

ON MY MIND

What Exactly Is Cardiometabolic HFpEF: A Phenotype or an Endotype?

Milton Packer, MD; Gabriele G. Schiattarella, MD, PhD; Barry Borlaug, MD

When heart failure with preserved ejection fraction (HFpEF) was first described as a syndrome in the 1980s, it was envisioned as a hypertrophic disorder caused by uncontrolled hypertension. However, coincident with the global epidemic of obesity, we have witnessed a global epidemic of HFpEF. Currently, among patients in clinical trials of HFpEF, ≈50% to 60% have a body mass index $\geq 30 \text{ kg/m}^2$, and >90% have central obesity, as reflected by a waist-to-height ratio of ≥ 0.5 .¹ These estimates are impressive, since many large-scale trials specifically excluded patients with a body mass index > 45 to 50 kg/m^2 .

ventricular-vascular stiffness. These patients had clinical features of the metabolic syndrome, that is, abdominal obesity, hypertension, hyperglycemia and insulin resistance, and lipid abnormalities. Because of this linkage, the authors coined the term cardiometabolic HFpEF. Cardiometabolic HFpEF thus emerged as a potential clinical phenotype, representing an expansion of obesity-related HFpEF. The authors identified visceral adiposity as the defining mechanism, but they did not offer specific criteria that would allow for the identification of cardiometabolic HFpEF in the clinical setting.

INTRODUCTION OF CARDIOMETABOLIC HFPEF AS A CONCEPT

In 2017, Obokata et al² identified patients with a body mass index $\geq 30 \text{ kg/m}^2$ as representing a distinct phenotype of HFpEF. They reported that, in patients who had HFpEF and obesity, body mass index was a primary determinant of left ventricular filling pressures, which were elevated to a degree greater than reflected in the circulating levels of natriuretic peptides. The investigators suggested that an expansion of adipose tissue around the heart might encroach on the pericardial space in some individuals, leading to the hemodynamic features of pericardial constraint.

In 2019, Obokata et al³ noted that many patients with HFpEF who did not fulfill criteria for obesity nevertheless had excess body fat, which was associated with low grade systemic inflammation and

CHARACTERIZATION OF CARDIOMETABOLIC HFPEF AS AN ANIMAL MODEL ENDOTYPE

In 2021, Schiattarella et al^{4,5} recognized that the most clinically relevant animal models of HFpEF depended on dietary nutrient excess as the critical trigger. A high-fat diet is the essential component of experimental combinatorial approaches, with disease progression accelerated by neurohormonal or biological stressors,^{6,7} ultimately producing HFpEF with myocardial lipid overload, metabolic dysfunction, and systemic inflammation.⁷ This model differed dramatically from that produced by transverse aortic constriction, which produced hypertrophy in the short-term but with rapid evolution into a dilated cardiomyopathy.⁸ In contrast, in clinical practice, adiposity-related HFpEF rarely evolved into systolic dysfunction during long-term follow-up.⁹

Key Words: adiposity ■ heart failure ■ myocardium ■ nutrients ■ stroke volume

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

Correspondence to: Milton Packer, MD, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N Hall St, Dallas, TX 75226. Email milton.packer@baylorhealth.edu

For Sources of Funding and Disclosures, see page XXX.

© 2026 The Authors. *Circulation: Heart Failure* is published on behalf of the American Heart Association, Inc, by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

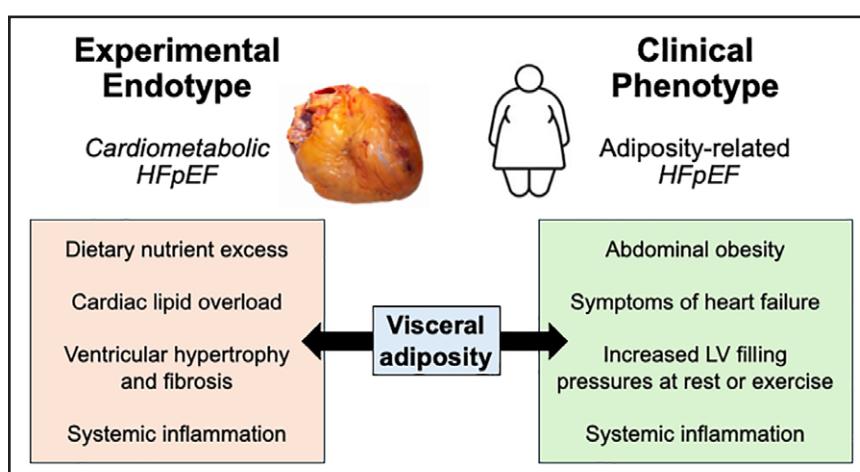
Circulation: Heart Failure is available at www.ahajournals.org/journal/circheartfailure

Schiattarella et al⁷ labeled the HFpEF model induced by a high-fat diet and characterized by cardiac steatosis and metabolic abnormalities as cardiometabolic HFpEF. However, the term referred to an experimental endotype rather than a clinical phenotype. The term endotype refers to a biological pathway by which a disorder is produced, whereas the term phenotype refers to a defined collection of clinical features that can be measured in patients. Subsequent studies confirmed that dietary nutrient excess in mice produced the metabolic and inflammatory derangements of HFpEF.^{6,7} Some drew analogies between nonalcoholic steatohepatitis and cardiometabolic HFpEF,¹⁰ suggesting that nutrient overload might produce steatosis simultaneously in different organs.¹¹

EFFORTS TO TRANSLATE AN ENDOTYPE BACK INTO A PHENOTYPE

Impressed by the apparent clinical heterogeneity of HFpEF, some investigators have utilized unsupervised cluster analysis to define subgroupings of HFpEF.¹² Phenomapping is a mathematical partitioning technique in which central tendencies are used to coerce patients into clusters. Advocates of this approach recognize its limitations, that is, phenomapping does not yield replicable clusters and may not reflect a biological reality.¹³ Furthermore, since the clusters are not defined by boundaries, they do not yield criteria that allow individual patients to be assigned to a specific subgroup. In fact, obesity was a feature of most proposed clusters, but central and visceral adiposity were not typically assessed in these analyses.^{14,15}

Despite these difficulties, some authors^{14–16} sought to use phenomapping to move the animal model endotype into clinical practice, and they proposed cardiometabolic HFpEF as a distinct phenotype that was closely linked to obesity, insulin resistance, type 2 diabetes and systemic inflammation. However, no specific criteria were proposed to identify cardiometabolic HFpEF in clinical practice, and several aspects of the metabolic syndrome—for example, hypertriglyceridemia or low HDL cholesterol—are more


aligned with coronary artery disease than with HFpEF. Of the criteria that define the metabolic syndrome, visceral adiposity and abdominal obesity provide the closest link with HFpEF.^{17–19}

Yet, in proposing the transition of an endotype into a phenotype, these investigators recapitulated the original proposal of Obokata et al,³ who suggested that cardiometabolic HFpEF represented an expansion of the concept of obesity-related HFpEF to include nonobese patients with HFpEF who had visceral adiposity. Visceral adiposity not only predicts the occurrence of HFpEF in the general population,¹⁷ but the degree of adipose tissue expansion is related to the hemodynamic and clinical severity of HFpEF.¹⁸ Patients with the most marked adiposity before treatment show the most marked benefit from treatment with sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor antagonists, angiotensin receptor neprilysin inhibitors and glucagon-like peptide 1 receptor agonists.¹⁹

SUMMARY AND CONCLUSIONS

The experimental endotype of cardiometabolic HFpEF appears to correspond precisely to a clinical phenotype characterized by an expansion of visceral fat, particularly fat surrounding and residing within the myocardium. Visceral adiposity is the primary feature that defines the presence of the metabolic syndrome, including its focus on central obesity, hypertension, and insulin resistance,²⁰ and visceral adiposity was the central feature of cardiometabolic HFpEF when it was originally proposed as a clinical phenotype 6 years ago.³

Therefore, we propose that the term cardiometabolic HFpEF be used to refer only to the experimental endotype produced by dietary nutrient excess and cardiac lipid overload. In the clinical setting, we propose the term adiposity-related HFpEF to represent the corresponding clinical phenotype, identified by the presence of abdominal obesity or by imaging of visceral (ie, cardiac, hepatic, and mesenteric) fat depots (Figure). Whether regarded as an

Figure. Distinctions between the experimental endotype of cardiometabolic heart failure with preserved ejection fraction (HFpEF) and the clinical phenotype of adiposity-mediated HFpEF.

endotype or phenotype, this characterization is currently the dominant presentation of HFpEF in clinical practice and represents the defining feature of most patients who have been enrolled in large-scale HFpEF trials.

ARTICLE INFORMATION

Affiliations

Baylor Heart and Vascular Institute, Dallas, TX (M.P.). Imperial College, London, United Kingdom (M.P.). Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Germany (G.G.S.). Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.). Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (B.B.).

Sources of Funding

None.

Disclosures

Dr Packer reports consulting fees from Abbvie, Actavis, Alnylam, Altimmune, Ardelyx, Amgen, ARMGO, AstraZeneca, Attralus, Biopeutics, Boehringer Ingelheim, Caladrius, Casana, CSL Behring, Cytokinetics, Daiichi Sankyo, Eli Lilly and Company, Imara, Medtronic, Moderna, Novartis, Preload, Pharmacosmos, Regeneron, and Salamandra. The other authors report no conflicts.

REFERENCES

- Ostrominski JW, Højbjerg Lassen MC, Butt JH, Claggett BL, Anand IS, Desai AS, Jhund PS, Lam CSP, Pfeffer MA, Pitt B, et al. Adiposity-related anthropometrics and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction: a participant-level pooled analysis of randomized clinical trials. *J Am Coll Cardiol.* 2025;86:1760–1777. doi: 10.1016/j.jacc.2025.08.012
- Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. *Circulation.* 2017;136:6–19. doi: 10.1161/CIRCULATIONAHA.116.026807
- Obokata M, Reddy YNV, Borlaug BA. Diastolic dysfunction and heart failure with preserved ejection fraction: understanding mechanisms by using noninvasive methods. *JACC Cardiovasc Imaging.* 2020;13:245–257. doi: 10.1016/j.jcmg.2018.12.034
- Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, et al. Nitrosative stress drives heart failure with preserved ejection fraction. *Nature.* 2019;568:351–356. doi: 10.1038/s41586-019-1100-z
- Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. *Cardiovasc Res.* 2021;117:423–434. doi: 10.1093/cvr/cvaa217
- Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. *Circ Res.* 2022;130:1906–1925. doi: 10.1161/CIRCRESAHA.122.320257
- Daou D, Tong D, Schiattarella GG, Gillette TG, Hill JA. What is cardiometabolic HFpEF and how can we study it preclinically? *JACC Basic Transl Sci.* 2025;10:101295. doi: 10.1016/j.jacbs.2025.04.009
- Boluyt MO, Bing OH, Lakatta EG. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. *Eur Heart J.* 1995;16(Suppl N):19–30. doi: 10.1093/eurheartj/16.suppl_n.19
- Park JJ, Mebazaa A, Hwang IC, Park JB, Park JH, Cho GY. Phenotyping heart failure according to the longitudinal ejection fraction change: myocardial strain, predictors, and outcomes. *J Am Heart Assoc.* 2020;9:e015009. doi: 10.1161/JAHA.119.015009
- Capone F, Vettor R, Schiattarella GG. Cardiometabolic HFpEF: NASH of the heart. *Circulation.* 2023;147:451–453. doi: 10.1161/CIRCULATIONAHA.122.062874
- Kucsera D, Ruppert M, Sayour NV, Tóth VE, Kovács T, Hegedűs ZI, Onodi Z, Fábián A, Kovács A, Radovits T, et al. NASH triggers cardiometabolic HFpEF in aging mice. *Geroscience.* 2024;46:4517–4531. doi: 10.1007/s11357-024-01153-9
- Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. *Circulation.* 2015;131:269–279. doi: 10.1161/CIRCULATIONAHA.114.010637
- Peters AE, Tromp J, Shah SJ, Lam CSP, Lewis GD, Borlaug BA, Sharma K, Pandey A, Sweitzer NK, Kitzman DW, et al. Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions. *Cardiovasc Res.* 2023;118:3403–3415. doi: 10.1093/cvr/cvac179
- Uijl A, Savarese G, Vaartjes I, Dahlström U, Brugts JJ, Linssen GCM, van Empel V, Brunner-La Rocca HP, Asselbergs FW, Lund LH, et al. Identification of distinct phenotypic clusters in heart failure with preserved ejection fraction. *Eur J Heart Fail.* 2021;23:973–982. doi: 10.1002/ejhf.19269
- Sabbah MS, Fayyaz AU, de Denus S, Felker GM, Borlaug BA, Dasari S, Carter RE, Redfield MM. Obese-inflammatoy phenotypes in heart failure with preserved ejection fraction. *Circ Heart Fail.* 2020;13:e006414. doi: 10.1161/CIRCHEARTFAILURE.119.006414
- Gorice E, Geiger MA, Di Venanzio L, Atzemanian N, Kleeberger JA, Grigorian D, Mongelli A, Emini Veseli B, Mohammed SA, Ruschitzka F, et al. Cardiometabolic heart failure with preserved ejection fraction: from molecular signatures to personalized treatment. *Cardiovasc Diabetol.* 2025;24:265. doi: 10.1186/s12933-025-02774-w
- Oguntade AS, Taylor H, Lacey B, Lewington S. Adiposity, fat-free mass and incident heart failure in 500 000 individuals. *Open Heart.* 2024;11:e002711. doi: 10.1136/openhrt-2024-002711
- Reddy YNV, Frantz RP, Hemnes AR, Hassoun PM, Horn E, Leopold JA, Rischard F, Rosenzweig EB, Hill NS, Erzurum SC, et al; PVDOMICS Study Group. Disentangling the impact of adiposity from insulin resistance in heart failure with preserved ejection fraction. *J Am Coll Cardiol.* 2025;85:1774–1788. doi: 10.1016/j.jacc.2025.03.530
- Packer M. The adipokine hypothesis of heart failure with a preserved ejection fraction: a novel framework to explain pathogenesis and guide treatment. *J Am Coll Cardiol.* 2025;86:1269–1373. doi: 10.1016/j.jacc.2025.06.055
- Packer M, Lam CSP, Butler J, Zannad F, Vaduganathan M, Borlaug BA. Is type 2 diabetes a modifiable risk factor for the evolution and progression of heart failure with a preserved ejection fraction? *J Am Coll Cardiol.* 2025;86:1917–1931. doi: 10.1016/j.jacc.2025.07.052