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Abstract. 

 

Neuregulin-1 provides an important axonally 
derived signal for the survival and growth of developing 
Schwann cells, which is transmitted by the ErbB2/
ErbB3 receptor tyrosine kinases. Null mutations of the

 

 
neuregulin-1

 

, 

 

erbB2

 

, or 

 

erbB3

 

 mouse genes cause se-
vere deficits in early Schwann cell development. Here, 
we employ Cre-

 

loxP

 

 technology to introduce 

 

erbB2

 

 
mutations late in Schwann cell development, using a 

 

Krox20-cre

 

 allele. Cre-mediated 

 

erbB2

 

 ablation occurs 
perinatally in peripheral nerves, but already at E11 
within spinal roots. The mutant mice exhibit a wide-
spread peripheral neuropathy characterized by abnor-

mally thin myelin sheaths, containing fewer myelin 
wraps. In addition, in spinal roots the Schwann cell pre-
cursor pool is not correctly established. Thus, the Neu-
regulin signaling system functions during multiple 
stages of Schwann cell development and is essential for 
correct myelination. The thickness of the myelin sheath 
is determined by the axon diameter, and we suggest 
that trophic signals provided by the nerve determine 
the number of times a Schwann cell wraps an axon.

Key words: cre-loxP • neuregulin • myelin • glia • 
neuropathy

 

Introduction

 

Neural crest cells constitute a migratory and pluripotent
cell population that emerges from the dorsal neural tube.
Upon reaching their target sites, neural crest cells differen-
tiate into various cell types, including Schwann cells, which
is a population of glial cells that ensheathes axons of sen-
sory and motoneurons (Le Douarin, 1982). Schwann cell
precursors migrate and proliferate along preexisting axon
tracts during development, and progress through a series
of defined stages that are characterized by the expres-
sion of specific genes encoding proteins such as P

 

0

 

, S100,
SCIP, or Krox20 (Mirsky and Jessen, 1996; Zorick and
Lemke, 1996). Proliferation, survival, and differentiation
of Schwann cell precursors depend critically on signals
that are provided by the associated axons. During the first
week of postnatal life, the majority of Schwann cells des-
tined to myelinate can already be distinguished morpho-
logically in mice. They establish a 1:1 relationship with the
accompanying axon and cease to proliferate, but remain
capable of entering the cell cycle, a property important in
adult regeneration processes (Zorick and Lemke, 1996).
The myelination program in Schwann cells is character-
ized by the expression of specific transcription factor

genes like 

 

SCIP

 

 (also known as 

 

Oct-6

 

 or 

 

Tst-1

 

) and 

 

Krox20

 

(also known as 

 

Egr-2

 

; Chavrier et al., 1988; He et al., 1989;
Monuki et al., 1989; Wilkinson et al., 1989; Suzuki et al.,
1990). Genetic analysis in mice shows that SCIP deter-
mines the correct onset of myelination, whereas Krox20 is
required for proper ensheathment of the axon and for the
expression of genes encoding myelin proteins (Topilko et al.,
1994; Weinstein et al., 1995; Bermingham et al., 1996; Jae-
gle et al., 1996; Zorick et al., 1999). Myelin proteins are
major constituents of the myelin sheath, and the molecular
composition of the sheath as well as its appropriate thick-
ness are essential for the normal functioning of a nerve fi-
ber. Mutations in humans and rodents can cause neuropa-
thies accompanied by myelin defects, and are typically
associated with a reduced thickness of myelin and a dis-
turbed transmission of the action potential along the af-
fected nerves (Nave, 1994; Martini and Schachner, 1997;
Scherer, 1997; Suter, 1997).

Early Schwann cell precursors rely on axonal signals for
maintenance, proliferation, and differentiation. One neu-
ronal signal that controls survival and proliferation is pro-
vided by Neuregulin-1, also named GGF, for glial growth
factor (Raff et al., 1978; Lemke and Brockes, 1984; Good-
earl et al., 1993; Marchionni et al., 1993). Alternative
names used for this factor are NDF (Neu differentiation
factor), Heregulin, or ARIA (acetylcholine receptor in-
ducing activity; for reviews see Alroy and Yarden, 1997;
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Burden and Yarden, 1997). Neuregulin-1 is produced by
sensory and motoneurons as a transmembrane molecule
inserted into axonal membranes (Ho et al., 1995; Berming-
ham-McDonogh et al., 1997; Yang et al., 1998). This axon-
derived signal is recognized by Schwann cells via a recep-
tor tyrosine kinase composed of a heterodimer of ErbB2
and ErbB3, which signals through tyrosine phosphoryla-
tion (Levi et al., 1995; Morrissey et al., 1995; Grinspan et
al., 1996; Syroid et al., 1996; Vartanian et al., 1997). This
concept is supported by genetic studies in the mouse. Mice
with mutations in 

 

neuregulin-1

 

, 

 

erbB2

 

, or 

 

erbB3

 

 all show
severe reductions in the numbers of early Schwann cell
precursors; at later developmental stages, 

 

erbB3

 

 and

 

erbB2

 

 mutants lack Schwann cells (Meyer and Birchmeier,
1995; Erickson et al., 1997; Meyer et al., 1997; Rieth-
macher et al., 1997; Britsch et al., 1998; Woldeyesus et al.,
1999; Morris et al., 1999).

The time period during which Schwann cell precursors
critically depend on Neuregulin-1 for proliferation and
survival ends with the transition from an early precursor to
a more mature, differentiating Schwann cell (Dong et
al., 1995; Grinspan et al., 1996; Syroid et al., 1996; Mur-
phy et al., 1996). After this transition, the differentiating
Schwann cells generate survival factors in an autocrine
loop, and become independent of Neuregulin-1, although
they are still able to respond to the factor (Rosenbaum
et al., 1997; Cheng et al., 1998; Meier et al., 1999; Syroid
et al., 1999). Interestingly, 

 

neuregulin

 

-1 continues to be ex-
pressed in sensory and motoneurons even in adulthood,
and both differentiating and mature Schwann cells con-
tinue to express the Neuregulin receptor genes 

 

erbB2

 

 and

 

erbB3

 

, albeit 

 

erbB2

 

 is expressed at reduced levels (Chen
et al., 1994; Corfas et al., 1995; Grinspan et al., 1996). We
investigate here the functions of the Neuregulin signal-
ing system in myelinating Schwann cells by the use of a
Cre-recombinase–induced 

 

erbB2

 

 mutation. We observe
severe defects in myelination, which results in the forma-
tion of abnormally thin myelin sheaths. This correlates
with ataxia, tremor and wasting of the animals. Moreover,
a postnatal loss of motor axons occurs. Thus, the Neuregu-
lin signaling system not only regulates Schwann cell num-
bers, but is also necessary for formation of an adequate
myelin sheath.

 

Materials and Methods

 

Generation of a Targeting Vector and erbB2

 

flox

 

 Strain
of Mice

 

The isolation of genomic 

 

erbB2

 

 DNA derived from the 129 mouse strain
has been described (Britsch et al., 1998). Oligonucleotides encoding the

 

loxP

 

 sequence together with an additional EcoRV site were inserted 5

 

9

 

 of
exon p. A neomycin cassette flanked by 

 

loxP

 

 sites was inserted 3

 

9

 

 of exon

 

n 

 

(see Fig. 1 A). The 

 

erbB2

 

flox

 

neo

 

flox

 

 targeting vector was electroporated
into E14.1 embryonic stem (ES) cells; homologous recombination events
were enriched by selection with G418, and identified by Southern blot hy-
bridization using an external genomic probe located 5

 

9

 

 to exon r (data not
shown). As described previously (Torres and Kühn, 1997), independent
ES cell clones heterozygous for the 

 

erbB2

 

flox

 

neo

 

flox

 

 allele (see Fig. 1 A)
were electroporated with pICcre; colonies were screened by Southern blot
hybridization using probe 1 (see Fig. 1 A). Two colonies that contained
the 

 

erbB2

 

flox

 

 allele derived from independent parental 

 

erbB2

 

flox

 

neo

 

flox

 

clones were used for a generation of mice that carry this allele as de-
scribed (Riethmacher et al., 1997). Homozygous 

 

erbB2

 

flox

 

 animals ap-
peared normal and were fertile. To establish the 

 

erbB2

 

D

 

 strain, 

 

erbB2

 

flox

 

homozygotes were crossed with 

 

deleter

 

 mice (Schwenk et al., 1995). Cre-
mediated deletion of the floxed exons p-n removes 362 nucleotides of cod-
ing sequence and, thus, introduces a frameshift mutation. The predicted
protein product encoded by the 

 

erbB2

 

D

 

 allele contains the first 386 amino
acids of ErbB2 followed by 51 amino acids from an altered reading frame.
Mice heterozygous for the 

 

erbB2

 

D

 

 allele were bred with 

 

erbB2

 

1

 

/

 

2

 

 mice;
all embryos with the genotype 

 

erbB2

 

D

 

/

 

2

 

 identified at E11.5 were dead as
judged by the absence of heartbeat and signs of resorption. Histological
analysis of E10.5 

 

erbB2

 

D

 

/

 

2

 

 embryos showed the previously described phe-
notypes, i.e., lack of trabeculation and abnormal cranial sensory ganglia.
All analyses of conditional 

 

erbB2

 

 animals were carried out on the mixed
C57BL/6/129 background. As controls for 

 

Krox20-cre

 

/

 

1

 

; 

 

erbB2

 

flox

 

/

 

2

 

 ani-
mals, littermates with a genotype 

 

Krox20-cre

 

/

 

1

 

; 

 

erbB2

 

flox

 

/

 

1

 

 were rou-
tinely used. Littermates with genotypes 

 

Krox20

 

1

 

/

 

1

 

; 

 

erbB2

 

flox

 

/

 

2

 

, or

 

Krox20

 

1

 

/

 

1

 

; 

 

erbB2

 

flox

 

/

 

1

 

, and also 

 

Krox20-cre

 

/

 

1

 

; 

 

erbB2

 

1

 

/

 

2

 

 animals were
analyzed by light microscopy and thin myelin was not apparent.

 

Determination of Recombination Specificity
and Efficiency

 

Tissues from 6-wk-old mice double heterozygous for a reporter-

 

lacZ 

 

allele
and 

 

Krox20-cre

 

 were stained with 5-bromo-4-chloro-3-indolyl 

 

b

 

-

 

D

 

-galac-
topyranoside (X-gal)

 

1

 

 as described (Akagi et al., 1997). Blue staining in-
dicative of Cre-mediated recombination was observed in peripheral
nerves, hair follicles, and cartilage in which 

 

Krox20

 

 expression has been
described (Levi et al., 1996). Bundles of fibers from sciatic nerves were
teased, wholemount stained with 4

 

9

 

,6-diamidino-2-phenylindole (DAPI),
and cleared in 80% glycerol in PBS. Alternatively, the nerve sheaths were
disrupted to enhance fixation and allow access of X-gal to Schwann cells.
The nerves were osmicated and embedded in resin (see also below), and
1-

 

m

 

m sections were counterstained with neutral red and eosin. For immu-
nohistochemical analysis, teased nerves from 

 

Krox20-cre

 

/

 

1

 

; reporter-

 

lacZ

 

animals were fixed for 20 min at 4

 

8

 

C in 4% paraformaldehyde (PFA),
blocked with 10% goat serum in PBS containing 0.5% Triton X-100, and
incubated with monoclonal anti-myelin basic protein antibody (Boeh-
ringer Mannheim) and rabbit polyclonal anti–

 

b

 

-galactosidase antibody
(ICN Cappel). FITC-conjugated anti-rabbit IgG and Cy3-conjugated
anti-mouse IgG (Dianova) were used as secondary antibodies and nuclei
were counterstained with DAPI. Genomic DNA of tissues from adult

 

Krox20-cre

 

/

 

1

 

; 

 

erbB2

 

flox

 

/

 

1

 

 animals was used for Southern blot hybridiza-
tion; spinal roots were pooled from several animals to allow detection of

 

erbB2

 

 alleles.

 

Histology, Electron Microscopy, and Axon/Schwann 
Cell Counts

 

Nerves were isolated from animals perfused with 2.5% glutaraldehyde in
phosphate buffer, postfixed, and contrasted with osmium tetroxide as de-
scribed (Topilko et al., 1994). For light microscopy, nerves were embed-
ded in Technovit 7100 resin (Kulzer); 1-

 

m

 

m sections were stained with
toluidine blue. Preparation for electron microscopy was done as described
(Topilko et al., 1994). Numbers of axons in the fifth lumbar segment (L5)
ventral roots were determined from composite light micrographs. The
axon numbers determined in individual mutant animals were 549, 679,
721, 739, 773, 778, 800, 855, 887, 1,014 and 1,096; in control animals, 956,
968, 974, 1,026, 1,092 and 1,103 axons were counted. Neuron numbers in
the dorsal root ganglia were determined as described (Riethmacher et al.,
1997). Numbers of Schwann cell nuclei associated with nerves were deter-
mined from 1-

 

m

 

m sections.

 

Determination of Apoptosis and Proliferation Rates
in Nerves

 

Animals between postnatal day 3.5 and 15 (P3.5 and P15, respectively)
were injected once intraperitoneally with bromodeoxyuridine (BrdU; 100

 

m

 

g/g body weight) and killed 80 min after injection. To increase numbers
of BrdU-positive cells in nerves from 5-wk-old and adult animals, multiple
BrdU injections (1 each day, over 4 d) were used. Animals were perfused

 

1

 

Abbreviations used in this paper:

 

 BrdU, bromodeoxyuridine; DAPI, 4

 

9

 

,6-
diamidino-2-phenylindole; ES, embryonic stem; L4, L5, fourth and fifth
lumbar segments, respectively; P3.5, P15, postnatal day 3.5 and 15, re-
spectively; PFA, paraformaldehyde; X-gal, 5-bromo-4-chloro-3-indolyl

 

b

 

-

 

D

 

-galactopyranoside.
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with 4% PFA in PBS, nerves were dissected, postfixed for 2–4 h, and em-
bedded in OCT compound (Sakura). Frozen sections (6 

 

m

 

m) were pro-
cessed for TUNEL staining using the ApopTag kit (Oncor); BrdU-posi-
tive nuclei were detected using a monoclonal anti-BrdU antibody (Sigma
Chemical Co.). Sections were counterstained with DAPI (Sigma Chemical
Co.) to determine overall numbers of Schwann cell nuclei.

 

Protein Extraction and Western Blot Analysis

 

Sciatic nerves were dissected, flash-frozen in liquid nitrogen, and stored at
–70

 

8

 

C. Total protein lysates of nerves were prepared by sonication in
Laemmli sample buffer (Laemmli, 1970). Samples were separated in
12.5% acrylamide gels under reducing conditions and transferred to nitro-
cellulose membranes. Western blotting was performed using rabbit poly-
clonal antibodies directed against Krox20, SCIP, or PMP22, or a mouse
mAb directed against P

 

0

 

; for detection, an ECL kit (Amersham) was used.

 

Preparation of Digital Images

 

Southern and Western blots, hybridized with 

 

32

 

P-labeled probes, or incu-
bated with ECL reagents, respectively, were exposed to Kodak Bio-Max
film and scanned into Adobe Photoshop

 

®

 

 3.0. PhosphorImage scans of
Southern blots were analyzed using the software package TINA 2.08e

 

©

 

1993 Raytest Isotopenmeßgeräte GmbH. Adobe Photoshop

 

®

 

 3.0 was also
used to prepare the optical and electron micrograph images.

 

Results

 

Conditional Mutagenesis of erbB2

 

We generated an 

 

erbB2

 

flox

 

 allele in which two 

 

loxP

 

 sites
flank three exons encoding part of the extracellular do-
main of the receptor. We chose these exons since their de-
letion introduces a frameshift mutation, which results in
the production of an mRNA that encodes a truncated re-
ceptor. A two-step procedure was employed to gener-
ate the floxed allele in ES cells (Fig. 1; see also Gu et
al., 1993). The mutant ES cells were used to generate
mice that carry the 

 

erbB2

 

flox

 

 

 

allele. Mice homozygous for
the 

 

erbB2

 

flox

 

 allele appeared normal and were fertile.
The 

 

erbB2

 

flox

 

 allele was crossed into a 

 

cre

 

-deleter strain
(Schwenk et al., 1995). The resulting 

 

erbB2

 

D

 

 allele (Fig. 1
A) was combined with the previously described genetical-
null allele of 

 

erbB2

 

 (Britsch et al., 1998). 

 

ErbB22/erbB2D

mice die before E11.5 and are phenotypically indistin-
guishable from erbB22/2 mice, indicating that Cre-induced
recombination of the erbB2flox allele generates a nonfunc-
tional erbB2 gene.

The Krox20 gene encodes a transcription factor ex-
pressed in promyelinating and myelinating Schwann cells
and, thus, appears from zE16 in peripheral nerves (To-
pilko et al., 1994). Furthermore, Schwann cell precursors
that reside in the spinal roots express Krox20 earlier, start-
ing zE11. To mutate erbB2, we used a mouse strain in
which cre was introduced into the Krox20 locus by homol-
ogous recombination. In this strain, cre expression faith-
fully reproduces the expression pattern of the endogenous
Krox20 gene; its detailed characterization is reported else-
where (Voiculescu et al., 2000). The Krox20-cre allele was
combined with a reporter allele, a lacZ gene which is ex-
pressed upon Cre-induced recombination (Akagi et al.,
1997). In teased preparations of the sciatic and other
nerves of such mice, we observed b-galactosidase staining
in the majority of cells with elongated nuclei that were
spaced at regular intervals along the nerve. In contrast,
more closely and irregularly spaced cells were not stained

(Fig. 2, A and B). Sectioning of nerves, complemented by
immunohistochemical analysis of teased fibers using anti-
bodies directed against b-galactosidase and myelin basic
protein confirmed the identity of the stained cells as myeli-
nating Schwann cells (Fig. 2, C–E). Southern hybridization
was used to quantify recombination of the erbB2flox allele,
and showed that recombination occurred in 40–50% of
cells associated with sciatic nerves and spinal roots in ani-
mals with the genotype Krox20-cre/1; erbB2flox/1 (Fig. 2
F). It should be noted that these nerves contain significant
numbers of nonmyelinating Schwann cells, connective tis-
sue, blood cells, and vessels in which recombination does
not occur. Recombination was also observed in the skin
and ear: hair follicles express Krox20, accounting for the
recombination in these tissues (Levi et al., 1996). No re-
combination was detected in the spinal cord.

ErbB2 Is Required for Correct Myelination of 
Peripheral Nerves

Conditional mutant animals with the genotype Krox20-
cre/1; erbB2flox/2 were viable, but displayed various be-
havioral abnormalities within the first weeks of postnatal
life. Alterations included kinked or serpentine tails, gait
abnormalities, difficulties in hindlimb movement, and
wasting associated with weight loss and premature death
(5 out of a group of 37 mutants died within 6 mo). Such be-
havioral abnormalities were observed in all conditional
mutants, but were variable in the time of onset and sever-
ity. Control animals, for instance animals with the geno-
type Krox20-cre/1; erbB21/2, did not display these be-
havioral phenotypes.

Examination of the sciatic nerves from Cre-induced mu-
tants showed no gross changes in morphology or histology
at P3.5 (Fig. 3 A, compare to B), indicating that the
Schwann cell precursor pool in this nerve is established.
However, sciatic nerves of mutants at P15 were translu-
cent and thin. Histologically, a strikingly reduced thick-
ness of myelin sheaths was apparent (Fig. 3, C and D). Re-
duced thickness of the myelin sheaths persisted, and was
also observed at 6 or 14 mo (Fig. 3, E–J, Fig. 4, arrow-
heads, and data not shown). Myelin of normal thickness
(Fig. 3 E, arrow) was found only in 1.7 6 1.0% of all my-
elinated axons in the sciatic nerve. Thus, the Krox20-cre–
induced erbB2 mutation reproducibly affected virtually all
myelinating Schwann cells. Thin myelin was not observed
in control mice with a genotype Krox20-cre/1; erbB21/2,
or Krox20-cre/1; erbB2flox/1, or Krox201/1; erbB2flox/2,
or Krox201/1; erbB2flox/1. Electron micrographs were
used to quantify myelin thickness (Fig. 4). In 6-mo-old ani-
mals, the thickness of myelin was reduced two- to three-
fold. This is reflected in G ratios (ratios of axon diameters
to fiber diameters) of 0.83 6 0.04 in mutant, and 0.68 6
0.04 in control sciatic nerves (P , 1026). Hypomyelination
in sciatic, sural, saphenous nerves and nerves innervating
lower leg muscles were observed in all mutant animals ex-
amined (28 animals). In the spinal roots, the phenotype
was more dramatic (see below). The thin myelin was due
to the presence of fewer wraps of myelin around the axon.

In addition, we observed occasionally large-caliber
axons lacking myelin that were still surrounded by a
Schwann cell basal lamina in the sciatic nerve (Fig. 4 C,
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arrow and inset). Such Schwann cells frequently en-
sheathed several axons (Fig. 3, G and I, arrows). These
profiles were more frequent in nerves innervating muscle
than in cutaneous sensory nerves. Extensive patches of
amyelinated axons were observed in some Cre-induced
mutants (Fig. 3 I). The histology of nonmyelinating bun-
dles appeared normal (Fig. 4, asterisks).

In early postnatal stages or in the embryo, a more severe
phenotype was observed in dorsal and ventral spinal roots.
These nerves display a severe lack of Schwann cells in all
animals with Krox20-cre–induced erbB2 mutations at P3.5
and at P15 (10 examined; Table I, Fig. 5, and data not

shown). In accordance, myelin was absent in ventral roots,
whereas thin myelin sheaths were surrounding a small pro-
portion of axons in dorsal roots. This coincides with the
early onset of Krox20-cre expression in these cells, reveal-
ing the early requirement for ErbB2 in establishment of
the Schwann cell precursor pool. As animals reached
adulthood, Schwann cell numbers increased, but the myelin
sheaths formed were thin (Fig. 5). Localized patches of
amyelinated axons persisted. Moreover, a single perineu-
rium surrounds the entire spinal root in control animals,
whereas perineurial sheaths compartmentalized the roots
into six to seven branches in mutants (Fig. 5, arrowheads).

Figure 1. Strategy employed
for the generation of the
erbB2flox allele. (A) The
structure of the wild-type
erbB2 gene is shown at the
top (i). The erbB2floxneoflox al-
lele (ii) was generated by ho-
mologous recombination in
ES cells. In this allele, three
exons (green) are flanked by
loxP sequences (red arrow-
heads). The 59-most loxP se-
quence also contains, at its
border, an EcoRV site shown
in red. In addition, the neo-
mycin resistance cassette
(neo) is present that is also
surrounded by loxP se-
quences. The erbB2flox allele
(iii) was generated by tran-
sient expression of Cre in ES
cells; in this allele, the neo-
cassette has been removed,
but two loxP sites that flank
three exons of erbB2 are re-
tained. The erbB2D allele
(iv) is obtained after Cre-
induced recombination of
erbB2flox. Exons are indicated
by boxes and lettered (see
Britsch et al., 1998); black
hatched and green exons
were sequenced directly,
whereas the sequences of
white exons were inferred
from the cDNA. Probes 1
and 2 are indicated and were
used for Southern hybridiza-
tion in Fig. 1 B and Fig. 2 A,
respectively. Restriction en-

zyme sites (RV, EcoRV; and B, BamHI) are indicated, as are the sizes and po-
sitions of predicted fragments obtained after digestion of genomic DNA. (B)
Southern hybridization of EcoRV-digested genomic DNA from ES cells be-
fore and after transient transfection of pICcre. Lane 1, parental ES cell with
erbB2floxneoflox/1 genotype; lanes 2–4, erbB2flox/1 cells; and lane 5, wild-
type DNA.
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Biochemical Characteristics and Growth Properties of 
Schwann Cells in Conditional erbB2 Mutants

We determined the absolute numbers of Schwann cells in

sciatic nerves and spinal roots. In the sciatic nerves of ani-
mals at all stages tested (P3.5, P15, and 6 mo), Schwann
cell numbers were comparable in the control and Cre-
induced mutant mice (Table I). In contrast, in dorsal and

Figure 2. Tissue specificity of Krox20-cre–induced mutations. (A–E) Nerves from reporter lacZ mice (see Akagi et al., 1997) that also
contain a Krox20-cre allele were stained for b-galactosidase or b-galactosidase activity. (A and B) Teased nerves stained with X-gal (A)
and DAPI (B). (C) X-gal–stained nerves were also osmicated, sectioned, and counterstained with neutral red and eosin. The myelin and
axon of an individual nerve fiber stained dark and light red, respectively. (D and E) Teased nerve fiber triple stained with antibodies
against myelin basic protein (D, red), b-galactosidase (D, green), and DAPI (E, blue). Arrows point towards b-gal–positive Schwann
cells; arrowheads point towards other cells and nuclei that do not stain; perineurium (p) and capillaries (cp). (F) Southern hybridization
analysis of DNA digested with BamHI and EcoRV. Lane 1, erbB2D/1; lane 2, wild type; lanes 9 and 10, erbB2flox/1; all other lanes con-
tain DNA obtained from tissues of mice with a genotype Krox20-cre/1; erbB2flox/1. Lane 3, liver; lane 4, muscle; lane 5, ear; lane 6,
lung; lane 7, skin; lane 8, spleen; lanes 11 and 12, sciatic nerves; lanes 13 and 14 spinal roots; lane 15, spinal cord; and lane 16, ovaries.
Densitometric analysis showed that recombination occurred in 40–50% of cells associated with peripheral nerves. Bars: (B) 50 mm; (C and
E) 20 mm.
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ventral roots, the numbers of cells were severely reduced.
At P3.5, a 10-fold reduction was observed in the ventral,
and a 5-fold reduction in the dorsal roots of the mutant
mice. This reduction was still apparent at P15, and again

more pronounced in ventral than in dorsal roots (Table I).
At 6 mo, numbers were similar in the dorsal and ventral
roots of control and mutant mice. Thus, compensatory
mechanisms exist that allow repopulation of spinal roots

Figure 3. Peripheral nerve
histology in mice with condi-
tional erbB2 mutation. Semi-
thin sections of peripheral
nerves from Krox20-cre/1;
erbB2flox/2 (A, C, E, G, and
I) and control (B, D, F, H,
and J) animals. The age of
the animals is indicated.
Shown are the tibial (A–D)
and sural (E and F) branches
of the sciatic nerve and
nerves innervating lower leg
muscles (G–J). Arrowheads
(C, E, G, and I) point to-
wards axons with abnormally
thin myelin sheaths. The ar-
row in E points towards rare
axons with myelin of normal
thickness; arrows in G and I
point towards large diameter
axons that are not myelin-
ated. Bar, 20 mm.
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with Schwann cells; this repopulation occurs earlier in dor-
sal than in ventral roots.

Schwann cell proliferation and apoptosis determine the
absolute numbers of Schwann cells, and were analyzed
using BrdU incorporation and TUNEL labeling, respec-
tively. Compared with the controls, the numbers of BrdU-
positive cells were increased in the sciatic nerves of
mutants at P3.5 and 5 wk (Fig. 6 A). The numbers of
apoptotic nuclei were marginally increased at P3.5 (Fig. 6
B). In adults (age 6 mo), proliferation as well as apoptosis
frequencies were below detection limits. Increased cell
proliferation was also observed in ventral roots of 5-wk-
old animals.

To assess the effect of the conditional erbB2 mutation
induced by Krox20-cre on Krox20 and SCIP protein levels,
sciatic nerve extracts were analyzed by Western blotting
(Fig. 6 C). The level of Krox20 protein was similar in the
nerves of control and Krox20-cre–induced erbB2 mutants.

The level of SCIP protein was slightly increased in mutant
nerves at P15, but levels attained baseline in control and
mutant nerves at later stages. Levels of myelin protein
were reduced in conditional mutants, in accordance with
the histology.

Figure 4. Electron micros-
copy of sciatic nerve
branches from conditional
erbB2 mutants. Electron mi-
croscopic analysis of periph-
eral nerves from Krox20-
cre/1; erbB2flox/2 (A and C)
and control (B and D) ani-
mals at 6 mo of age. Shown
are sural nerves (A and B)
and nerves innervating lower
leg muscles (C and D). Ar-
rowheads (A and C) point to-
wards abnormally thin my-
elin sheaths in nerves from
mutant mice; the arrow in C
indicates a large diameter
axon surrounded by a basal
lamina, which is also shown
enlarged in the inset. Aster-
isks denote bundles of non-
myelinated small diameter
axons. Bars, 1 mm.

Table I. Effect of Krox20-cre–induced Mutation of erbB2 on 
Schwann Cell Number

Sciatic Ventral root Dorsal root

Mutant Control Mutant Control Mutant Control

P3.5 564 6 31 588 6 27 5 6 2 51 6 3 6 6 2 33 6 4
P15 395 6 12 409 6 21 18 6 3 74 6 4 96 6 10 179 6 5
P 6 mo 209 6 33 204 6 20 40 6 13 41 6 7 101 6 9 112 6 8

Schwann cell nuclei were counted from semi-thin sections of nerves at the indicated
ages; values are displayed as numbers of nuclei per section. The number of nuclei
within spinal roots at P3.5 was determined from sections of lumbar blocks (L4-L5
level); at later stages, L5 roots were examined. Data are shown as mean 6 SD.
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Neuropathology in Krox20-cre–induced erbB2 Mutants

To assess whether neuron numbers were altered in
Krox20-cre–induced erbB2 mutant mice, we counted ax-
ons in the L5 ventral root, which contains mainly motor
axons. The numbers of such axons were frequently re-
duced in mutant animals, amounting to 20% loss on aver-
age. From 11 mutant animals, and 6 control animals ex-
amined, the number of axons in the mutant was 808 6
152, compared with 1,020 6 65 in control nerves (P ,
0.002). The numbers of neurons in L5 dorsal root ganglia
were similar in the control and mutant animals (not
shown).

Discussion
The role of Neuregulin-1 as a growth and survival factor
during Schwann cell development is well established (Zo-
rick and Lemke, 1996; Jessen and Mirsky, 1999). Neuregu-
lin-1 provides an axonally derived signal important in es-
tablishing the Schwann cell precursor pool, which is
received in precursor cells by the Neuregulin-1 receptors
ErbB2 and ErbB3 (for review see Adlkofer and Lai,
2000). We show here that in addition to its function in the
establishment of the precursor pool, the Neuregulin sig-
naling system also plays a role in myelination: abnormally
thin myelin sheaths are formed in mice with conditional
mutations of erbB2 in myelinating Schwann cells. To intro-
duce the conditional erbB2 mutation, we used a Krox20-
cre allele, but it should be noted that thin myelin is also
observed when the mutation is introduced by a P0-cre
transgene (Garratt, A.N., unpublished observations). The
conditional erbB2 mutations also result in an altered be-
havior of the affected animals, which display movement
abnormalities and loss of motoneurons.

The Role of ErbB2 in Myelination

Mutations that cause an abnormal myelin thickness and
neuropathy have been extensively characterized (for re-
views see Nave, 1994; Martini and Schachner, 1997;
Scherer, 1997; Suter, 1997; Warner et al., 1999). Peripheral
hypo- or hypermyelination are observed in patients with
Charcot Marie Tooth disease, and can be caused by muta-
tions in genes encoding the myelin proteins PMP22 and P0,
the gap junction protein connexin-32 or the transcription
factor Krox20. Even incorrect PMP22 dosage can cause
changes in myelination and neuropathy. Mice with tar-
geted or spontaneous mutations in these genes display
similar phenotypes. Thus, the thickness of the myelin
sheath is strictly controlled, and molecular mechanisms
that cause pathological changes are manifold. We show
here that hypomyelination and peripheral neuropathy can
arise by a novel molecular mechanism, the ablation of the
ErbB2 receptor tyrosine kinase. Mutations in signaling
molecules have not been observed in patients with heredi-
tary neuropathy. However, afflicted individuals frequently
do not carry mutations in known disease causing genes.

ErbB receptor tyrosine kinases modulate the activity of
various signaling pathways and are known to affect ex-
pression and activity of transcription factors (for reviews
see Dougall et al., 1994; Schweitzer and Shilo, 1997; Alroy
and Yarden, 1997, Fromm and Burden, 1998; Moghal and
Sternberg, 1999). We tested whether the conditional
erbB2 mutation affects the levels of transcription factors
known to regulate myelination. Schwann cells arrest wrap-
ping of axons in the absence of Krox20 (Topilko et al.,
1994; Zorick et al., 1999). In vitro, Neuregulin-1 does not
affect Krox20 expression directly, but influences the tran-
sition from a precursor to a committed Schwann cell that
expresses Krox20 (Murphy et al., 1996). In accordance,

Figure 5. Histology of spinal
nerve roots from conditional
erbB2 mutants. Semi-thin
sections of ventral roots from
Krox20-cre/1; erbB2flox/2
(A and C) and control (B
and D) animals at P15 (A and
B) and adult stages (C and
D). Arrowheads (A and C)
point towards the abnormal
perineuria observed in mu-
tant animals. Note that in
mutant animals, the extreme
lack of Schwann cells ob-
served at P15 is compensated
at later stages, although my-
elin sheaths remain abnor-
mally thin. Bar, 20 mm.
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levels of Krox20 protein are not altered in sciatic nerves of
mice with Krox20-cre–induced loss of erbB2. It should be
noted that the conditional erbB2 ablation occurs after the
transition from a precursor to a committed Schwann cell.
In SCIP mutant mice, myelination is delayed. SCIP is ex-
pressed in precursors and in Schwann cells during the my-
elination process, but is downregulated when myelination
is completed (Monuki et al., 1989; Jaegle et al., 1996;
Zorick et al., 1999). Downregulation of SCIP is delayed in

the sciatic nerves of conditional erbB2 mutant mice. This
correlates with the prolonged growth phase of Schwann
cells, and might not reflect a direct effect of ErbB2 on
SCIP expression.

The number of myelin wraps a Schwann cell forms is de-
termined by the diameter of the accompanying axon.
Thus, axons not only provide signals that control growth
or differentiation, but also instructive signals that deter-
mine the size of the membrane surface of Schwann cells
and, thus, the number of myelin wraps. In general, the
number of myelin wraps might be controlled by trophic
signals provided by the axon. Neuregulin provides such a
signal, as wrap numbers are reduced in conditional erbB2
mutants. Large diameter axons, because of the enlarged
surface area, can present greater amounts of trophic fac-
tors and might, therefore, instruct the Schwann cell to
form more wraps. Other trophic signals, in addition to the
one provided by the Neuregulin signaling system, might be
operative, and the sum of these signals would determine
myelin thickness and the number of wraps. It is interesting
to note that the Drosophila gene DPTEN that encodes a
protein and PIP3 lipid phosphatase controls both cell and
body size (Goberdhan et al., 1999).

Neuregulin Signaling System in Myelinating
Schwann Cells

The balance of cell death and growth in peripheral nerves
during the early postnatal phase reflects an adjustment of
the numbers of Schwann cell precursors (Grinspan et al.,
1996; Syroid et al., 1996; Zorick et al., 1999). The correct 1:1
relationship between axons and myelinating Schwann cells
is thus attained, supernumerary cells are removed and ar-
eas deficient in Schwann cells are replenished. In early
postnatal nerves, Schwann cell survival is regulated in part
by access to axonally derived Neuregulin-1, and axotomy-
induced death of pre- and perisynaptic Schwann cells can
be rescued by exogenous Neuregulin-1 (Grinspan et al.,
1996; Syroid et al., 1996; Trachtenberg and Thompson,
1996). In our conditional mutants, the importance of
ErbB2/Neuregulin-1 signaling in Schwann cell survival
and growth is particularly apparent in spinal roots. There,
Krox20 is expressed earlier (zE11), and the Krox20-cre
driven mutations are induced earlier than in other periph-
eral nerves (Topilko et al., 1994; Voiculescu et al., 2000).
In the spinal roots, Schwann cells are almost completely
absent late in development and into the perinatal period.
However, this deficiency is compensated at later stages.

The apoptotic response of Schwann cells to denervation
is pronounced in early postnatal life but declines with
increasing age (Grinspan et al., 1996; Syroid et al., 1996;
Trachtenberg and Thompson, 1996). In culture, Schwann
cells from the postnatal nerve survive without Neuregu-
lin-1, but secrete survival-promoting growth factors like
PDGF, neurotrophin-3, and insulin-like growth factor in
an autocrine manner (Porter et al., 1987; Meier et al., 1999;
Syroid et al., 1999). Autocrine expression of particular iso-
forms of neuregulin-1 also has been reported (Rosenbaum
et al., 1997; Carroll et al., 1997). In adult mice with
Krox20-cre–induced erbB2 mutations, mature myelinating
Schwann cells survive, and we do not detect apoptotic nu-
clei in the nerves. Thus, neither paracrine nor autocrine

Figure 6. Growth and biochemical properties of Schwann cells in
conditional erbB2 mutants. Fractions of nuclei, which were posi-
tive for BrdU (A) or TUNEL (B) in sciatic nerves or in the ven-
tral roots, were determined from control or Krox20-cre/1;
erbB2flox/2 mice at the indicated ages. Data are shown as mean 6
SD; *P , 0.17; **P , 0.01. (C) Western analysis of extracts from
sciatic nerves using antibodies directed against Krox20, SCIP, P0,
and PMP22. Ages of control (C) and Krox20-cre–induced mutant
(M) animals are indicated. Asterisk denotes lanes loaded with ex-
tracts from COS cells transfected with Krox20 or SCIP expres-
sion plasmids.
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activation of ErbB2 is essential for survival of mature my-
elinated Schwann cells.

Regeneration of Schwann Cells

The ability of Schwann cells to regenerate is enormous.
In experimentally induced allergic neuritis, myelinating
Schwann cells are destroyed, but can be effectively regen-
erated (Saida et al., 1980). This regenerative capacity is
particularly evident in mice that express diphtheria toxin
A-chain in myelinating Schwann cells. In such animals,
myelinating Schwann cells die and are continuously regen-
erated through proliferation of the nonmyelinating com-
partment (Messing et al., 1992). In conditional erbB2 mu-
tant mice, we can still detect single Schwann cells that
wrap several large-caliber axons in the adult. Such lesions
are not repaired.

We observe a pronounced reduction of Schwann cell
numbers in spinal roots of mice with Krox20-cre-induced
erbB2 mutations. This severe lack of Schwann cells is com-
pensated during postnatal life, although local patches de-
void of Schwann cells remain unrepaired. Interestingly,
Krox20 is not expressed in satellite cells of dorsal root gan-
glia (Murphy et al., 1996); nevertheless, proliferation is
increased in dorsal root ganglia of conditional erbB2
mutants (Garratt, A.N., unpublished observations). Thus,
satellite cells might replenish Schwann cells in the mutants,
particularly in the projections of dorsal root ganglia neu-
rons (dorsal roots) where regeneration is faster than in
ventral roots.

Neuropathology in Conditional erbB2 Mutant Mice

The conditional mutation of erbB2 in myelinating Schwann
cells results in a moderate loss of motoneurons. Since
erbB2 is not mutated in cells of the spinal cord, this is
caused by indirect mechanisms. Axonal retractions were
previously noted in mice with defective myelination (Giese
et al., 1992; Adlkofer et al., 1995; Griffiths et al., 1998; Frei
et al., 1999). In mice with Krox20-cre–induced mutations,
motoneurons are lost, but sensory neuron numbers are not
altered. We observe thin myelin in all those animals and in
all nerves. A lack of myelin surrounding large-caliber ax-
ons is, however, mainly found in nerves innervating mus-
cle, and is variable in extent in different animals, as is the
extent of motoneuron loss. Thus, not thin myelin, but a lo-
cal lack of myelin in parts of the nerve might cause this
damage.

Multiple Functions of Neuregulin in the Schwann
Cell Lineage

Neuregulin-1 and its receptors serve several functions in
the Schwann cell lineage. The first stage in which this sig-
naling system is required occurs early during development
of the lineage. In neuregulin-1, erbB2, or erbB3 mutant
mice, the population of early Schwann cell precursors is al-
ready diminished as they start to populate the spinal
nerves (Meyer and Birchmeier, 1995; Erickson et al., 1997;
Riethmacher et al., 1997; Britsch et al., 1998; Morris et al.,
1999; Woldeyesus et al., 1999). Defective migration of the
precursors along the axon might be responsible. It is inter-
esting to note that neural crest cells that form sympathetic

ganglia require neuregulin-1, erbB2, and erbB3 for migra-
tion (Britsch et al., 1998). However, increased apoptosis
and/or a lack of proliferation contribute to the severe
Schwann cell phenotype apparent at late stages in null mu-
tants, since precursors that form do not expand. The se-
vere reduction of Schwann cells in spinal roots of con-
ditional erbB2 mutants appears to be caused by cell
death, since Krox20 expression and, thus, the Krox20-cre–
induced mutation occurs after precursors reach the roots.

Importantly, we demonstrate here that erbB2 is also re-
quired for correct myelination in Schwann cells. The thin
myelin observed in conditional erbB2 mutant mice is sta-
ble, and not repaired. Similarly, local deficits in Schwann
cell numbers in peripheral motor nerves are not repaired.
Thus, this and other studies provide evidence for a role of
erbB2 during repair of dysmyelinated lesions and regener-
ation of damaged Schwann cells (Carroll et al., 1997;
Kwon et al., 1997; Li et al., 1997; Chen et al., 1998). There-
fore, Neuregulin/ErbB signaling functions during the en-
tire life span of a myelinating Schwann cell.
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