry 
4TRA. The upper three curves are for pinhole coll imation and 
10, 5 and 1% relative random noise. The lower two curves are 
slit-length smeared with a Gaussian profile and 10 and 5% 
random noise. The curves are shifted vertically by arbitrary 
values. 

the tRNA molecule. The scattering of the structurally 
more adequate inertia-equivalent ellipsoid differs 
more at smaller angles from the tRNA curve than the 
scattering of the equivalent ellipsoid of revolution. 
The corresponding result can be seen for the priors. 
The p(r) of the inertia-equivalent ellipsoid shows 
greater large-distance differences from the high- 
resolution function than p(r) of the rotational 
ellipsoid. Fig. 4 shows the M A X E N T  results for both 
priors using the 5% -noise data. The priors stamp the 
results. The global differences between the true p(r) 
and the priors cannot be removed by the M A X E N T  
procedure. The fine structure of p(r) is also misleading 
for both priors. 

The results for the homogeneous ellipsoids are 
unsatisfactory and must be rejected. The systematic 
errors from simple models, usually known a priori or 
estimable directly from the scattering curve, may 
propagate into the M A X E N T  result. 

The second possibility to derive a convenient prior 
without using a (possibly) wrong model is to use the 
scattering curve itself with a lower resolution than 
obtained experimentally. We use the original data 
(Fig. 1) and extrapolate the curve corresponding to 
the Porod law from s = 2.88 nm -I to infinity or 
alternatively apply an indirect method for data 
handling, e.g. the program ITP developed by Glatter 
(1977). The p(r) function derived from the measured 
data by such a procedure is called an intrinsic prior. 
This prior fits the high-resolution p(r) very well in the 
overall curve shape and lacks only the fine structure 
(Fig. 3). The result for M A X E N T ,  when this intrinsic 
prior is used, is shown in Fig. 5. The fine structure is 
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Fig. 2. Scattering curves of the 
tRNA and of different priors. 
Full line: tRNA, crystal s tructure 
(4TRA model  in insert). Dashed- 
dot ted  line: ellipsoid of revolu- 
tion (A = 4.81, B = C = 1.63 nm). 
Long dashes: inertia-equivalent 
ellipsoid (A = 4.6, B = 2.75, C = 
1.38 nm). Short  dashes: low- 
resolution scattering curve, s -4 
law from s = 2.88 nm-1 .  
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restored without spurious oscillations and the overall 
agreement of the high-resolution p(r) with the 
M A X E N T  result is adequate for further discussions. 

For investigation of the sensitivity of M A X E N T  
against noise, angular step width and termination 
errors, we use the intrinsic low-resolution prior. 

Fig. 6 shows M A X E N T  results for 1, 5 and 10% 
constant relative noise added to the scattering curves. 
The fine structure is very well restored for the example 
using the lowest noise level. As the noise level is 
increased, the fine structure is smeared out in a 
well behaved manner as the details disappear and the 
estimate is pulled closer to the prior by the entropy 
term in (6). The increased noise level allows the 
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- ' ~ , ,  
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,t 

°°018 2.0 40 60 8"0 "- 
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Fig. 3. High-resolution distance distribution of tRNA and of 
different priors. Full line: pCr) of tRNA (crystal structure, 4TRA). 
Dashed-dotted line: p(r) of the ellipsoid of revolution CA = 4.81, 
B = C = 1.63 nm). Long dashes: pCr) of the inertia-equivalent 
ellipsoid CA = 4.6, B = 2.75, C = 1.38 nm). Short dashes: intrinsic 
low-resolution prior. 
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Fig. 4. M A X E N T  result for t R N A  using model priors. Full  line: 
p(r) of t R N A  (crystal structure, 4TRA). Dashed-dotted line: 
M A X E N T  result using the ellipsoid of revolution as prior. Long 
dashes: M A X E N T  result using the inertia-equivalent ellipsoid 
as prior. 
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Fig. 5. M A X E N T r e s u l t  for tRNA using an intrinsic prior. Full line: 
p(r) of tRNA (crystal structure, 4TRA). Short dashes: M A X E N T  
result using the intrinsic low-resolution prior (see Fig. 3). 
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Fig. 6. M A X E N T  result for tRNA 
using the low-resolution intrinsic 
prior and scattering curves with 
different constant  relative noise. 
Full line: p(r) of tRNA (crystal 
structure, 4TRA). Long dashes: 
1% noise. Short dashes: 5% 
noise. Dashed-dotted line: 10% 
noise. 
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entropy term in (6) to be more dominant  as 
the constraints from the data are weaker. In the limit 
of no constraint from the data, the prior will be 
refound as the solution to (6). This controlled 
behaviour of the solution is one of the virtues of 
M A X E N T .  In the presence of an incorrect prior, 
artifacts may appear, but when a good prior has been 
used M A X E N T  is not likely to cause spurious 
structure in the estimated p(r). For a constant absolute 

noise of 0.027% of I(0) over the whole  curve (Fig. 7, 
insert), the fine structure is somewhat  smeared out but 
essentially the same as in the high-resolution p(r) 
(Fig. 7). 

In the calculations discussed above, the scattering 
- 1  curve of tRNA was given for s = 0 - 2 3 n m  

at intervals of As = 0.06 n m -  1, which means at about 
1/6 of the sampling-point  distance as in most  
experiments. Fig. 8 shows that the main features are 
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Fig. 7. M A X E N T  result for tRNA 
using the low-resolution intrinsic 
prior and a scattering curve with 
0.000271(0) absolute random 
noise. Full line: p(r) of tRNA 
(crystal structure, 4TRA). 
Dashed line: MAXENTestimate.  
Insert: scattered intensity of 
tRNA (crystal structure, 4TRA) 
with an absolute random noise 
0.000271(0). Full line: M A X E N T  

fit. 
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Fig. 8. M A X E N T  result for tRNA 
using the low-resolution intrinsic 
prior and scattering curves with 
different angular step width (5% 
constant relative noise). Full line: 
step width A s  = 0.06 n m -  t. Long 
dashes: step width A s  = 

0.12 nm- 1. Short dashes: step 
width A s  = 0 . 3 6 n m - ) .  Insert: 
maximum region of p(r) for 
scattering data with 10% con- 
stant relative noise and step 
width A s  = 0.12 n m -  1. 
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preserved for the step widths used, As = 0.06, 0.12 and 
0.36 nm-~,  respectively, for a constant relative noise 
of 5%. The fine structure in p(r), especially in the 
region 1.8-2.5nm, is reproduced best for the 
scattering data with the highest information content 
(step width 0.06 nm-~). With 10% relative noise and 
step width As = 0.12 nm-  ~, the information about the 
fine structure is lost, as shown in the insert. 

In Fig. 9, the simulated intensity (again for 5% 
noise) has been truncated, now with Sm~, = 1.8 nm -  
as the first point. This corresponds to five times the 
sampling-point distance rc/L. However, as the prior 
has been estimated using the original data up to 

8 .0  
c 

-~ 4.0 

O Oo,  2 .0  4 .0  6 .0  8 .0  
r [ n m ]  

12 .0  

10 .0  

Fig. 9. M A X E N T  result for tRNA using the low-resolution 
intrinsic prior and a scattering curve with 5% constant  relative 
noise using Sm~. = 1.8 nm-~.  Full line: p(r) of tRNA (crystal 
structure, 4TRA). Short  dashes: M A X E N T  result. 

S = 2.88 nm -~, it contains the information corre- 
sponding to the missing data points. Therefore, the 
M A X E N T  estimate of p(r) is again satisfactory. 

3.1. Curve extrapolation 

The behaviour of the M A X E N T  results has been 
investigated for scattering curves terminated at 
different angles at the large-angle end. To simulate the 
accessible angular region of a diffractometer, the 
scattering curves were truncated in minima as well as 
in maxima. The scattering curves are perfectly fitted 
by M A X E N T  up to the corresponding termination 
angle (Fig. 10). The extrapolated part of the scattering 
curve oscillates around an s -4 tail, containing some 
spurious maxima, the stronger, the lower the 
resolution - simulating a homogeneously filled 
hard-body model with a sharp electron-density 
boundary. The termination angle Sm,~ is not important 
to the convergence or the quality of the M A X E N T  
results [the p(r) functions in Fig. 11 correspond to the 
resolution 7~/Sma,,]. 

3.2. Slit-lenqth desmearin9 

The smearing and desmearing effects will be 
investigated in more detail in a later study. Here, we 
make only a brief remarks concerning the slit-length 
desmearing of a tRNA curve. The scattering curve 
derived from the atomic coordinate set 4TRA has 
been smeared by a profile P(t) corresponding to (9) 
with a simulation program incorporated in SAXS-PC.  
5% random noise has been added. The curve is shown 
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Fig. 10. M A X E N T  result for tRNA 
(crystal structure, 4TRA) using 
the low-resolution intrinsic prior  
and scattering curves with 5% 
constant  relative noise termi- 
nated at different larger angles. 
Markers  show the data  for tRNA. 
Full line: M A X E N T  extrapola-  
tion for a terminat ion at s,~,x = 
12.5 n m -  ~. Long dashes: Smax = 
8.5 nm -~. Short  dashes: Sm, ~ = 
5 . 0 n m  ~. Full line in insert: 
Sm,x = 9.7 r im-  i. Long dashes in 
insert: s,,,~ = 6.8 n m -  1. Short  
dashes in insert: Sin,, = 3.4 nm 
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in Fig. 1. It was used as input data for the indirect 
transformation method ITP (Glatter, 1977) up to 
s = 3.4 n m - 1 .  The p(r) obtained was then used as a 
low-resolution prior. Fig. 12 shows the results for 
MA XENT. There is a complete agreement for the p(r) 
functions based on pin-hole-coll imated and slit- 
length-smeared data. 

3.3. Priors for globular particles 

For the branched molecule tRNA, the simple 
model  prior in the form of an ellipsoid was not 
adequate but the intrinsic low-resolution prior 

worked very well. Now,  we consider an example where 
the reverse is true. Fig. 13 shows the scattering curve 
of the globular protein cytochrome c calculated from 
the atomic coordinates of the P D B  entry 1CYC 
(Tanaka, Yamane,  Tsukihara, Ashida & Kakudo,  
1975). If the rotational ellipsoid with the half-axes 
A = 1.9, B = C = 1.5 nm is chosen as model  prior, we 
get a M A X E N T  result showing all main fine-structure 
features apart from the smaller ripples for r < 3 nm 
(Fig. 14). There is no large-scale discrepancy between 
the high-resolution p(r) and the M A X E N T  result, 
because the model prior is adequate for the molecule. 
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Fig. I 1. M A X E N T  result for tRNA (crystal structure, 4TRA) using 
the low-resolution intrinsic prior and scattering curves with 5% 
constant relative noise and reduced resolution. Full line: 
termination at Sm,x = 9.7 nm-  ~. Long dashes: Smax = 6.8 nm- 
Short dashes: s,,a~ = 3.4 nm-  1 
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Fig. 12. M A X E N T  result for tRNA using low-resolution intrinsic 
prior and pin-hole collimated and slit-length-smeared scattering 
curves with 5% constant relative noise. Full line: p(r) of tRNA 
(crystal structure, 4TRA). Long dashes: M A X E N T  result for 
pin-hole-collimated scattering curve. Short dashes: M A X E N T  
result for slit-length-smeared scattering curve. 
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Fig. 13. Scattering curve of cyto- 
chrome c calculated from atomic 
coordinates of the PDB entry 
ICYC. 5% constant relative 
noise has been added. Full lines: 
M A X E N T  fi '  Short dashes: 
Fourier transform of low-resolu- 
tion prior. Dashed-dotted line: 
Fourier transform of rotational 
ellipsoid. Insert: atomic resolved 
structure of I CYC and rotational 
ellipsoid with half-axes A = 1.9, 
B = C =  1.5nm. 



It has been determined by maximization of the 
entropy as described above and fits the crystal 
structure of 1CYC very well (see insert in Fig. 13). 

Contrary to this, the low-resolution intrinsic prior 
fails when an incorrect truncation of the scattering 
curve is chosen. Fig. 13 shows the s -4  extrapolation 
starting at s = 2.2 nm-1.  The resulting p(r) function 
shows truncation errors. For large distances, the prior 
has negative values. Using MA X E N T  and (3), the p(r) 
can be constrained to stay positive but as noted 
previously this is not mandatory. If the positivity 
constraint is omitted, the M A X E N T  estimate will 
follow the negative prior (Fig. 15). However, the main 
features of p(r) are restored again within the region 
0.4 _< r < 2.8 nm. 

If there exists a priori an adequate low-resolution 
model or if there exists a high probability for a 
compact isometric structure, hard bodies may be used 
as suitable priors. In general, as demonstrated by all 
the examples given here, the M A X E N T  estimate will 
follow the overall structure of the prior, which 
therefore should not contain any artifacts if MA X E N T  
is to perform satisfactorily. 

3.4. Low-resolution intrinsic prior compared with 
high-resolution model prior 

To study the role of the prior and the method for 
calculation of an intrinsic prior, we simulated an 
experiment with tRNA Phc. It is known from theoretical 
potential and energy calculations by Harvey & 
McCammon (1981) that tRNA can undergo large- 
scale global conformational changes with low 
energetic costs. To model a structural change, the 
aminoacyl stem of the molecule has been rotated 
against the anticodon stem around the axis connect- 
ing the P8 and P49 atoms. The rotation angle has 
been chosen to be 32 ~, to achieve a clear effect in the 

"E 

~ 5 

scattering curve (Fig. 16) and distance-distribution 
function p(r) (Fig. 17). 5% constant relative random 
noise was added to the scattering curve of the 
modified tRNA. 

The idea was to use the highly resolved p(r), which 
was calculated from the crystal structure (coordinate 
set 4TRA) by the modified direct Fourier transforma- 
tion described above, as a prior for the modified tRNA 
structure. Fig. 18 shows the MA X E N T  result. The fine 
structure of the MA X E N T  result is very similar to that 
expected but the global differences visible in Fig. 17 
are manifested by the wrong model prior. Also, a 
medium-resolution model prior, calculated from the 
scattering curve of the tRNA (coordinate set 4TRA), 
after extrapolation (s 4 tail starting at s = 6.9 nm-1)  
by the direct Fourier transformation has to be rejected 
(Fig. 19). The large-scale differences remain the same 
and additionally the fine structure is somewhat 
flattened out because of the reduced resolution in the 
prior. Therefore, as the high-resolution model prior 
has failed, we have to choose a lower-resolution 
intrinsic prior. Fig. 20 shows the result for the 
low-resolution prior that was calculated from the 
scattering curve within s = 0-2.88 nm-1 by a direct 
Fourier transformation. The agreement of the 
M A X E N T  result and the expected p(r) is satisfactory. 

The error bars, shown in the insert, have been 
plotted at intervals corresponding to the resolution of 
the data and indicate the concentration of distribu- 
tions at the M A X E N T  solution. The regions where 
the data contained sufficient information to pull the 
estimate away from the prior are evident in the figure 
by comparison with the size of the error bars. 
However, again it should be noted that the error bars 
are conditional on the prior estimate. 

The same result (not shown here) was obtained 
when an intrinsic prior of medium resolution 
(Sin, X = 6.9 r im-l)  was used. 
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Fig. 14. M A X E N T  result for cytochrome c (ICYC) using the 
model prior ellipsoid of revolution and a scattering curve with 
5% constant relative noise. Full line: p(r) of ICYC. Short dashes: 
model prior ellipsoid of revolution. Long dashes: M A X E N T  
result. 
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Fig. 15. M A X E N T  result for cytochrome c (1CYC) using a 
low-resolution intrinsic prior and a scattering curve with 5% 
constant relative noise. Full line: p(r) of ICYC. Short dashes: 
low-resolution intrinsic prior. Long dashes: M A X E N T  result. 



Next, the method for calculation of the prior was 
changed to study the influence of the extrapolation of 
the scattering curve to larger angles. The direct 
method fits a power-law constant in a/s 4 by a 
least-squares procedure in a local region of the 
scattering curve. The indirect methods extrapolate the 
scattering curve to large angles by the information 
content in the special functional system fitted to the 
full known curve. But by ITP it is not possible to 
calculate the highly resolved p(r) from the curve with 
5% random noise in the angular region 0 < s < 
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27 n m -  1 for a molecule with a maximum diameter of 
8 nm. Stability problems result in strong oscillations 
in p(r) (using 40 splines). But low-resolution and 
medium-resolution priors for use in M A X E N T c a n  be 
determined with Glaner's program ITP. At first, a 
low-resolution model prior derived from the 4TRA 
scattering curve was calculated by ITP. The result 
(Fig. 21) is the same as for a medium-resolution model 
prior (not shown here) and corresponds to the result 
for the prior calculated by the direct method (Fig. 19). 
The global discrepancies are visible again. The best 
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s [nm- ' ]  

Fig. 16. Scattering curves for tRNA 
(crystal structure, 4TRA) and 
modified tRNA. Full line: tRNA 
scattering curve calculated from 
atomic coordinates of the PDB 
entry 4TRA. Dashes: scattering 
curve of the modified molecule. 
Insert: left 4TRA, right amino- 
acyl arm rotated around the 
P8-P49 axis by 32 °. 
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Fig. 17. High-resolution distance-distribution functions for both the 
tRNA models shown in Fig. 16. calculated by a modified direct 
Fourier transformation. Full line: p(r) for the modified tRNA 
structure. Short dashes: p(r) for tRNA (crystal structure, 4TRA). 
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Fig. 18. M A X E N T  result for a modified tRNA structure using the 
distance-distribution function of the tRNA with crystal structure 
(4TRA) as high-resolution model prior. Full line: p(r) of the 
modified tRNA structure, calculated by a modified direct Fourier 
transformation. Short dashes: high-resolution model prior 
(crystal structure, 4TRA), calculated by a modified direct Fourier 
transformation. Long dashes: M A X E N T  result. 
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result for the modified structure was obtained when 
the low-resolution intrinsic prior, calculated by I T P  
from the scattering curve of the modified structure 
(0 < s < 2.88 nm-1), was used. The global as well as 
the in-detail agreement are visible in Fig. 22. 
Especially for distances larger than 5.5 nm, the 
M A X E N T  result is an improvement compared with 
the result in Fig. 20. Because the result is identical 
with the p(r) calculated for a medium-resolution 
intrinsic prior (0 < s < 6.9 nm-  1) (not shown), the 
fading out of some fine structure (e.g. the small peak 
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Fig. 19. M A X E N T  result for a modified tRNA structure using the 
medium-resolution distance distribution of the tRNA with 
crystal structure (4TRA) as model prior. Full line: p(r) of the 
modified tRNA structure. Short dashes: medium-resolution 
prior, calculated by direct Fourier transformation. Long dashes: 
MA X E N T  result. 

at 2 nm) is caused by the random noise acting in an 
identical manner for both priors. If nothing is known 
about the correct p(r) function, the entropy may be 
taken as a relative measure for the adequacy of the 
prior. Table 1 contains the numerical values of the 
entropy, which confirm the ability of M A X E N T  to 
' rank '  the performance of the different priors by their 
relative value for the entropy. 

3.5. Experimental t R N A  Phe 

The experimental tRNA Phc scattering curve was 
measured in the angular region 0.0782 < s < 
15.55 nm-1 (Miiller, Damaschun, Wilhelm, Welfle & 
Pilz, 1982). Fig. 23 shows the point-collimated 
experimental curve in comparison with the theoretical 
scattering curve calculated from the crystal structure 
(atomic coordinate set 4TRA). In Fig. 23 (insert), the 
p(r) functions that have been used as priors for 
M A X E N T  are depicted. Fig. 24 shows the results in 
comparison with the p(r) function derived from the 
crystal structure. The M A X E N T  result for the 
ellipsoidal model prior determined by curve fitting for 
s < 1.2 n m -  1 should be rejected. 

A slight shift (about 0.07-0.08 nm) of the peak at 
1.75 nm appears in the calculated distance-distribu- 
tion function. This shift is also present if the better 
intrinsic low-resolution prior calculated with I T P  
from the scattering curve for s < 2.88 nm-  ~ is chosen. 
If the high-resolution prior, which was derived from 
the crystal structure, is used, only a minor shift (about 
0.02 nm) is visible. This demonstrates that the shifts 
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Fig. 20. M A X E N T  result for a 
modified tRNA structure using 
the low-resolution intrinsic prior. 
Full line: p(r) of the modified 
tRNA structure. Short dashes: 
low-resolution intrinsic prior, 
calculated by direct Fourier 
transformation. Long dashes: 
M A X E N T  result. Insert shows 
error bars on the M A X E N T  
result. 



are determined by the prior and cannot be used for 
any conclusions about structural changes. 

All fine-structure features in the p(r) of the crystal 
structure are visible in the M A X E N T  result for the 
exper imen ta l  sca t te r ing  curve. The  M A X E N T  results  
wi th  the int r ins ic  and  the h igh- reso lu t ion  model  pr iors  
agree very well g lobal ly ,  giving the model  a high 
degree of credibil i ty.  If we use the modif ied  t R N A  
s t ruc ture  (which has  been discussed above) as a 
h igh- reso lu t ion  model  prior ,  s ignif icant  large-scale 
differences are visible between the results  of 
M A X E N T  for the in t r ins ic  pr ior  and  this model  pr ior  
(not  shown).  By this compar i son ,  it can be conc luded  

10.0 

tha t  the s t rong ly  modif ied  crys ta l  s t ruc ture  is an 
i n a p p r o p r i a t e  model  for the molecule  in solut ion.  

The  e n t r o p y  values for the different models  are 
given in Table  2. Again  the values conf i rm the f indings 
above.  

F r o m  the discuss ion above,  we conc lude  tha t  the 
resul t ing s t ruc ture  of the t R N A  in so lu t ion  is ident ical  
wi th  the crys ta l  s t ruc ture  at rt/15.5 nm reso lu t ion  and  
no c o n f o r m a t i o n a l  changes  can  be detected for t R N A  
dur ing  the t rans i t ion  from crys ta l  to solut ion.  The  
reason  for the s ignif icant  d iscrepancies  between 
exper imen ta l  and  theore t ica l  sca t te r ing  curves for 
s > 3 n m - t  (Fig. 23) is unclear.  The  main  differences 
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Fig. 21. M A X E N T  result for a modified tRNA structure using the 
low-resolution distance distribution of tRNA with crystal 
structure (4TRA) as model prior. Full line: p(r) of the modified 
tRNA structure. Short dashes: low-resolution model prior, 
calculated by ITP (Glatter, 1977). Long dashes: MA X E N T  result. 
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Fig. 22. M A X E N T  result for a modified tRNA structure using the 
low-resolution intrinsic prior. Full line: p(r) of the modified tRNA 
structure. Short dashes: low-resolution intrinsic prior, calculated 
by ITP. Long dashes: M A X E N T  result. 
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Fig. 23. Experimental scattering 
curve of tRNA Phe in compari- 
son with the scattering curve of 
tRNA in crystal (4TRA) and the 
scattering curves of priors. 
Markers show the experimental 
data. Full line: scattering curve 
of tRNA with crystal structure 
(4TRA). Dashed-dotted line: 
scattering curve of the rotational 
ellipsoid used as model prior 
(A = 4.95, B = C = 1.65 nm). 
Short dashes: low-resolution 
scattering curve used for the 
intrinsic low-resolution prior. In- 
sert: priors used for experimental 
tRNA Phe data analysis by MAX-  
ENT. Full line in insert: p(r) of 
tRNA with crystal structure 
(4TRA). Dashed-dotted line in 
insert: p(r) of rotational ellipsoid 
(A = 4.95, B = C= 1.65 nm). Short 
dashes in insert: intrinsic low- 
resolution prior. 
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Table 1. Entropy calculated by M A X E N T  for different 
priors for the modified tRNA structure 

Table 2. Entropy calculated by MA X E N T  for different 
priors for the experimental tRNA Phe data 

Method of 
Prior calculation Figure Entropy Prior 

Model, high resolution 4TRA Direct 18 - 1.08 
Model, medium resolution 

4TRA Direct 19 - 1.32 
Model, rotational ellipsoid 

4TRA Direct - - 4.24 
Intrinsic, low resolution Direct 20 - 2 . 0 0  
Intrinsic, medium resolution Direct - 1 . 2 6  
Model, medium resolution 

4TRA ITP - 1.04 
Model, low resolution, 4TRA ITP 21 -1 .13  
Intrinsic, low resolution 4TRA ITP 22 - 1.01 
Intrinsic, medium resolution 

4TRA ITP - 1.02 

between the M A X E N T  result for the experimental 
tRNA Phe and the p(r) function calculated from the 
crystal structure are localized in the region between 
the 1.73 and 2.5 nm maxima. The minimum is filled 
up by electron-density inhomogeneities with distances 
close to the cross section of the RNA double helices, 
which is somewhat larger than the phosphate-phos- 
phate distances across the arms of tRNA. The 
scattering contributions of counterions near the 
negatively charged phosphates are not included in the 
theoretical calculations, which may explain the 
differences between the scattering curves and distance- 
distribution functions. 

The subtraction of an incorrect background may 
shift the fine structure or cause a splitting of the 
maxima but this effect will be discussed elsewhere. 

Model, rotational ellipsoid 
Model, high resolution 4TRA 
Model, modified 4TRA 
Intrinsic, low resolution 

Method of 
calculation Entropy 

Direct - 5.93 
Direct - 3.27 
Direct - 3.62 

ITP  - 3.60 

4. Concluding remarks 

M A X E N T  represents a method that can be used for 
the analysis of small- and wide-angle X-ray and 
neutron scattering data. It combines the advantages 
of direct and conventional indirect methods. High 
resolution for larger molecules is available, no explicit 
scattering-curve extrapolation is necessary and noise 
of realistic levels can be smoothed for measurements 
at point distances of 1/2 to 1/6 sampling-point 
distance. M A X E N T  also makes it possible to use a 
priori knowledge about the scattering system but this 
is not mandatory. The concept of intrinsic priors and 
model priors allows the user to apply M A X E N T  in a 
classical sense without any a priori knowledge or 
to introduce models and prove their consistency with 
the experimental scattering data. The best results 
with intrinsic priors were achieved by a two-step 
procedure. The first step is the calculation of a 
low-resolution prior from the experimental scattering 
data (e.g. by the ITP program). In the next step, the 
resolution is enhanced by M A X E N T  up to the 
maximum available value. To test models, a 
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Fig. 24. M A X E N T  results for 
experimental tRNA T M  using in- 
trinsic and model priors. Full 
line: p(r) of tRNA with crystal 
structure (4TRA). Short dashes: 
M A X E N T  result using intrinsic 
low-resolution prior. Dashed- 
dotted line: M A X E N T  result 
using ellipsoidal model prior. 
Long dashes: M A X E N T  result 
using high-resolution model 
prior 4TRA. Insert: maximum 
region of p(r). 
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comparat ive study of M A X E N T  results for intrinsic 
and model priors is recommended.  The best of the 
models can be selected by comparison of the entropy 
values. The resolution in p(r) is not restricted by 
M A X E N T ,  neither is the largest d imension of the 
scatterer. 

The program M A X E N T  is available from SH. It is 
written in Fortran77, uses no package routines and is 
as such easily portable to any computer.  A version 
written in C is also available. 

This work was supported by grants from the 
Deutsche Forschungsgemeinschaft  (Mu 989/1-1), from 
the Bundesminis ter ium fiir Forschung und Tech- 
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