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consolidation, maintenance) in a homogenous strategy. Recruitment into clinical trials (e.g. BEACON2) should be
prioritized. Current evidence supports starting re-induction therapy with a camptothecin-based chemotherapy
regimen combined with monoclonal antibody therapy targeting GD2 or VEGF (or ALK inhibitors if ALK-aberrant)
as the first choice. The RIST regimen is a promising first choice for MYCN-amplified disease. After an objective

response to re-induction therapy, GD2-directed immunotherapy or cellular therapies harnessing the immune
system (haploidentical stem cell transplantation, CAR T cells) are of high interest as a consolidation strategy.
Long-term maintenance therapy must be feasible as outpatient treatment, have a low toxicity profile and be well-
tolerable to suit patients with relapsed HRNB. For optimal care, new options must be tested as maintenance
therapy in randomized trials. The most promising salvage options for patients responding insufficiently to
treatment are the chemotherapy combinations, topotecan/vincristine/doxorubicin (TVD), topotecan/cyclo-

phosphamide/etoposide (TCE),

ifosfamide/carboplatin/etoposide (ICE) or topotecan/cyclophosphamide

(TopoCy), or [*3'1]-mIBG therapy. Early-phase clinical trials are also a possible option in this setting.

1. Introduction

More than 50 % of patients with high-risk neuroblastoma (HRNB)
will relapse despite intensive multimodal therapy. Most relapses occur
within 2 years of diagnosis [1], yielding a 20 % overall survival (OS) at 4
years [2] and a median progression-free survival (PFS) of 6.4 months
[3]. Long-term survival of a first HRNB relapse is, however, achievable
for a subgroup of patients. Thus, a first relapse diagnosis should gener-
ally not be considered a palliative situation at that time.

Disease heterogeneity, therapy resistance, organ toxicity including
poor hematological reserve and quality of life aspects make managing
relapsed HRNB challenging. No clear consensus about optimal therapy
exists due to the lack of well-designed randomized clinical trials [4] and
umbrella trials using a homogenous strategy to cover all relapse treat-
ment phases (re-induction, consolidation, maintenance). Heterogeneity
in their inclusion criteria and primary endpoints for efficacy as well as
unconsidered bias factors [4] make evaluating and comparing efficacy
of different published relapse treatment strategies exceedingly difficult.
Historically, clinical response criteria guided inclusion criteria for
relapse trials, creating a heterogeneous patient population with (1)
progressive disease during first-line induction therapy, (2) refractory
disease (up to 20 % of cases) with insufficient metastatic response to
first-line induction therapy, (3) first HRNB relapse, (4) first metastatic
relapse of initially localized disease and (5) second or subsequent HRNB
relapses. The community now agrees that all these subgroups likely
represent different biological entities, with which different response
rates and survival times are associated.

Bias created by broad inclusion criteria is numerous and comes from
varied sources. Relapsed disease responds differently to refractory dis-
ease [5,6]. Patients with refractory disease are less likely to show an
objective response to chemotherapy, but have a longer time to pro-
gression and a better OS [3,4]. The pattern and extent of recurrent
disease provides a second source of bias. A higher proportion of unfa-
vorable clinical and biological features (and shorter survival) separates
patients whose metastases are distant or both distant and local, from
patients with isolated local relapses [7]. Response rates can be objec-
tively higher if bone marrow analysis or ['2°I]-meta--
iodobenzylguanidine (mIBG) scintigraphy can detect disease, as
compared to detection with magnetic resonance imaging (MRI) or
computed tomography [8-10]. Oligometastatic and widely dissemi-
nated disease also have different response rates. Time to relapse forms a
third source of bias. The median time to first HRNB relapse is
18-19 months from diagnosis [11,12]. Time to subsequent disease
relapse episodes become progressively shorter (8.7 to second, 3.8
months to third), presumably reflecting an ongoing acquisition of che-
moresistance within residual neuroblastoma cells. The relationship be-
tween time to first relapse and subsequent survival is complex [10], but
relapses occurring nearer to diagnosis are generally associated with
shorter survival [13]. Early relapse in patients with International Neu-
roblastoma Staging System (INSS) stage 4 MYCN-amplified disease was
clearly associated with worse outcome [10]. Patient age and molecular
tumor characteristics present a fourth source of bias. Older patients have

a worse outcome [14]. Tumors harboring MYCN amplifications [15],
activating ALK alterations [16] or ATRX mutations [17] are associated
with worse and varied survival times at relapse. Prior and subsequent
therapy adds a fifth source of bias, and is difficult to control for in
non-randomized phase II efficacy trials and in the absence of a ho-
mogenous umbrella treatment protocol for relapsed HRNB. Not all pe-
diatric oncology centers use high-dose chemotherapy and autologous
stem cell rescue or immunotherapy in HRNB first-line treatment. HRNB
therapy variations may influence responses to relapse therapy. Some
published relapse trials continued until disease progressed and others
were designed to test for response within a predefined therapy cycle
number, after which different consolidation therapies were adminis-
tered. The subsequent therapy is not standardized, and often not even
documented. Survival is the clearest way to directly compare efficacy in
different trials, but is thwarted in these cases. The varying treatment
strategies administered after the investigative treatment prevent using
time to progression as an endpoint. Response is currently the only
suitable outcome measure, but may not equate to survival. Altogether,
consideration must be given to the lack of comparability of existing
clinical trial results and lack of generalizability to the individual patient
[4,10]. Despite the effort that has been undertaken to clearly define
clinical and biological features predictive of survival in relapsed
high-risk neuroblastoma [2,13,18,19], no validated prognostic stratifi-
cation exists to date. While no definitive long-term survivor subgroup
can currently be defined, the proposed strategy remains the default
strategy at first relapse. Whether this approach is curative in the long
term, can only be ascertained with longer follow-up for each individual
patient. Some clinical circumstances of note in which this approach may
be reconsidered are very rapidly progressing disease, patients with a
severely compromised general condition (e.g., low Lansky performance
score) and/or poor response to initial salvage therapy. This paper rep-
resents an expert consensus developed through review of the available
literature and collaborative discussion among SIOPEN specialists.

2. Diagnosing relapse and defining response

The high diagnostic sensitivity and specificity achievable with [12%1]-
mIBG scintigraphy [20,21] and previously limited prospects for
biopsy-informed curative therapy has historically made it uncommon to
collect biopsies from the relapsed tumor and/or metastases. The
awareness that tumors evolve between diagnosis and relapse [22-24],
the increased spectrum of actionable mutations in relapsed tumors [22,
24], the spatiotemporal heterogeneity in mutations observed in indi-
vidual patients [25-27] and the recently described plasticity in tran-
scriptional circuitries [28,29] all provide strong arguments that
molecular profiling at relapse will better inform treatment decisions. A
biopsy at relapse with in-depth molecular characterization is strongly
recommended to confirm viable active neuroblastoma and identify po-
tential targets for biomarker-based targeted treatment or immuno-
therapy. Bone marrow infiltration should be routinely assessed at
relapse from different sites (cytology and GD2 immunocytology in as-
pirates, immunohistochemistry in trephine biopies). A new level of
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molecular precision in characterization is offered by recent de-
velopments in single-cell technologies. Rapidly developing liquid biopsy
approaches offer minimally invasive procedures allowing circulating
cell-free tumor DNA and RNA profiling [30-35] for more precise and
longitudinal monitoring of tumor evolution, resistance mechanisms and
therapeutic response biomarkers in the future.

To appropriately assess response, imaging diagnostics should be
ideally set at predefined time points (e.g. the first after 2 re-induction
cycles) and include ['2*I]-mIBG scintigraphy or FDG-PET-CT/MRI
scans (for non-MIBG-avid lesions) and MRI (primary tumor site
+whole body and brain) or at least CT of all tumor regions. Response to
therapy after relapse is evaluated using uniform response metrics for
patients with relapsed neuroblastoma [36] that were adapted from the
International Neuroblastoma Response Criteria for primary disease
[37]. These uniform response metrics will facilitate comparable data
collection across international trials and promote more rapid identifi-
cation of effective treatments for relapsed HRNB [38].

3. Strategies for re-induction therapy

Re-induction therapy aims to achieve a second complete or partial
remission. Approaches for relapsed/refractory HRNB have historically
added either cytotoxic chemotherapy or the systemic radiopharmaceu-
tical, 1>'I-mIBG. A questionnaire in SIOPEN member countries revealed
considerable heterogeneity in chemotherapy and other regimens
currently offered at first HRNB relapse. Patients were often enrolled in
the randomized phase II BEACON (NCT02308527) or RIST-rNB-2011
(NCT01467986) trials. Widely used were also 1311 mIBG (combina-
tion) therapy and/or 8 different cytostatic drug combinations, partly
based on limited, rather historical clinical trial evidence for patients
with relapsed HRNB. Patients were sometimes enrolled on different
early clinical trials (biomarker- and nonbiomarker-based), or given 3
chemo-immunotherapies or single-agent therapy with an ALK inhibitor
(biomarker-based) or temozolomide (nonbiomarker-based). Several
previous reviews of HRNB relapse therapy summarize the rationale and
data for various chemotherapeutic approaches [4,10,38]. However, as
we state in Section 1, heterogeneous inclusion criteria and prior/-
subsequent treatment prevents a definitive determination of the most
effective re-induction strategy [4].

3.1. Established chemotherapy combinations

Camptothecins, topotecan and irinotecan, typically form the cyto-
toxic chemotherapy backbone [10]. Camptothecins ultimately lead to
apoptosis by targeting the topoisomerase I enzyme to stabilize the
DNA-bound enzyme form, and cause double-strand DNA breaks during
replication [39]. This mechanism of action is distinct from those of
chemotherapy agents typically used in first-line therapy, making them
particularly attractive for relapse treatment. Both topotecan and irino-
tecan demonstrated single-agent activity in phase [ trials in patients with
neuroblastoma [40-42], but results from subsequent phase II trials were
rather disappointing. Topotecan as a single agent only achieved 0-10 %
overall response rates (ORR; complete, very good partial and partial
responses) against neuroblastoma [43-46]. The equivalent ORR for
irinotecan as a single agent was 0-14% [47-49]. A phase I trial
administering topotecan and irinotecan showed unacceptable toxicity
[50], preventing further development of this combination.

3.1.1. Topotecan combinations

One of the best-characterized combinations is topotecan with the
alkylating agent, cyclophosphamide (TopoCy) [51]. This pair achieved
synergistic cytotoxicity in preclinical studies [52,53], in part through
topoisomerase [ upregulation by cyclophosphamide. Reported retro-
spective single-center experiences [51] as well as phase I and II trials
confirmed that heavily pretreated patients tolerated the combination
with reversible myelosuppression as the only significant toxicity
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[52-54]. The initial phase II trial used 250 mg/m?/d cyclophosphamide
and 0.75 mg/m?/d topotecan for 5d every 21d and achieved an ORR of
46 % (6/13 patients with refractory/relapsed HRNB) [53]. This schedule
was subsequently tested for refractory/relapsed HRNB in the large,
randomized COG 9462 trial [55], and compared against single-agent
topotecan (2 mg/m?/d for 5d every 21d). While TopoCy achieved a
32 % ORR, compared with 19 % for topotecan alone, OS and toxicity did
not differ between the treatment arms [55].

Combining high doses of cyclophosphamide (4200 mg/m?/course)
and topotecan (2 mg/m2/d for 4d) with vincristine (2 mg/mZ; termed
HD-CTV) achieved a 19 % ORR in patients with refractory HRNB and a
52 % ORR in patients with first HRNB relapse [6]. Response rates were
lower for patients with progressive disease (at trial entry) or refractory
disease in adults [6]. Combining TopoCy with the topoisomerase II in-
hibitor, etoposide (termed TCE), achieved a 61 % ORR in 31 patients
with relapsed HRNB [56], while combining only topotecan and etopo-
side achieved a 47 % ORR in 36 patients with relapsed HRNB [57].

A phase II European ITCC trial using topotecan in combination with
temozolomide (TOTEM) against relapsed/refractory neuroblastoma and
other pediatric solid malignancies achieved an ORR of 21 % in 38 pa-
tients with refractory/relapsed HRNB [58]. TVD is the other
well-established topotecan-containing regimen. It combines topotecan
a.s mg/mz/d for 5 d) with a 48 h infusion of doxorubicin (45 mg/mz)
and vincristine (2 mg/m?) that are repeated every 21-28d. The initial
phase II trial in 25 patients with refractory/relapsed HRNB achieved a
64% ORR and 4 complete responses [5]. The European
HR-NBL1/SIOPEN trial adopted TVD as salvage therapy in patients
failing to achieve at least partial metastatic responses after induction
with rapid COJEC [59].

3.1.2. Irinotecan combinations

Irinotecan is typically administered over an extended schedule to
maximize exposure of tumor cells in the cell cycle S-phase [60,61]. The
major toxicity of irinotecan is diarrhea, which can be treated by
administration of loperamide and a cephalosporin [62]. The best char-
acterized irinotecan combination is with the methylating agent, temo-
zolomide, and termed IT or TEMIRI. Preclinical studies in
neuroblastoma xenograft models confirmed drug synergy based on a
model in which temozolomide-induced DNA methylation leads to iri-
notecan recruitment [61].

A single-institution trial administered 50 mg/m?/d intravenous iri-
notecan and 150 mg/m?/d oral temozolomide over 5d to achieve 2
complete responses among 19 patients with refractory disease and 1
partial response among 17 patients with progressive disease at trial
entry [63]. Although the ORR was only 8.3 %, all patients with re-
fractory disease showed some evidence of clinical benefit (7 mixed re-
sponses; stable disease in 10) [63]. Toxicities included the expected
diarrhea and myelosuppression [63]. The subsequent COG multicenter
ANBLO0421 trial (NCT00311584) applied lower doses (10 mg/mz/d iri-
notecan for 5d/week for 2 weeks; 100 mg/m?/d temozolomide for
5d/week for 1 week; every 3 weeks) and achieved a 15 % ORR in the 55
enrolled patients [8]. Stable disease was achieved in 53 % of patients
[8]. Importantly, TEMIRI therapy achieved stable disease or a partial or
complete remission in 14/21 patients who had previously received
topotecan, suggesting TEMIRI remains a useful salvage regimen even for
patients previously treated with topotecan [8]. TEMIRI has the advan-
tage of being less myelotoxic than TopoCy [10]. Although similar fre-
quencies of neutropenia (35-45 %) were reported in relevant phase II
trials, Grade 3 or 4 thrombocytopenia was less frequent with TEMIRI
(13 %) than TopoCy (60 %) [8,55]. The New Approaches to Neuro-
blastoma Therapy (NANT) consortium has established 60 mg/m?2/d
irinotecan 5d/week for 2 weeks and 75 mg/m2?/d temozolomide
5d/week for 1 week (both oral) every 3 weeks as the recommended
phase II doses [60]. The largest randomized trial conducted to date for
relapsed/refractory neuroblastoma (n=160) is the European SIOPE-
N/ITCC BEACON phase II trial (NCT02308527), which evaluated three
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backbone chemotherapy regimens and bevacizumab addition to reduce
angiogenesis [64]. The trial included a randomization designed to test
whether adding bevacizumab to IT increases the response rate compared
with IT alone. BEACON trial results demonstrated that combining bev-
acizumab and IT improved response rate (23% ORR) and
progression-free survival (1-year PFS 67 %) in patients with refractor-
y/relapsed HRNB [64]. IT (TEMIRI) is currently regarded internation-
ally as an excellent backbone for future studies of new agents.

The randomized phase II RIST-rNB-2011 trial (NCT01467986)
evaluated intravenous irinotecan (50 mg/mz/dose) and oral temozolo-
mide (150 mg/m?/dose) given 5 days, followed by 2 rest days (IT control
arm) compared to a combination of IT with oral dasatinib and rapa-
mycin (RIST experimental arm; 4d followed by 3 rest days prior to IT).
RIST-rNB-2011 enrolled 129 patients with relapsed (80 %) or refractory
(19 %) HRNB [65]. After a median 72-month follow-up, the median PFS
was 11 months in the RIST experimental arm and only 5 months in the IT
control arm. At one year, RIST achieved 38 % (13 % with IT) EFS in
patients with MYCN-amplified disease and 65 % EFS (44 % with IT)
against cases lacking MYCN amplifications. The best ORR with RIST was
67 % (56 % with IT) in cases lacking MYCN amplifications and 62 %
with RIST (42 % with IT) in the MYCN-amplified subgroup. Median OS
in the RIST arm was 20 months (IT control arm: 16 months). RIST
achieved an OS of 11 months in MYCN-amplified cases compared to only
6.5 months in the IT control arm. Rapamycin or dasatinib added no
additional toxicity to the IT backbone [65]. RIST-rNB-2011 provided the
first evidence that MYCN-amplified HRNB can be effectively treated,
and demonstrated RIST is an interesting re-induction strategy for this
molecularly defined patient subgroup.

The open-label, randomized, phase II selection design in the Chil-
dren's Oncology Group (COG) ANBL1221 trial (NCT01767194) tested
adding temsirolimus to irinotecan-temozolomide treatment in patients
with relapsed or refractory neuroblastoma [66]. Patients received oral
temozolomide (100 mg/m2 per dose) and intravenous irinotecan (50
mg/m2 per dose) on days 1-5 of 21-day cycles. Patients in the temsir-
olimus group also received intravenous temsirolimus (35 mg/m2 per
dose) on cycle days 1 and 8. Patients received a maximum 17 treatment
cycles. The irinotecan-temozolomide-temsirolimus combination did
not meet the minimum activity requirement set by the activity design in
ANBL1221 [66]. Notably, temsirolimus dosage and application in
addition to the overall trial design strongly differed in the ANBL1221
and RIST trials. Thus, data from the two trials cannot be directly
compared. The irinotecan-temozolomide-temsirolimus therapy arm
only included 5 patients with MYCN-amplified disease (29 %) [66]. In-
dependent of the trial design differences, sample size may also have been
too small to detect particular benefit for MYCN-amplified disease, which
the RIST trial reported [65].

3.1.3. ICE

The Memorial Sloan Kettering Cancer Center reported their single-
center experience treating 74 patients with relapsed/refractory HRNB
with ICE, reviewed together with published reports of relapsed disease
treated with ICE [67]. ICE combines high-dose ifosfamide (2g/m%
d1-5), carboplatin (500 mg/mz; d1-2) and etoposide (100 mg/mz;
d1-5) [10]. Patients predicted to have poor hematological reserves
received a preemptive peripheral blood stem cell rescue 72 h after ICE
[67]. Overall responses were observed in 9/17 patients with first relapse
(ORR 53 %) and 4/26 patients with refractory disease (ORR 15.4 %).
ORR was lower (1/34) in patients with progressive disease, although
22/34 achieved stable disease. ICE was associated with predicted grade
4 myelotoxicity, and bacteremia was detected in 26 % of patients [67].
ICE is another potential rescue therapy particularly for patients with
stored peripheral blood stem cells.
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3.2. Chemo-immunotherapy

3.2.1. Irinotecan and temozolomide combined with dinutuximab plus GM-
CSF

The COG phase II ANBL1221 trial (NCT01767194) randomly
assigned patients with refractory/relapsed HRNB to receive TEMIRI
with temsirolimus (IT/TEM arm) or dinutuximab plus granulocyte-
macrophage colony-stimulating factor (GM-CSF, IT/DIN arm). Pa-
tients in both arms received oral temozolomide (100 mg/mz/dose) and
intravenous irinotecan (50 mg/m2/dose) on d1-5 of 21-day cycles.
Temsirolimus (35 mg/m?/dose) was intravenously administered on days
1 and 8. DIN (17.5 or 25 mg/m?/day) was intravenously administered
on days 2-5 [66]. Myelosuppression, elevated alanine aminotransferase
and hypokalemia were the most common toxicities (> grade 3) in pa-
tients treated in the IT/TEM arm, with IT/DIN arm patients most
commonly experiencing pain, hypokalemia, myelotoxicity, fever/-
infection and hypoxia [66]. At interim analysis in 36 patients, the
IT/DIN arm had a 53 % ORR, compared with 6 % in the IT/TEM arm
[66]. This was lower than previously reported for IT alone, suggesting
temsirolimus might be antagonistic in this combination. The protocol
enrolled an additional 36 patients to the IT/DIN arm, after which the
ORR for all patients was 41.5% [68]. Patients who received prior
anti-GD2 therapy also responded to IT/DIN therapy. IT/DIN therapy
achieved 67.9 % PFS and 84.9 % OS in patients at one year [68]. Specific
immunogenotypes influencing natural killer cell activity were evaluated
in ANBL1221 trial participants, and median CD161, CD56 and KIR
values did not associate with therapy response in logistic regression
models [69]. A retrospective study reported similar results for 146 pa-
tients, who had received >1 IT/DIN/GM-CSF cycle for relapsed or
progressive HRNB [70]. The promising results from ANBL1221 changed
the paradigm of treatment for patients with a first HRNB relapse.

3.2.2. Irinotecan and temozolomide combined with dinutuximab beta

Dinutuximab beta (DB), a GD2 antibody developed in Europe and
approved by the EMA in 2017 to treat HRNB, shares the DIN (formerly:
ch14.18) protein sequence. However, glycosylation patterns differ
greatly between DB and DIN. DB is manufactured in Chinese hamster
ovary cells, while DIN is manufactured in murine SP2/0 cells. The
altered glycosylation translates into significantly higher antibody-
dependent cellular cytotoxicity from DB, as compared to DIN. Further-
more, DB lacks the alpha-gal epitope that is typical for glycoprotein
expression in murine SP2/0 cells [71]. The alpha-gal epitope is known to
trigger allergic reactions [72] Thus, while the protein sequences remain
the same, DB and DIN are structurally and actionably different mono-
clonal antibodies.

Treating relapsed/refractory HRNB with IT-DB was evaluated
retrospectively in 2 patient cohorts [73,74]. IT-DB achieved a 63 % ORR
in a 19-patient cohort [74] and a 64 % ORR in a 25-patient cohort, in
whom 14 patients had received DB as part of their previous treatment
(mostly frontline treatment, post-consolidation phase) [73]. Interest-
ingly, 4 of the 14 patients previously treated with DB achieved a com-
plete remission, while 6 of these patients achieved partial responses
(ORR 71 %) [73]. A 32 % complete remission rate was achieved in both
cohorts [73,74]. The dosage of dinutuximab beta administered differs in
the two studies (50 mg DB/m%/cycle in 5 days [73] versus 100 mg
DB/m?/cycle in 10 days [74]). IT-DB re-induction therapy was
well-tolerated even in patients who were heavily pretreated or had
previously received DB. DB dosing into 21-day cycles needs adaptation
based on its 8-day half-life to avoid antibody accumulation. The cu-
mulative dose of 50 mg DB/m?/cycle as a 5-day continuous infusion
[73] contrast to the 100 mg DB/m?/cycle as a 10-day continuous infu-
sion in a 35-day interval used in frontline maintenance [75]. Altogether,
significant anti-tumor activity is achieved by combining the IT backbone
with DIN plus GM-CSF treatment or DB, with more than half of patients
showing objective responses. While the mechanism of action remains to
be elucidated and predictors of response to chemo-immunotherapy have
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yet to be defined, both regimens have been transferred to first-line
therapy and are being evaluated in current COG and SIOPEN clinical
trials. This transfer is supported by recent real-world data from the
SACHA-France study (NCT04477681), which reported objective re-
sponses in 38 % of patients with progressive disease before high-dose
chemotherapy [76]. Both regimens are also now widely used to treat
patients at first relapse or when refractory HRNB is declared. IT-DB can
be considered as one of the best current options for re-induction therapy.

3.2.3. Topotecan and temozolomide combined with dinutuximab beta

The SIOPEN/ITCC BEACON trial (NCT02308527) was amended to
evaluate whether adding DB to chemotherapy improves efficacy, thus
being one of few randomized trials of chemo-immunotherapy to date.
Patients aged 1-21 years with refractory or relapsed HRNB were ran-
domized for chemotherapy alone or with DB (1:2 ratio). BEACON-
Immuno administered 70 mg dinutuximab beta/m?/cycle over 7d. The
factorial design in BEACON allowed some patients to initially be ran-
domized between chemotherapy regimens (temozolomide versus
temozolomide-topotecan). This randomization closed soon after DB
randomization opened, and all patients subsequently received
topotecan-temozolomide. Crossover to DB with topotecan and cyclo-
phosphamide was allowed for patients randomized to chemotherapy
alone who experienced disease progression (n = 12). In total, 65 patients
were randomized to chemotherapy alone (temozolomide, n=3;
topotecan-temozolomide, n = 19) or with DB (temozolomide-DB, n = 6;
topotecan-temozolomide-DB, n = 37). Chemo-immunotherapy achieved
35 % ORR and 57 % 1-year PFS (chemotherapy only: 18 % ORR, 27 % 1-
year PFS) in BEACON patients [77]. OS did not differ between the arms
[77]. Grade > 3 toxicities occurred in 9 patients (chemotherapy alone,
41 %) compared to 13 patients receiving chemo-immunotherapy (30 %),
demonstrating that chemo-immunotherapy was well-tolerated [77]. The
main randomization in the subsequent BEACON-2 trial (EuCT:
2024-516115-24-00) will focus in tier 1 on comparing the efficacy and
safety of IT-DB (arm A) versus bevacizumab-IT (arm B) followed by dose
expansion and confirmation in tier 2, which will explore the potential
additive effects of combining bevacizumab and DB to the IT chemo-
therapy backbone.

3.2.4. N5 and N6 GPOH chemotherapy combined with dinutuximab beta

The GPOH induction chemotherapy cycles, N5 (cisplatin, etoposide,
vindesine) and N6 (vincristine, dacarbazine, ifosfamide, doxorubicin),
were combined with long-term DB infusion through compassionate use
to treat 25 patients with refractory/relapsed HRNB, who had previously
failed one or more second-line therapies (N5/DB; N6/DB) [78]. Retro-
spective data analysis revealed no unexpected severe toxicities. Grade
3/4 pain was reported by 4/25 patients in cycle 1, but decreased to 0/9
patients in cycles 3 and 4. Combination with long-term DB infusion
achieved a 48 % ORR (12/25 patients, 3 patients with minor responses)
with an estimated 27 % EFS and 44 % OS at one year [78]. Based on the
encouraging ORR in heavily pretreated patients and acceptable safety
profile, this approach is currently being evaluated as salvage therapy
(NCT06485947).

3.2.5. Irinotecan, temozolomide and naxitamab plus GM-CSF
Naxitamab (formerly: humanized 3f8) is a humanized GD2-binding
monoclonal antibody [79] approved by the FDA for use in combination
with GM-CSF to treat patients, who have achieved a partial or minor
response to prior therapy or have stable refractory/relapsed HRNB
limited to the bone or bone marrow. Accelerated FDA approval was
based on interim data from the global clinical phase II Trial 201
(NCT03363373) and the phase I/II Trial 12-230 (NCT01757626)
[80-82]. NCT03363373 was designed to evaluate the efficacy and safety
of naxitamab plus GM-CSF as salvage therapy for patients with primary
refractory HRNB or incomplete response in the bone and/or bone
marrow to salvage treatment. In total, 74 patients received naxitamab (3
mg/kg/d, d1,3,5) and GM-CSF (d —4-5) every 4 weeks until a complete
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or partial response was achieved followed by 5 additional cycles every 4
weeks [82]. ORR, as specified by the 2017 International Neuroblastoma
Response Criteria [36], was the primary endpoint for the prespecified
interim analysis. Patients achieved complete (38 %) and partial (12 %)
remissions, with a 50 % ORR, and 93 % OS and 35 % PFS at one year
(secondary endpoints). Naxitamab-related grade 3 adverse events
included hypotension (58 %) and pain (54 %). NCT03363373 inclusion
and exclusion criteria as well as patient population characteristics
differed in several aspects from previous clinical trials evaluating DIN or
DB. Patients with progressive disease at trial entry were excluded, and
disease was limited to the bone/bone marrow. The percentage of
MYCN-amplified cases (prognostically worse) was lower. Only 27 % of
patients had received prior high-dose chemotherapy with stem cell
rescue and only 25 % had received prior immunotherapy [82]. These
differences are positive selection biases that might lead to over-
estimating the efficacy of naxitamab plus GM-CSF, if extrapolated to a
non-selected population of patients with refractory/relapsed HRNB. A
phase II clinical trial of IT-naxitamab plus GM-CSF is currently
enrolling in Asia and Russia (NCT04560166).

Recently, PFS and ORR were compared in a systematic literature
review including patients treated with naxitamab (NCT03363373;
n=52; NCT01757626, n = 38) or DB (NCT02300547; NCT02743429,
n=77) [83]. The DB population was adjusted for sex, MYCN amplifi-
cation and disease site (bone/bone marrow) to balance the aggregated
characteristics of the naxitamab population. Compared to naxitamab,
DB significantly extended PFS (hazard ratio 0.47; p =0.015), with an
ORR of 60.1 % (ORR, 43.3% in the naximatab population) in this in-
direct comparison [83].

3.2.6. Other chemo-immunotherapy combinations

The COG ANBL1821 trial for refractory/relapsed HRNB
(NCT03794349) has evaluated the ornithine decarboxylase 1 (ODC1)
inhibitor, eflornithine (also known as a-difluoromethylornithine,
DFMO), in combination with the IT/DIN/GM-CSF treatment protocol
from the COG ANBL1221 trial. Eflornithine is proposed to act by irre-
versibly inhibiting ODC1, the rate-limiting enzyme in polyamine
biosynthesis (see also Table 2). Preclinical data have shown that
inhibiting ODC1 enhances tumor cell stress, chemotherapy efficacy and
immune modulatory effects [84-86]. Patients with refractory/relapsed
HRNB were randomized in ANBL1821 to DIN, irinotecan, temozolomide
and GM-CSF without (arm A; n = 44 patients) or with eflornithine (6750
mg/m? divided into 3 times/d; arm B; n = 47 patients). Response rates
did not differ between the trial arms (arm A: 61.4 %, 27/44; arm B:
57.4%, 27/47; p=0.566). Adding eflornithine to chemo-
immunotherapy also did not improve 1-year-OS (arm A: 87.0 = 5.7 %,
arm B: 81.4 + 6.3 %), and was associated with an increased incidence of
hearing loss [87].

3.3. Chemotherapy backbone combined with molecular targeted therapy

Lorlatinib was combined with topotecan-cyclophosphamide
(NCT03107988) in children (<18 years) with ALK-driven relapsed/re-
fractory HR-NB neuroblastoma [88]. The recommended phase II dose
was 115 mg/m2 [88] and hypertriglyceridemia, hypercholesterolemia
and weight gain were common adverse events [88]. Adding lorlatinib
achieved complete/partial/minor responses in 63 % of patients [88],
supporting usage in the relapsed/refractory setting and suggesting lor-
latinib should be exploited in phase III clinical trials for newly diagnosed
ALK-driven HRNB. Several other interesting combinations are not yet
considered for re-induction treatment of first relapse, but have been
administered for second or subsequent HRNB relapses (Table 1).

3.4. Conclusions: Strategy for re-induction therapy

The consensus is always to prioritize participation into clinical trials,
such as BEACON2. When recruiting trials are unavailable, chemo-
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Table 1

Chemotherapy backbone combined with molecular targeted therapy for 2nd or
subsequent HRNB relapses.

Combination therapy

Selected examples with
ClinicalTrials.gov ID and
sponsor

Key considerations

Irinotecan and
adavosertib
(AZD1775)

Irinotecan,
temozolomide and
alisertib (MLN8237)

Topotecan,
cyclophosphamide
and nifurtimox

NCT02095132COG phase
11 ADVL1312 clinical trial

NCT01601535NANT
consortium

NCT00601003Giselle
Sholler

Irinotecan with adavosertib
(WEE1 G2 checkpoint
kinase inhibitor) was well
tolerated with no dose-
limiting toxicities at the
recommended phase II dose
administered orally for 5d
every 21d [89]. Objective
responses were
documented for 3 of the 20
patients.

Alisertib is a selective and
potent oral aurora kinase A
inhibitor (indirectly targets
MYCN) that induces cell
cycle arrest and apoptosis
in preclinical NB models
[90,91]. The COG
ADVL0921 phase I trial
treated patients with HRNB
or other solid tumors with
single-agent alisertib,
documenting ORR < 5 %
[92]. The 2-stage
NCT01601535 phase II
trial achieved a 21 %
partial response rate (19
evaluable patients) using
alisertib in combination
with irinotecan and
temozolomide in 20
patients with r/r HRNB
[93]. The estimated PFS at
1 year was 34 %. MYCN
amplification was
associated with inferior
PFS. Hematological
toxicities were the most
common adverse events.
The nitrofuran, Nifurtimox,
has been employed

> 50 years to treat Chagas
disease, a parasitic
infection caused by
Trypanosoma cruzi [94].
Nifurti- mox demonstrated
antitumor activity in
preclinical models for
pediatric cancers, including
HRNB [95,96]. The phase
11 NCT00601003 trial
achieved a 53.9 % ORR
against first HRNB relapse
(stratum 1) and a 16.3 %
ORR against multiple r/r
HRNB (stratum 2) using
nifurtimox combined with
topotecan and
cyclophosphamide [97].
BM suppression and
reversible neurological
complications were the
most common side effects.

Abbreviations: BM, bone marrow; NANT, new approaches to neuroblastoma
therapy; HRNB, high-risk neuroblastoma; ORR, overall response rate; NB, neu-
roblastoma; PFS, progression-free survival; r/r, refractory or relapsed.
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immunotherapy (IT chemotherapy + GD2-targeting immunotherapy,
DB currently the most available in Europe and SIOPEN countries) is the
first choice to start re-induction therapy for first HRNB relapse based on
current evidence. Further options are RIST for relapsed MYCN-amplified
HRNB or chemotherapy combined with ALK inhibitor for ALK-driven
HRNB (Figure 1). Consolidation treatment followed by maintenance
treatment (both preferably in clinical trials) should be subsequently
planned for patients who achieved ORR to re-induction therapy to
ensure improved survival (Figure 1). The TVD, TCE, ICE, TopoCy or
[*311] -mIBG therapy plus vorinostat (for patients with MIBG-avid
disease) combinations are currently potential salvage options for pa-
tients with only minor responses to re-induction therapy and/or stable
or progressive disease during or at the end of re-induction. Early clinical
trials, preferably biomarker-based and with targeted treatment combi-
nations, are also a suitable option in this setting.

4. Consolidation strategy

Consolidation therapy aims to eliminate (minimal) residual disease.
Appropriate re-induction therapy can achieve complete responses
against refractory/relapsed HRNB, but responses often do not persist.
Novel therapy strategies applied as consolidation treatment (or as a
main,tenance strategy) may provide more durable responses. Since re-
induction treatment also influences EFS and OS, assessing the efficacy
of consolidation and maintenance therapies is difficult. A traditional
option for consolidation (after a partial or complete response to re-
induction therapy) has been ['!I]-mIBG therapy. In recent years,
immunotherapy approaches have shown potential to precisely target
disease with improved toxicity profiles. Cellular therapies that harness
the immune system are of high interest as a consolidation strategy for
relapsed HRNB.

4.1. Haploidentical stem cell transplantation with dinutuximab beta and
low-dose interleukin 2

Haploidentical hematopoietic stem cell transplantation (haploSCT)
is designed to harness a potential graft-versus-tumor effect, provide the
patient with a new healthy immune system and provide direct antitumor
effects through intense conditioning chemotherapy. Strong evidence
supports T/B cell-depleted haploSCT in combination with DB and sub-
cutaneous interleukin 2 as an efficient consolidation strategy. The
safety, feasibility and outcomes of this approach was assessed in a phase
I/1I trial (NCT02258815) for patients with relapsed HRNB [98]. Treat-
ment success (primary end point) was met by 54.4 % of patients (37/68;
median observation=7.8 years; 5-year EFS=43 %, 5-year OS=53 %
from trial treatment start), and described patients who received 6 DB
cycles, were alive without progressive disease 180d after trial treatment
ended and experienced no unacceptable toxicity or higher grade acute or
chronic graft-versus-host-disease. Five-year EFS was better among pa-
tients achieving complete (52 %) or partial (44 %) responses by
re-induction therapy prior to haploSCT compared to patients with no or
mixed responses or progressive disease (13 %). For the 43 patients with
evidence of disease after haploSCT, 35 % achieved complete remission
(15/43 patients) and the ORR was 51 % (22/43 patients) [98]. This
concept was deemed feasible for patients with refractory/relapsed
HRNB, having only a low risk of graft-versus-host disease or severe viral
infections. These promising results with long-term remissions are likely
attributable to increased anti-HRNB activity by donor-derived effector
cells. In Germany and other European countries, only centers with
strong haploSCT expertise use it as part of routine care, otherwise it is
not widely used. The haploSCT regimen warrants further investigation
in a randomized consolidation trial for patients with relapsed HRNB,
who achieved at least partial responses to re-induction therapy.

Functional immune monitoring was employed to gain a better un-
derstanding of synergy between haploSCT and DB [99]. Monitoring
detected highly functional NK cells capable of antibody-dependent
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Fig. 1. Current diagnostics and treatment scheme for patients with high-risk neuroblastoma suspected of a first relapse. No clear consensus exists about the
optimal therapy due to the lack of umbrella trials covering all phases of relapse treatment (re-induction, consolidation, maintenance) in a homogenous strategy. The
required work-up at relapse includes a tumor biopsy with in-depth molecular characterization, bone marrow diagnostics, liquid biopsy and multimodal imaging, and
discussion in a molecular tumor board where molecular profiling has been performed and identifies potentially actionable alterations. Patient enrollment into trials in
all phases of relapse treatment (re-induction, consolidation, maintenance) should be given preference as first choices when open to recruitment. An ALK inhibitor
may be added to a treatment backbone if an ALK mutation or amplification is verified in the relapse sample. No data currently exist that define the optimal backbone
or timing to incorporate an ALK inhibitor during relapse treatment. In clinical trials, ALK inhibitors have only been evaluated alone or in combination with standard

chemotherapy. Vaccines in the maintenance phase have demonstrated immune

responses, but not evidence of efficacy as yet. ALK, anaplastic lymphoma kinase;

CAR, chimeric antigen receptor; CT, computed tomography; GD2, disialoganglioside 2; GM-CSF, granulocyte-macrophage colony-stimulating factor; ICE, ifosfamide,
carboplatin, etoposide; IT, irinotecan/temozolomide chemotherapy backbone; mIBG, meta-iodobenzylguanidine; MRI, magnetic resonance imaging; TCE, topotecan,
cyclophosphamide, etoposide; TVD, topotecan, vincristine, doxorubicin; SCT, stem cell transplantation. BEACON refers to the NCT02308527 trial; RIST, refers to the

NCT01467986 RIST-rNB-2011trial.

cytotoxicity, a relevant DB mechanism of action. Degranulation in NK
cell subsets indicated a significant NK cell response induced by DB.
Complement-dependent cytotoxicity was shown to be a potent effector
cell-independent mechanism to lyse tumor cells. During DB therapy,
elevated proinflammatory cytokines and markers indicated a strong
anti-GD2 immune response [99]. In-patient functional immune moni-
toring contributes to our understanding of anti-cancer combinatorial
immunotherapy, and should be incorporated into future immunother-
apy/cellular therapy trials.

4.2. Dinutuximab beta long-term infusion

Previous immunotherapy trials for neuroblastoma associated short-
term DB infusions combined with isotretinoin and cytokines with

inflammatory side effects and pain. Three trials evaluated long-term
continuous DB infusion in patients with relapsed/refractory HRNB. In
an open-label, single-arm phase II clinical trial (NCT02743429), patients
with refractory/relapsed HRNB, who had not previously received DB
therapy and had responded to second-line chemotherapies, received 100
mg/m? DB as continuous infusion over 10 days (long-term infusion, LTI
DB) in 35-day intervals for up to five cycles [100]. Responses were
evaluable in 38/40 patients, and the best response rate (secondary
endpoint) was 53 % if minor responses were included (37 % ORR
counting only partial/complete responses). Responses had a median
duration 238d and LTI DB achieved 31 % PFS and 66 % OS at 3 years
(secondary endpoints) [100]. A second multicenter trial
(NCT01701479) achieved 56 % ORR in patients with refractory/r-
elapsed HRNB using long-term DB infusion combined with IL2 and
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isotretinoin (2-year EFS=56 %/0S=73 %) [101]. Patients previously
treated with a GD2-targeting antibody were also ineligible for this trial.
Two-year survival was greater in patients with high-affinity Fc-gamma
receptor polymorphisms and high natural killer cell levels. Low-affinity
Fc-gamma receptor polymorphisms and > 5 years of age were identified
as independent risk factors [101]. In a randomized phase of this trial,
160 patients received up to 5 DB-LTI cycles (100mg/m?) and oral iso-
tretinoin (16Omg/m2) either with (81 patients) or without (79 patients)
interleukin 2 [102]. Comparisons of EFS and OS indicated that IL2 does
not add clinical benefit in this setting [102]. A third single-center trial
(compassionate use program reviewed by the University of Greifswald
medical ethics committee) achieved 47.7 % OS and 33.1 % PFS at 4
years and a best response of 40.5 % (15/37; 5 complete, 10 partial re-
sponses) in GD2-targeting immunotherapy naive patients with refrac-
tory/relapsed HRNB using LTI DB (10x10mg/m?, 24 h) combined with
subcutaneous IL2 [103]. Survival of the entire cohort (53/53) and the
relapsed patients (29/53) was significantly improved compared to his-
torical controls [103]. The substantially improved treatment tolerance
allowed outpatient treatment. Altogether, this dataset formed the core of
the submission that led to EMA approval of DB for neuroblastoma.

4.3. Autologous CAR T cells

Genetically engineered autologous T cells present another promising
approach for consolidation therapy. Stably transfecting these cells with
a chimeric antigen receptor (CAR) redirects the patient’s own cytotoxic
T cells against tumor-associated antigens (e.g. GD2). CAR T cells
combine the specificity of an antibody with T cell cytolytic capacity
independent of the major histocompatibility complex (MHC) [104]. CAR
T cells have the potential for increased potency and durability, and can
cross the blood-brain barrier [105]. Antibodies generally only penetrate
the central nervous system (CNS) if the blood brain barrier is disturbed.
While still needing confirmation in clinical trials, CAR T cells may be
able to combat relapsed HRNB involving the CNS (see also Section 7).

CAR T cells directed against different targets have already shown
promise in early-phase trials (NCT00085930, NCT02761915,
NCT02765243 [106-110]), achieving several objective responses in
patients with relapsed/refractory HRNB. The immunosuppressive neu-
roblastoma microenvironment [111] creates challenges for CAR T cell
penetration, persistence and potency [106-108]. These challenges and
the paucity of neuroblastoma-specific targets [112] have caused CAR T
cell efficacy to be less robust against refractory/relapsed HRNB so far, as
compared to their success against hematological malignancies.
Next-generation 14G2a-based CAR T cells demonstrated encouraging
clinical efficacy against relapsed (n = 14) and refractory (n = 12) HRNB
in a recent phase I/Il clinical trial (NCT03373097) [113]. No
dose-limiting toxicity was recorded in this trial evaluating 3 dosages of
autologous, third-generation GD2-CAR T cells expressing the inducible
caspase 9 suicide gene (GD2-CARTO1) in patients with refractory/r-
elapsed HRNB [113]. The optimal recommended dosage was 10 x 10°
CAR T cells/kg body weight. The GD2-targeting CAR T cells expanded in
vivo and were detectable in peripheral blood in 26/27 patients up to 30
months after infusion (median persistence, 3 months; range, 1-30).
Cytokine release syndrome occurred in 20/27 patients (74 %, mild in 19
patients). The suicide gene was activated, rapidly eliminating
GD2-CARTO1 cells, in one patient. Among patients receiving the rec-
ommended dose, 17 children responded to treatment (ORR=63 %; 9
complete, 8 partial responses) with 60 % EFS and 36 % OS at 3 years.
Patients with a low disease burden (SIOPEN score <= 7) showed a
particular benefit in subgroup analysis [113]. NCT03373097 demon-
strates the feasible and safe use of GD2-CARTO1 cells to treat refrac-
tory/relapsed HRNB, and showed promising efficacy, at least for
patients with low disease burden. Next-generation cytokine-engineered
CAR T cells to enhance effector function [114] are currently under
investigation (EUCT 2022-501725-21-00), and bi-specific CAR T cells
that simultaneously target GD2 and B7H3 are in preclinical
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development [115].

4.4. Novel approaches for consolidation therapy

4.4.1. Allogeneic CAR T cells

Allogeneic CAR T cells targeting GD2 (ALLO_GD2-CARTO01) could be
a therapeutic option for relapsed/refractory HRNB that did not respond
to autologous GD2-CARTO1 or in patients with profound lymphopenia
[116]. ALLO_GD2-CARTO01 was administered to 5 children with HRNB
refractory to > 3 different lines of therapy in a hospital exemption
setting [116]. Four children had previously received allogeneic he-
matopoietic stem cell transplantation. All patients experienced grade 2
or 3 cytokine release syndrome, with one case of grade 2 neurotoxicity
and moderate acute graft-versus-host disease in 4 patients. Treatment
achieved 2 complete responses (1 maintained) [116]. Safety and efficacy
of ALLO_GD2-CARTO1 against relapsed/refractory HRNB deserves
further investigation.

4.4.2. GD2-targeting CAR-NKT cells

Va24-invariant natural killer T cells (NKTs) also have anti-tumor
properties that can be enhanced by CARs. Interim results from a first-
in-human phase I trial (NCT03294954) of autologous NKTs co-
expressing a GD2-targeting CAR with interleukin 15 (GD2-CAR.15) in
12 children with relapsed HRNB recently demonstrated feasibility (ORR:
25 %; 1 complete, 2 partial responses) with no dose-limiting toxicities
and a grade 2 cytokine release syndrome in one patient resolved by
tocilizumab [117]. The frequency of CD62L" NKTs in products corre-
lated with CAR-NKT expansion in patients, and was higher in responders
(n = 5; ORR or stable disease with reduction in tumor burden) than
non-responders (n = 7) [117]. NCT03294954 shows NKTs are safe and
can mediate objective responses in patients with relapsed HRNB.

4.4.3. Other Immunotherapy strategies

Given the limitations of passive antibody immunotherapy, particu-
larly for bulky disease, many other immunological approaches are being
developed and have yet to enter clinical trials. These include active
immunization with anti-idiotype antibody; infusions of dendritic or NK
cells, the immunostimulatory antibody, ipilimumab (anti-CTLA4) and
checkpoint-inhibitor therapy with pembrolizumab or nivolumab.
Whether these strategies form more efficient consolidation or mainte-
nance relapse treatments remains to be elucidated.

4.5. Conclusions: Consolidation phase

DB currently holds a high level of evidence as an efficient consoli-
dation strategy with good tolerability in patients without previous DB
exposure. The use of haploSCT combined with DB is conceptually
interesting to exploit a fresh immune system with KIR/KIR-L mismatch
to drive the DB immune effect against neuroblastoma. CAR T cell ther-
apy targeting GD2 is also a promising consolidation approach in patients
with relapsed HRNB who achieved objective responses with previous re-
induction therapies. Randomized multicenter trials for both options are
needed (Figure 1).

5. Maintenance therapy

Maintenance therapy aims for long-term cure. For maintenance
therapy to be well-suited to patients with refractory/relapsed HRNB,
they must be feasible as outpatient treatments, have low toxicity and be
well-tolerated. Preference should be given to well-tolerated oral treat-
ments, including ALK inhibitors (for patients with ALK altered disease),
temozolomide and eflornithine, although early clinical trials with single
agents (preferably biomarker-based) or vaccine strategies appear
promising (Figure 1; Table 2). Randomized trials of new options in the
maintenance setting are needed if we are to achieve optimal care.
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Table 2
Single-agent targeted therapies for potential usage in maintenance therapy.

European Journal of Cancer 236 (2026) 116254

Class of Selected examples with ClinicalTrials.gov ID and sponsor Key considerations
agent/target
ALK inhibitors CeritinibNCT01742286; Novartis PharmaceuticalsAlectinibNCT05770037; Activating mutations of the ALK tyrosine kinase occur in up to 21.5 % of

Cancer Research UKLorlatinibNCT03107988; NANT consortium

Aurora kinase AlisertibNCT01154816; COG

inhibitors
ODC1 Eflornithine (DFMO)NCT02395666; Giselle Sholler
inhibitors
Vaccines GD2/GD3 vaccine NCT00911560; MSKCCAnti-idiotype antibody ganglidiomab

vaccine Compassionate-use treatment; University Hospital Greifswald

primary sporadic NBs, with ALK amplifications in a further ~4 % of HRNBs
[16,24,118] ALK mutation frequency increases in relapsed NBs [24]. NBs
harbor ALK aberrations resistant to crizotinib [119] yet sensitive to 2nd and 3rd
generation ALK inhibitors (ceritinib, alectinib, lorlatinib), which have
improved inhibition and CNS penetrance compared to crizotinib, and have been
evaluated as single agents with/without chemotherapy in biomarker-based
phase I/1I trials [88,120].

Clinical single-agent results in pediatric patients with r/r solid tumors or ALL
were disappointing despite promising preclinical data [92].

Results obtained as maintenance therapy for patients with HRNB in first-line
therapy and compared to a historical control cohort [121] support additional
investigations for eflornithine potential as relapse maintenance therapy.
Vaccines have demonstrated immu- ne responses, but not evidence of efficacy
as yet. Findings provide an important basis for prospective clinical trial design.
Whether the GD2/GD3 vaccine [122], ganglidio- mab [123] or vaccines
against other targets are suitable approaches for maintenance therapy of
patients with first HRNB relapses remains to be elucidated.

Abbreviations: ALK, anaplastic lymphoma kinase; ALL, acute lymphoblastic leukemia; COG, Children’s Oncology Group; HRNB, high-risk neuroblastoma; MSKCC,
Memorial Sloan Kettering Cancer Center; NANT, new approaches to neuroblastoma therapy; NB, neuroblastoma; r/r, refractory or relapsed.

6. Other treatment modalities
6.1. Surgery and radiotherapy

Surgery and radiotherapy (Table 3) should be incorporated to con-
trol local disease at first relapse, if feasible, similar to their use in first-
line treatment. The role of radiotherapy in oligometastatic disease re-
mains to be elucidated. In first-line therapy, complete resection of the
primary tumor has been associated with improved overall survival (OS)
[128,129]. In the relapse setting, however, the evidence is largely
retrospective and based on small patient cohorts, with no large ran-
domized studies specifically addressing the role of surgical resection
after relapse. To date, no significant OS benefit has been demonstrated
for isolated surgical intervention when comparing complete versus
incomplete resection of abdominal relapses [130]. Nonetheless, retro-
spective data suggest that a strategy involving gross total resection or
multiple surgical interventions as part of a multimodal treatment
approach may be associated with improved OS, even in patients with
osteomedullary metastases [130,131]. In patients with relapsed neuro-
blastoma surgical resection may be considered within a multimodal
treatment approach [132]. Given the lack of prospective data, we
recommend the systematic collection of prospective, standardized data
on all surgical interventions after relapse, including extent of tumor

Table 3
Local radiotherapy concepts for first relapse of high-risk neuroblastoma.

Radiation source Key considerations

External beam
radiotherapy

External beam radiotherapy is equally important for local
control of primary HRNBs at relapse or in first-line therapy.
Symptomatic control in patients with r/r metastatic HRNB
is an important additional consideration. External beam
radiotherapy can help control soft-tissue lesions [10,124],
especially near the spinal cord, and provide relief from
painful bone metastases [125]. Feasibility has been
demonstrated in the first-line setting [126]. Whether
radiotherapy is beneficial to control oligometastatic lesions
in patients with relapsed HRNB remains to be determined.
Salvage proton beam irradiation to local or metastatic
relapses is documented within the KiProReg and ProReg
prospective registry trials. A retrospective analysis (20
patients) demonstrated safety and efficacy [127].
Prospective studies would be desirable to better define the
role of proton beam therapy for these patients.

Proton beam
radiotherapy

resection, timing relative to systemic therapies, postoperative
morbidity, local control, and survival outcomes (OS, EFS).

6.2. Theranostics

Current evidence shows promise for combining *'I-MIBG with
vorinostat in patients with mIBG-avid disease (Table 4). The potential of
1771 utetium-DOTATATE remains to be elucidated (Table 4).

7. Special challenge: CNS relapse

Although CNS neuroblastoma metastases are rare at initial HRNB
diagnosis, leptomeningeal and/or parenchymal CNS metastases are
present in 6-8 % of cases at relapse [143,144]. Rates of CNS relapse
have been suggested to be rising, with the CNS representing a sanctuary

Table 4
Theranostic candidates for first relapse of high-risk neuroblastoma.

Theranostics Key considerations

[*3'1]-mIBG
therapy

The earliest form of molecularly targeted therapy for HNRB
was short-range f radiation via ['*'I]-mIBG therapy
[133-135]. Subsequent studies included autologous stem cell
rescue to facilitate higher doses (up to 19 mCi/kg body weight)
[136,137]. In palliative care, [**'1]-mIBG therapy can be
useful to provide pain relief [138]. Combining [*'1]-mIBG
with oral vorinostat (180 mg/m?/dose) once daily on days
1-12 achieves the greatest overall response (randomized phase
II NANT2011-01 trial, NCT02035137, compared to mIBG
alone; and mIBG with chemotherapy) [139]). Preliminary
efficacy data in the phase I trial NANT2017-01,
NCT03332667, showed encouranging antitumor activity and
good tolerability of [**!1]-mIBG therapy combined with DB in a
heavily pretreated population with r/r HRNB [140]. Limited
access, logistics and the need of hematopoietic stem cell
support are major challenges for ['3'I]-mIBG therapy. The
MINIVAN phase I NCT02914405 study investigated
[1311]-mIBG therapy followed by nivolumab and dinutuximab
beta antibodies in children with relapsed/refractory
neuroblastoma; initial data suggests an overall response rate
(PR/CR) of 42.9 % (12/28 patients) [141].

The LuDO-N multicenter phase II clinical trial (NCT04903899)
investigates 177Lu-DOTATATE treatment of r/r HRNB in an an
intensified dosing schedule. It builds on experience from the
pilot LuDO trial, whose poor results were probably due to
administering a subtherapeutic dose [142].

177Lutetium-
Dotatate

Abbreviations: HRNB, high-risk neuroblastoma; NB, neuroblastoma; r/r, re-
fractory or relapsed.

Abbreviations: DB, dinutuximab beta; HRNB, high-risk neuroblastoma; mIBG,
meta-iodobenzylguanidine; NIV, nivolumab; r/r, refractory or relapsed.
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site protected from systemic chemotherapy or immunotherapy [143,
145]. HR-NBL-1/SIOPEN clinical trial data revealed that the risk of CNS
recurrence is linked to patient and disease characteristics, with no
impact from high-dose chemotherapy or immunotherapy [146].

CNS relapse remains a major therapeutic challenge, and post-relapse
survival is significantly shorter than for patients with CNS-negative
disease [146,147]. Patients with CNS metastases are often excluded
from traditional phase I and II trials. A recent analysis of relapses after
first-line therapy in the European HR-NBL1/SIOPEN trial
(NCT01704716) described a median OS after CNS recurrence of only
four months [146]. Less than 10 % of the patients survived longer than 3
years [146]. Neurosurgical debulking, craniospanial irradiation and
additional treatment options must be considered for patients with CNS
disease. These options include intrathecal antibody-based radio-
immunotherapy using !3'-8H9 targeting B7H3 (omburtamab,
NCT03275402, NCT00089245, [148]), intraventricular chemotherapy
(etoposide, topotecan) and/or temozolomide-based systemic chemo-
therapy regimens. There is a need for randomized trials for patients with
HRNB relapse involving the CNS. There are no randomized data
comparing craniospinal irradiation (CSI) with focal approaches such as
surgery and local radiotherapy in CNS-relapsed neuroblastoma. How-
ever, published treatment strategies associated with durable CNS dis-
ease control incorporate CSI as part of a multimodal approach [131,
147]. Retrospective series demonstrate that focal irradiation alone is
insufficient, with high rates of subsequent CNS failure, whereas
CSI-based strategies achieve superior disease control combined to other
treatments [149]. CSI has been used consistently both in combination
with radioimmunotherapy and in multimodal regimens without radio-
immunotherapy, including reports of long-term relapse-free survivors
[131,150]. To date CSI is to be considered as a central component of
curative-intent therapy for CNS-relapsed neuroblastoma.

8. Conclusions

Patients with relapsed HRNB have typically been heavily pretreated.
Since disease has already been exposed to the most effective cytotoxic
chemotherapy agents, there is a pressing need to develop less toxic
therapies (particularly less myelosuppression) against novel targets. The
hope is to overcome tumor resistance and allow personalized treatment
for tumor-specific aberrations. Identifying molecular targets for neuro-
blastoma has been difficult, as unlike in many adult cancers, whole-
genome sequencing has demonstrated that recurrent mutations of spe-
cific oncogenes are rare with the exception of ALK. The current level of
evidence justifies offering treatment to patients with first HRNB relapse,
which is definitely not yet a palliative situation.

How best to identify, prioritize and combine novel agents to improve
treatment of first HRNB relapse remain the challenges to moving for-
ward. The field benefits from a long history of international collabora-
tion. Coordinated efforts have been enabled through the ACCELERATE
pediatric strategy fora and through dedicated international workshops
on new drug development for HRNB [151-153]. These coordinated ef-
forts will allow us to develop the most promising combinations in a
timely way to best benefit our patients.
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