

1 The HTT1a protein initiates HTT aggregation 2 in a knock-in mouse model of Huntington's 3 disease

4 Aikaterini Smaragdi Papadopoulou,¹ Christian Landles,^{1,†} Edward J. Smith,^{1,†} Marie K.
5 Bondulich,¹ Annett Boeddrich,² Maria Canibano-Pico,¹ Emily C. E. Danby,¹ Franziska
6 Hoschek,³ Arzo Iqbal,¹ Samuel T. Jones,¹ Nancy Neuendorf,² Iulia M. Nita,¹ Georgina F.
7 Osborne,¹ Jemima Phillips,¹ Maximilian Wagner,³ Erich E. Wanker,² Jonathan R. Greene,⁴
8 Andreas Neueder^{3,5} and Gillian P. Bates¹

9 **[†]These authors contributed equally to this work.**

10 Abstract

11 The mutation that causes Huntington's disease is a CAG repeat expansion in exon 1 of the
12 huntingtin gene (*HTT*) that leads to an abnormally long polyglutamine tract in the huntingtin
13 protein (HTT). Mutant CAG repeats are unstable and increase in size in specific neurons and
14 brain regions with age, a phenomenon that constitutes the first step in the pathogenesis of
15 the disease. In the presence of an expanded CAG repeat, cryptic polyA sites in intron 1 of the
16 *HTT* pre-mRNA can become activated leading to the polyadenylation of a prematurely
17 terminated transcript, *HTT1a*. This encodes the HTT1a protein, which is known to be very
18 aggregation-prone and highly pathogenic. Given that the longer the CAG repeat the more
19 HTT1a is generated, could the production of HTT1a be the mechanism through which
20 somatic CAG repeat expansion exerts its pathogenic consequences? Resolving this issue is
21 very important for the design of therapeutic approaches to lower huntingtin levels.

22 We have used a CRISPR-Cas9 approach to prevent the production of HTT1a in a
23 knock-in mouse model of Huntington's disease. All potential cryptic polyA sites were deleted
24 from *Htt* intron 1 in *HdhQ150* mice and colonies were established that were heterozygous
25 for the intron 1 deletion on a mutant allele (*HdhQ150ΔI*) and heterozygous for the deletion
26 on a wild-type allele (WT Δ I). The CAG repeat sizes in the *HdhQ150* and *HdhQ150ΔI* colonies
27 were well-matched at approximately 195 CAGs.

28 As predicted, the deletion of the cryptic polyA sites from *Htt* intron 1 prevented the
29 generation of the *Htt1a* transcript in the *HdhQ150ΔI* mice. However, very low levels of the

1 HTT1a protein were detected, which resulted from a *Htt* readthrough product of exon 1 and
2 exon 2, that had retained the deleted intron and terminated at a cryptic polyA site in intron 2.
3 *HdhQ150*, *HdhQ150ΔI*, wild-type and *WTΔI* mice were studied until 17 months of age.
4 Immunohistochemical and homogeneous time resolved fluorescence analysis showed that
5 HTT aggregation in both *HdhQ150* and *HdhQ150ΔI* brains contained HTT1a, but the dramatic
6 decrease in soluble HTT1a levels in *HdhQ150ΔI* brains delayed the appearance of
7 aggregated HTT1a by several months. Although this delay in aggregate pathology only
8 partially reversed transcriptional dysregulation, the biomarkers NEFL and BRP39 (YKL40)
9 remained at wild-type levels in *HdhQ150ΔI* mice at 17 months of age.

10 These data demonstrate that the production of HTT1a initiates HTT aggregation and
11 that it is important to target *HTT1a* in huntingtin-lowering therapeutic strategies.

12

13 **Author affiliations:**

14 1 Huntington's Disease Centre and Department of Neurodegenerative Disease, Queen Square
15 Institute of Neurology, UCL; London WC1N 3BG, UK
16 2 Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
17 3 Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
18 4 Rancho BioSciences; San Diego, California 92127, USA
19 5 University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology,
20 20251 Hamburg, Germany

21

22 Correspondence to: Gillian Bates

23 Huntington's Disease Centre and Department of Neurodegenerative Disease, Queen
24 Square Institute of Neurology UCL, Queen Square House, Queen Square, London WC1N
25 3BG, UK

26 E-mail: gillian.bates@ucl.ac.uk

27

28 **Running title:** HTT1a initiates huntingtin aggregation

29 **Keywords:** *HTT* transcription; HTT-lowering; HTRF; transcriptional dysregulation;
30 NEFL/BRP39/YKL40 biomarkers

31

1 Introduction

2 Huntington's disease is an inherited neurodegenerative disorder with symptoms that include
3 dysregulated movements, psychiatric disturbances and cognitive decline.¹ It is caused by a
4 CAG repeat expansion in exon 1 of the huntingtin gene (*HTT*) that encodes a polyglutamine
5 tract in the huntingtin protein (HTT).² Individuals with repeats of (CAG)₃₅ or less do not
6 develop Huntington's disease and a repeat of (CAG)₄₀ or more, as measured in blood, is a
7 fully penetrant mutation.³ The length of the mutant CAG repeat partially accounts for the age
8 of disease onset, with mutant alleles of (CAG)_{≥60} often causing onset of symptoms in
9 childhood.⁴ The neuropathology of Huntington's disease involves neuronal cell death in the
10 striatum, cortex and other brain regions,^{5,6} and HTT inclusions can be identified in neuronal
11 nuclei and scattered throughout the neuropil.^{5,6}

12 The human *HTT* gene contains 67 exons, and the mature transcript is translated to
13 produce a large multifunction scaffold protein.⁷ An expanded CAG repeat can result in the
14 alternative processing of the *HTT* pre-mRNA through the activation of cryptic
15 polyadenylation (polyA) sites and the termination of transcription in intron 1.^{8,9} The cryptic
16 polyA sites are located at 2710 and 7327 bp into intron 1 in human *HTT* and 680 and 1145 bp
17 into intron 1 in mouse *Htt*.^{8,9} As the CAG repeat increases in size, the extent to which the
18 huntingtin pre-mRNA is processed to generate *HTT1a* or *Htt1a* increases.^{8,10} The human
19 *HTT1a* and mouse *Htt1a* transcripts encode the exon 1 HTT protein (HTT1a) that terminates
20 in a proline residue, and does not contain any amino acids that are not present in the full-
21 length HTT protein.⁸

22 The R6 lines of mice are transgenic for a genomic construct that contains human *HTT*
23 promoter sequences, exon 1 and ~220 bp of intron 1.¹¹ The transcription of this transgene
24 terminates at cryptic polyA sequences in the mouse genome close to the integration sites;
25 therefore, the R6 lines of mice express the human HTT1a protein. Analysis of R6 lines has
26 demonstrated that HTT1a is highly pathogenic; expression of the transgene with a (CAG)_{~120}
27 in R6/2 mice, at similar levels to a wild-type *Htt* allele, resulted in end-stage disease at ~12
28 weeks of age.¹¹ Over the past 25 years multiple studies expressing a mutant version of HTT1a
29 have confirmed that it is aggregation-prone and very pathogenic in biochemical assays and
30 multiple models including cells in culture, fruit flies, mice, rats and non-human primates.¹²

31 Somatic CAG repeat expansion can result in repeats containing 100s of CAGs in
32 specific brain regions and cell types in people with Huntington's disease.¹³⁻¹⁷ Genome-wide
33 association studies (GWAS) for genetic modifiers of Huntington's disease phenotypes have
34 identified six genes that play a role in DNA mismatch repair.¹⁸⁻²³ These modifiers most likely
35 act by delaying somatic CAG repeat expansion, given that the ablation of specific mismatch
36 repair genes in mouse models of Huntington's disease prevents somatic CAG repeat

1 instability.²⁴⁻²⁶ It is now widely accepted that somatic CAG repeat expansion represents the
2 first step in the molecular pathology of Huntington's disease.²⁷ Given the pathogenic nature
3 of HTT1a, and that its levels increase with increasing CAG repeat length, could its production
4 be the next step in the pathogenic cascade?

5 In this study, we have used a genetic strategy aimed at preventing the generation of
6 HTT1a in a knock-in mouse model of Huntington's disease. By deleting the cryptic polyA sites
7 from *Htt* intron 1 in the *HdhQ150* knock-in mouse model, the level of the HTT1a protein was
8 considerably depleted. The deposition of HTT aggregation in brain regions was significantly
9 delayed, transcriptional dysregulation was improved, and plasma and CSF biomarkers were
10 maintained at wild-type levels. These data demonstrate that the HTT1a protein initiates HTT
11 aggregation and is a major contributor to Huntington's disease phenotypes.

12

13 Materials and methods

14 Mouse breeding and maintenance

15 All procedures were performed in accordance with the Animals (Scientific Procedures) Act,
16 1986 and approved by the University College London Ethical Review Process Committee.
17 Mouse husbandry and health monitoring were as previously described.²⁸ Animals were kept
18 in individually ventilated cages with Aspen Chips 4 Premium bedding (Datesand) and
19 environmental enrichment comprising chew sticks and a play tunnel (Datesand). All mice
20 had constant access to water and food (Teklad global 18% protein diet, Envigo, the
21 Netherlands). Temperature was regulated at 21°C ± 1°C and mice were kept on a 12 h
22 light/dark cycle. The facility was barrier-maintained and quarterly non-sacrificial FELASA
23 (Federation of European Laboratory Animal Science Associations) screens found no
24 evidence of pathogens.

25

26 Generation of the *HdhQ150ΔI* and *WTΔI* mouse colonies

27 The *HdhQ150ΔI* and *WTΔI* mice were generated at SAGE Labs (Horizon Discovery). Briefly,
28 *HdhQ150* heterozygous males were bred to superovulated C57BL/6J females (Jackson
29 Laboratory, USA), and fertilized embryos were microinjected with single guide RNAs
30 (sgRNAs) and Cas9. Given that 50% of the embryos would be heterozygous for the mutant
31 allele and 50% would be wild type, 75% of the alleles available for modification were wild
32 type. The upstream sgRNA was tctagggttacacctcctcatcagg and the downstream sgRNA was

1 tggtaggcaaatttgggg. DNA was extracted from ear biopsies of the progeny using the
2 Epicentre QuickExtract solution (Cambio). Genotyping was in Sigma JumpStart Taq
3 ReadyMix (P2893) with 1 μ M primers for 5 min at 95°C, 35 x (30 s at 95°C, 30 s at 60°C, 1 min
4 at 68°C), 5 min at 68°C. The forward and reverse primers flanking the upstream sgRNA site
5 were: F1 = tccctcagaggagacagagc, R1 = cattggatgcgtcacactc. The forward and reverse
6 primers flanking the downstream site were: F2 = cattgctgcagtgagcttct, R2 =
7 gcttcctcacacgacacta. Non-homologous end-joining efficiency at the upstream site (F1-R1)
8 was 53% and at the downstream site was 15% (F2-R2). The efficiency of the intronic deletion
9 between the sgRNAs was 4.3% (F1-R2). Of 162 pups screened, seven founders with a
10 deletion on the wild-type allele were identified and the PCR band extracted and sequenced
11 (Supplementary Table 1). Colonies were established for founders #123 and #146 by
12 backcrossing to C57BL/6J (Charles River, Netherlands) and line 123 was used as the WT Δ I
13 line described in this manuscript.

14 The experiment was repeated and to increase the chance of generating the deletion
15 on the mutant allele, *Hdh*Q150 males were bred to superovulated homozygous WT Δ I
16 females, generating embryos in which 50% of the alleles available for modification were
17 mutant. The upstream sgRNA was tctagggttacccatcatcagg, as before, and the downstream
18 sgRNA was shortened to tggtaggcaaatttgggg. Genotyping revealed that non-homologous
19 end-joining efficiency at the upstream site was 34.1% and at the downstream site was 30%.
20 From 110 pups, five founders were recovered with the deletion on both wild-type alleles, and
21 one male founder (#66) with a 20014 bp deletion on the mutant allele (genomic coordinates
22 716 – 20729). A colony was established for founder #66 (*Hdh*Q150 Δ I) by backcrossing to
23 C57BL/6J females (Charles River, Netherlands).

24

25 Genotyping and CAG Repeat Sizing

26 Genomic DNA isolation from ear biopsies was as previously described.²⁹ To genotype for the
27 CAG repeat mutation in the *Hdh*Q150 and *Hdh*Q150 Δ I mice, the forward and reverse primers
28 were: MHD16 CCCATTCAATTGCCTTGCTGCTAAG and MHD18
29 GACTCACGGTCGGTGCAGCGGTTCC. 1.2 - 2.4 ng DNA / μ L was amplified in AmpliTaq Gold
30 360 master mix (Thermo Fisher Scientific) with GC enhancer (Thermo Fisher Scientific) and
31 0.4 μ M each primer at 5 min at 95°C, 30 x (30 s at 94°C, 30 s at 58°C, 3 min at 72°C), 5 min at
32 72°C. For CAG repeat sizing 1.2 ng / μ L was amplified with a FAM-labelled reverse primer. To
33 genotype for the intron 1 deletion in the *Hdh*Q150 Δ I and WT Δ I mice the forward primers
34 were: Din1-03 TCGTCTTGCAGGGTCTCTGG (wild-type allele) and Din1-05
35 TTCTGACCGGTACGTAACTGCT (mutant allele) and the reverse primer was Hdh009Rv
36 CACACCTAAGTAACTCACCATGTACTTG. 2.4 ng DNA was amplified in AmpliTaq Gold 360

1 master mix (Thermo Fisher Scientific) with GC enhancer (Thermo Fisher Scientific) and 0.4
2 μ M each primer at 2 min at 94°C, 35 x (15 s at 94°C, 20 s at 62°C, 45 s at 72°C), 3 min at 72°C.
3 The CAG repeat size of the *HdhQ150* colony was 195.76 \pm 6.95 and of the *HdhQ150* Δ 1 colony
4 was 199.87 \pm 9.61.

5

6 Antibodies

7 The antibodies used for HTRF, immunoprecipitation, western blotting and
8 immunohistochemistry are summarized in Supplementary Table 2. The human HTT exon 2
9 antibody (AB2644) was generated at Thermo Fisher Scientific and the HTT2a antibodies (BAT-
10 GRK and BAT-TGC) were generated at David's Biotechnologie GMBH (Regensburg, DE).

11

12 Homogeneous time-resolved fluorescence (HTRF)

13 HTRF assays were performed as previously described.^{10,29,30} Lysate dilutions and antibody
14 concentrations are summarized in Supplementary Table 3.

15

16 Western blotting and immunoprecipitation

17 Immunoprecipitations from wild-type and zQ175 cortical samples were performed using the
18 3B5H10 antibody (Sigma-Aldrich) as described.³¹ For western blotting, proteins were
19 denatured, separated by 7.5%, 10% or 12% SDS-Polyacrylamide Acrylamide Gel
20 Electrophoresis (SDS-PAGE) (Criterion TGX, Bio-Rad), blotted onto nitrocellulose
21 membranes, and detected by chemiluminescence, as described.^{31,32} Primary antibody
22 dilutions were 1:1000.

23

24 Cell culture and transfections

25 HTT1a and HTT2a expression constructs were generated in pcDNA3.1(+) (Thermo Fisher
26 Scientific) at Azenta Life Sciences. COS-1 cells were transiently transfected with 1.2 μ g DNA
27 using Lipofectamine 3000 (Thermo Fisher Scientific), the medium was changed the following
28 day, and cells were harvested after 24 h. Lysates were prepared in HEPES buffer (50 mM
29 HEPES/NaOH (pH 7.0), 150 mM NaCl, 10 mM EDTA, 1.0% Nonidet P40, 0.5% sodium
30 deoxycholate, 0.1% SDS). 20 μ g of lysate was analysed by western blot.

31

1 **Immunohistochemistry**

2 Mice were transcardially perfusion fixed with 4% paraformaldehyde (Pioneer Research
3 Chemical Ltd) and tissue processing and the storage of sections was as previously
4 documented.³² The immunostaining and imaging of coronal sections was carried out as
5 previously outlined except the ABC reagent was diluted 1:4.³⁰ Sections from all ages and
6 genotypes were stained, imaged and processed together. Images were acquired as
7 described.³³

8

9 **FRET-based aggregation seeding assay (FRASE)**

10 The FRET-based aggregation assays was performed as previously described except that 6.15
11 µg of crude lysate was used per replicate.^{32,34}

12

13 **Nanopore sequencing**

14 Nanopore long-range sequencing was performed as described.³⁵ Reads were aligned against
15 gencode mus musculus version vM29 (GRCm39). Stringtie v2.2.1 was used to generate a
16 consensus gene transcript file across all samples and tissues using the -L and –conservative
17 options.³⁶

18

19 **RNA-sequencing**

20 Total RNA was prepared for 6-month samples and sequenced at Azenta Life Sciences as
21 described.³³ 12-month samples were processed at QBiC (Tübingen, Germany) using
22 QIAsymphony RNA extraction kits, the NEBNext Ultra II Directional RNA kits for library
23 preparation and sequenced on a NovaSeq 6000 with paired-end 100 bp reads (S2 Reagent Kit
24 v1.5). Differential expression tests were performed in R using DESeq2, also as described.^{33,37} A
25 posterior probabilities-based method was used to quantify the probability that the intron 1 deletion
26 restored transcriptional dysregulation, either partially or fully, on a gene-by-gene basis.³⁸ The
27 dysregulated gene list for *HdhQ150* versus wild-type was tested for ranked gene set enrichment
28 against the GOBP (gene ontology biological process) version 18.9.29 using the GSEA (gene set

1 enrichment analysis) function within the R clusterProfiler package.^{39,40} The DESeq2 Wald statistic
2 was used to rank genes and a clusterProfiler FRD < 0.05 was deemed significant.

3

4 CSF and plasma biomarkers

5 CSF and plasma biomarker levels were measured as described.⁴¹

6

7 Statistics

8 Data were screened for outliers at sample level using the ROUT test (Q = 1%; GraphPad Prism
9 v10) and outliers were removed from the analysis. All data sets were tested for a normal
10 Gaussian distribution (Shapiro-Wilk, Prism v10). Statistical analysis was by one-way ANOVA
11 or two-way ANOVA with Tukey's *post hoc* tests. Non-parametric analysis was performed by
12 the Kruskal-Wallis test with Dunn's *post hoc* analysis. Graphs were prepared using Prism v10
13 (GraphPad Software, California, USA). *P*-values ≤ 0.05 were considered statistically
14 significant.

15

16 Results

17 The *Htt1a* transcript is generated through the activation of cryptic polyA sites in intron 1 of
18 *Htt* and the termination of transcription. The SoftBerry POLYAH algorithm predicted nine
19 cryptic polyA sites within mouse intron 1 and it is the first two of these sites that are activated
20 in Huntington's disease knock-in mice.^{8,9} To prevent the production of the HTT1a protein,
21 through the termination of transcription in intron 1, we aimed to delete all potential cryptic
22 polyA sites whilst retaining canonical splicing elements. We chose to use the *HdhQ150*
23 knock-in model for this purpose, in which the mouse polyQ encoding sequence:
24 (CAG)₂CAA(CAG)₄ had been replaced with an expanded CAG repeat with no other
25 modifications to mouse *Htt*.⁴²

26 A CRISPR / Cas9 approach was designed to delete approximately 20 kb from intron 1.
27 In total, 12 founders were obtained with the deletion on the wild-type allele, and one founder
28 with the deletion on the mutant allele (see Materials and Methods). Colonies were
29 established from a wild-type founder (WTΔI) and the mutant founder (*HdhQ150ΔI*). The CAG
30 repeat expansion in the *HdhQ150ΔI* mice was found to be ~195, which was well-matched to
31 the CAG repeat size of the *HdhQ150* colony.

1

2 The production of the HTT1a protein is much diminished in the
3 *HdhQ150ΔI* mice

4 We first investigated whether the HTT1a protein was generated in the *HdhQ150ΔI* mice.
5 Immunoprecipitation of mutant HTT with the polyQ-specific antibody 3B5H10 was
6 performed on cortical lysates from 2-month-old wild-type (WT), *HdhQ150* and *HdhQ150ΔI*
7 mice. The immunoprecipitates were immunoprobed with S830, a polyclonal antibody to
8 exon 1 HTT, with MW8 and CHDI-0148 that are neo-epitope antibodies for the C-terminus of
9 the HTT1a protein, and with AB2644 that detects exon 2 HTT (Fig. 1A). As 3B5H10 binds an
10 expanded polyQ tract, it only immunoprecipitates mutant HTT, and therefore, there was no
11 signal in the WT lanes. S830 detected full-length HTT and the characteristic pattern of HTT
12 fragments.³¹ Although HTT1a is the smallest HTT fragment, it does not migrate fastest
13 through the gel.³¹ The band representing HTT1a had a much lower intensity in the *HdhQ150ΔI*
14 samples (Fig. 1A); that this band represented HTT1a was confirmed by immunoprobing with
15 the HTT1a specific antibodies CHDI-0148 and MW8, and by its absence when probing with
16 AB2644, an antibody to exon 2 HTT (Fig. 1A). The cortical lysates were also
17 immunoprecipitated with MAB2166 (443–457 amino acids) and immunoprobed with
18 MAB5490 (115–129 amino acids). This precipitated both WT and mutant proteins, confirming
19 the genotypes of the mice. Overall, the relative intensities of full length HTT and its
20 proteolytic fragments were comparable between *HdhQ150* and *HdhQ150ΔI* mice and the
21 corresponding HTT fragments migrated much faster in the WT sample (Fig. 1A).

22 We applied HTRF bioassays to compare the levels of the HTT and HTT1a proteins in
23 the cortex, striatum and hippocampus of WT, WT Δ I, *HdhQ150* and *HdhQ150ΔI* mice and to
24 determine how these changed with age.^{10,29} Samples were prepared from brain regions at 2,
25 6, 9, 12 and 17 months of age for the *HdhQ150* and *HdhQ150ΔI* mice and at 2 and 17 months
26 for WT and WT Δ I mice (Fig. 1B-D). Overall, total soluble full-length HTT levels (mutant and
27 WT: D7F7 – MAB5490) were comparable between WT and WT Δ I mice and between *HdhQ150*
28 and *HdhQ150ΔI* mice over the 17-month period (Fig. 1B). Similarly, there was no apparent
29 difference in the levels of soluble full-length mutant HTT levels (MAB5490 – MW1) between
30 *HdhQ150* and *HdhQ150ΔI* mice (Fig. 1C). In contrast, the levels of the soluble HTT1a protein
31 decreased with age in the *HdhQ150* brain regions, due to recruitment into HTT aggregates,
32 and HTT1a was barely detectable in the *HdhQ150ΔI* brain regions by the 2B7-MW8 HTRF
33 assay (Fig. 1D).

1 HTT aggregation appears much later in the brains of *HdhQ150ΔI*, as
2 compared to *HdhQ150* mice

3 Brains from *HdhQ150* and *HdhQ150ΔI* mice at 2, 6, 9, 12 and 17 months of age and from WT
4 and WTΔI mice at 17 months of age were sectioned and immunostained with the S830
5 antibody. S830 is a polyclonal antibody that was raised against a mutant version of human
6 exon 1 HTT. Although some of its epitopes are specific to human HTT, some cross-react with
7 mouse HTT. By 6 months of age, nuclear HTT aggregation was apparent in the striatum,
8 cortex (layers 5/6), CA1 and dentate gyrus regions of the hippocampus in the form of diffuse
9 nuclear aggregation (Fig. 2A-D). Nuclear inclusions in the form of small puncta were also
10 apparent in some nuclei. As the mice aged, nuclear inclusions could be identified in all
11 aggregation-containing nuclei and the diffuse aggregation became less intense (Fig 2A-D).
12 Extranuclear inclusions were also apparent in the hilus at 9 months and increased with age
13 (Fig. 2D). There was no signal on WT or WTΔI sections immunostained with S830
14 (Supplementary Fig. 1).

15 This aggregation process was considerably delayed in the *HdhQ150ΔI* mice.
16 Inclusions were not apparent in the striatum and CA1 regions of the hippocampus until 9
17 months of age (Fig. 2A, C), and in layer 5/6 of the cortex and the dentate gyrus until 17
18 months (Fig. 2B, D). HTT aggregation was apparent as small inclusions, and the diffuse
19 nuclear aggregation was largely absent (Fig. 2 A-D).

20 We applied the FRET-based aggregation seeding assay (FRASE) ³⁴ to determine when
21 aggregate seeds could first be identified in these brain regions by this approach. At 6 months
22 of age, a FRASE signal could be detected in the striatum of *HdhQ150* mice, but not from
23 *HdhQ150ΔI* mice (Supplementary Fig. 2). At 6 months, seeds could not be detected by the
24 FRASE assay in the cortex or hippocampus of *HdhQ150* mice (Supplementary Fig. 2).

25
26 **HTT inclusions in the *HdhQ150ΔI* mice contained HTT1a**

27 The sections from *HdhQ150* and *HdhQ150ΔI* mice at 2, 6, 9, 12 and 17 months of age and
28 from WT and WTΔI mice at 17 months of age were also immunostained with the HTT1a-
29 specific 1B12 antibody. Immunostaining with 1B12 was stronger than that produced by
30 S830, but the timing of the appearance of HTT aggregates in the *HdhQ150* brain regions, in
31 the form of diffuse aggregation or inclusions, was the same as detected by S830 (Fig. 3A-D).
32 Immunostaining of *HdhQ150ΔI* sections with 1B12 indicated that they contained aggregated
33 HTT1a (Fig. 3). As before, in the *HdhQ150ΔI* sections, nuclear inclusions were not seen in
34 the striatum or CA1 region of the hippocampus until 9 months (Fig. 3A, C), but a diffuse

1 nuclear stain was apparent in the striatum from 6 months, that could also be seen in the
2 S830 stained striatal sections on closer inspection (Fig. 2A and 3A). 1B12 did not identify
3 HTT1a aggregation in layers 5/6 of the cortex or the dentate gyrus/hilus until 17 months as
4 with S830 (Fig. 3B, D). There was no signal on WT or WT Δ I sections immunostained with 1B12
5 (Supplementary Fig. 1).

6 To confirm that HTT1a was present in HTT aggregates in the *HdhQ150* Δ I brains and to
7 compare levels with *HdhQ150* mice, we employed HTRF assays on brain region lysates.
8 HTRF and MSD assays that utilize the 4C9 and MW8 antibodies are widely used to assess
9 aggregated HTT levels,^{10,29,43,44} and these assays have been shown to be specific for
10 aggregated HTT1a.^{29,30} However, the 4C9 antibody was raised against the polyproline-rich
11 region in human HTT and does not recognize mouse HTT.⁴⁴ To generate assays that detect
12 aggregated mouse HTT1a, the CHDI-1414 antibody that is specific to the mouse polyproline
13 region was substituted for 4C9.³⁰

14 The MW8-CHDI-1414 HTRF aggregation assay was performed on the same lysates
15 and in parallel to the soluble HTT and HTT1a assays (Fig 1 B-D). These were from the cortex,
16 striatum and hippocampus at 2, 6, 9, 12 and 17 months of age for the *HdhQ150* and
17 *HdhQ150* Δ I mice and at 2 and 17 months of age for WT and WT Δ I mice. HTT1a aggregation
18 could be detected in all three *HdhQ150* brain regions by 6 months and increased with age to
19 17 months (Fig. 3E). The level of HTT1a aggregation in the *HdhQ150* Δ I brain regions was
20 much lower, where statistically significant levels of aggregation were present in the striatum
21 at 9 months of age and not until 17 months in the cortex and hippocampus (Fig. 3E),
22 consistent with immunohistochemistry data.

23

24 RNA transcripts generated from the *Htt* loci in *HdhQ150*, *HdhQ150* Δ I, 25 WT and WT Δ I brain regions

26 We next performed nanopore sequencing to define the *Htt* mRNA isoforms that were
27 transcribed from the *HdhQ150*, *HdhQ150* Δ I, WT and WT Δ I loci. The *HdhQ150*, *HdhQ150* Δ I
28 and WT Δ I mice were bred to homozygosity and striatum, cortex and hippocampus were
29 harvested at 2 months of age, along with these brain regions from WT mice. Nanopore
30 sequencing was performed ($n = 5$ -6/genotype/brain region) and four CAG repeat-containing
31 isoforms were identified: the canonically spliced transcript (*Htt*), *Htt1a*, the *Htt readthrough*
32 and *Htt2a* (Fig. 4A). The *Htt readthrough* transcript contained *Htt* exon 1, the deleted intron
33 1, exon 2 and terminated at the first cryptic polyA site in intron 2; if translated this would
34 generate the HTT1a protein (Fig. 4A). The *Htt2a* transcript contained *Htt* exon 1, exon 2 and a

1 novel exon 2a located in intron 2 terminating at the first cryptic polyA site in intron 2; if
2 translated this would generate the HTT2a protein (Fig. 4A).

3 Illumina-based RNA sequencing was performed on the striatum and hippocampus
4 from WT, WT Δ l, *Hdh*Q150 and *Hdh*Q150 Δ l mice at 6 months of age and from WT, *Hdh*Q150
5 and *Hdh*Q150 Δ l at 12 months, and the level of each of the four transcripts: *Htt*, *Htt*1a, *Htt*
6 readthrough and *Htt*2a was quantified (Fig. 4 B-E and Supplementary Fig. 3). The spliced full-
7 length *Htt* transcript was present in all genotypes as would be expected. The level in
8 *Hdh*Q150 striatum and hippocampus was lower than that in WT mice at both 6 and 12
9 months, whereas full-length *Htt* levels in these *Hdh*Q150 Δ l brain regions did not differ from
10 WT (Fig. 4B and Supplementary Fig. 3A). The *Htt*1a transcript was present in *Hdh*Q150, and
11 not WT, striatum and hippocampus as expected (Fig. 4C and Supplementary Fig. 3B). *Htt*1a
12 was absent from these brain regions in the *Hdh*Q150 Δ l mice, indicating that the removal of
13 the cryptic polyA sites from intron 1 had prevented transcription termination in intron 1 as
14 predicted. The *Htt* readthrough product was present in the *Hdh*Q150 Δ l striatum and
15 hippocampus at both 6 and 12 months of age (Fig. 4D and Supplementary Fig. 3C).
16 Translation of the *Htt* readthrough transcript would generate the HTT1a protein, indicating
17 that this small transcript is most likely translocated to the cytoplasm and is the origin of the
18 low levels of HTT1a detected in the *Hdh*Q150 Δ l mice. The *Htt*2a transcript could also be
19 detected in the striatum and hippocampus of WT Δ l and *Hdh*Q150 Δ l mice, with greater levels
20 in *Hdh*Q150 Δ l (Fig. 4E and Supplementary Fig. 3D). Two antibodies were raised against
21 HTT2a (BAT-GRK and BAT-TGC) (Supplementary Fig. 4A). These detected the HTT2a protein
22 in lysates from COS-1 cells transiently transfected with a *Htt*2a construct (Supplementary
23 Fig. 4B) but failed to detect HTT2a in brain lysates from *Hdh*Q150 Δ l mice (Supplementary
24 Fig. 4C).

25
26 **Transcriptional dysregulation is delayed in *Hdh*Q150 Δ l brain regions**
27 Transcriptional dysregulation has been extensively studied in mouse models of Huntington's
28 disease.⁴⁵ Therefore, the striatal and hippocampal data sets from WT, WT Δ l, *Hdh*Q150 and
29 *Hdh*Q150 Δ l mice at 6 months of age, and WT, *Hdh*Q150 and *Hdh*Q150 mice at 12 months
30 were used to determine the effect of decreasing HTT1a levels, and delaying the deposition
31 of nuclear HTT aggregation, on transcriptional dysregulation.

32 We began by comparing the profile of dysregulated genes in the striatum of *Hdh*Q150
33 mice at 6 and 12 months with that in other knock-in mouse models of Huntington's disease,
34 using archival striatal RNA-seq data for *Hdh*Q111 mice at 10 months of age, Q140 mice at 6
35 and 10 months and zQ175 mice at 6 and 10 months.⁴⁵ The differential gene expression

1 results for each of these data sets were subjected to ranked gene set enrichment analysis
2 (GSEA) against the gene ontology biological process (GOBP) collection to identify biological
3 pathways that were significantly dysregulated in the striatum of each of the models (*FDR* <
4 0.05). The profiles were very similar with 16 biological processes dysregulated in all knock-
5 in models at all ages (Fig. 5A). The dysregulated *HdhQ150* striatal profile at 6 months of age
6 most closely aligned with that from the *HdhQ111* mice at 10 months. All dysregulated
7 biological processes in the *HdhQ150* striatum at 12 months of age were also dysregulated in
8 the Q140 and zQ175 striata (Fig. 5A).

9 The impact of the *Htt2a* transcript on the transcriptome in the WT striatum was
10 assessed by comparing the RNA-seq datasets of WT Δ I and WT striata at 6 months of age.
11 Differential gene expression analysis identified 15 genes for which the expression levels
12 were altered (Supplementary Table 4). The level of *Htt2a* expression was higher in
13 *HdhQ150* Δ I striatum than in the WT Δ I striatum (Fig. 4E). However, it was not possible to
14 assess the effect of *Htt2a* on the *HdhQ150* striatal transcriptome, because of the large
15 number of genes (>1000) that were dysregulated due to the Huntington's disease mutation
16 (Fig. 5A and Supplementary Table 5). Given that only 15 genes were dysregulated in the WT Δ I
17 striata, any contribution from the *Htt2a* transcript to the Huntington's disease dysregulated
18 signature is likely to be small.

19 Next, we determined the effect of decreasing HTT1a levels on the *HdhQ150*
20 dysregulated gene signature at 6 months of age. Of the 1254 dysregulated genes in the
21 *HdhQ150* striata, the dysregulation was improved for 25% of the genes (86 fully reversed and
22 228 partially reversed) in the *HdhQ150* Δ I mice (Fig. 5B and Supplementary Table 5). At 6
23 months of age, only 61 genes were dysregulated in the hippocampus, which was too few to
24 draw any strong conclusions, but there was a similar pattern to the striatum in that for 30%
25 of them, the dysregulation was either fully or partially 'reversed' in the *HdhQ150* Δ I
26 hippocampus (Fig. 5B and Supplementary Table 5). At 12 months of age, there were 2820
27 dysregulated genes in the *HdhQ150* striatum, and 697 dysregulated genes in the *HdhQ150*
28 hippocampus. Of these, the dysregulated expression level of 40% in the striatum and 52% in
29 the hippocampus were either fully or partially reversed in the *HdhQ150* Δ I mice (Fig. 5B and
30 Supplementary Table 5).

31

32 **CSF and plasma biomarkers are maintained at wild-type levels in the**
33 ***HdhQ150* Δ I mice**

34 Plasma and CSF biomarkers provide a readout that is directly translatable to Huntington's
35 disease clinical measures. NEFL (alias NfL)⁴⁶⁻⁴⁸ and YKL40^{48,49} have been extensively studied

1 in Huntington's disease CSF and plasma and both NEFL and BRP39 (mouse YKL40) can be
2 robustly detected in the CSF and plasma of mouse models of Huntington's disease.⁴¹ We
3 measured the levels of NEFL and BRP39 in these biofluids from *HdhQ150*, *HdhQ150ΔI*, WT
4 and *WTΔI* mice (Fig. 6). NEFL and BRP39 levels were raised in *HdhQ150* CSF by 12 months
5 of age but remained at WT levels in the *HdhQ150ΔI* mice at both 12 and 17 months (Fig. 6A).
6 The levels of NEFL and BRP39 were lower in plasma than in CSF (Fig. 6B). In plasma, NEFL
7 was raised as compared to wild-type mice in both *HdhQ150* and *HdhQ150ΔI* mice by 12
8 months, but the extent to which this had occurred was significantly lower in the *HdhQ150ΔI*
9 mice (Fig. 6B). An increase in plasma BRP39 was also detected by 12 months of age in
10 *HdhQ150* mice but was at WT levels in *HdhQ150ΔI* mice at both 12 and 17 months (Fig. 6B).
11 Overall, NEFL and BRP39 in *WTΔI* mice were at WT levels in CSF and plasma at both 12 and
12 17 months of age (Fig. 6).

13

14 Discussion

15 Somatic CAG repeat expansion causes the progressive elongation of the CAG repeat
16 mutation in the brains of people with Huntington's disease with age. Single cell nuclear
17 sequencing studies have proposed that the mutation remains benign until the repeat has
18 expanded beyond a critical threshold of more than (CAG)₁₀₀.¹⁷ Given that the level of the
19 pathogenic HTT1a protein increases with increasing CAG length, could this be the effector
20 through which somatic CAG expansion exerts its detrimental effects? We have applied a
21 genetic strategy to prevent the production of HTT1a in a knock-in mouse model of
22 Huntington's disease that resulted in only very low levels being produced. This had the
23 consequence of delaying HTT aggregation in the brain by months, improving transcriptional
24 dysregulation and competently retaining CSF biomarkers at WT levels. These data support
25 the hypothesis that HTT1a contributes significantly to Huntington's disease pathogenesis.

26 The *HdhQ150* knock-in model was chosen for this study, because the strategy used
27 for its creation replaced the mouse (CAG)₂CAA(CAG)₄ sequence with an expanded CAG
28 repeat and did not result in any other modifications to the mouse *Htt* sequence.⁴² This is in
29 contrast to other knock in models e.g. *HdhQ111*, *Q140*, *zQ175*, in which the replacement of
30 mouse exon 1 *Htt* with human exon 1 *HTT* led to alterations within the 5' region of intron 1.^{50,51}
31 The deletion of all potential cryptic polyA sites from intron 1 prevented termination of the
32 transcription in the intron as intended, completely preventing the production of the *Htt1a*
33 transcript in *HdhQ150ΔI* mice. However, in some cases, the deleted intron 1 in the
34 *HdhQ150ΔI* mice was not spliced and the shortened intron 1 led to the activation of the first
35 cryptic polyA site in intron 2 (*Htt readthrough* transcript). The presence of low levels of the

1 HTT1a protein in *HdhQ150ΔI* mice is most likely due to the translation of these *Htt*
2 *readthrough* transcripts. The deleted intron also resulted in the production of the *Htt2a*
3 transcript, which was present in both WT Δ I and *HdhQ150ΔI* mice and, therefore, its
4 generation was not dependent on the presence of an expanded CAG repeat, although levels
5 were higher in the *HdhQ150ΔI* mice. We failed to detect any HTT2a protein in *HdhQ150ΔI*
6 brain lysates and so if *Htt2a* is translated, it is at very low levels.

7 The detection of the HTT1a protein is not straightforward; it does not contain any
8 amino acids that are not present in full-length HTT, and therefore, its detection depends on
9 the use of neo-epitope, conformation-specific antibodies to the C-terminus of HTT1a. The
10 MW8 antibody has fulfilled this role and specifically detects soluble HTT1a on western blots
11 of immunoprecipitated protein,^{8,31} and in HTRF, MSD and AlphaLISA assays for soluble and
12 aggregated HTT1a.^{29,30} The use of MW8 against western blots of immunoprecipitated mutant
13 HTT showed that HTT1a was present at only very low levels in the *HdhQ150ΔI* brain. But MW8
14 is a weak antibody, and the HTT1a-specific HTRF assay (2B7-MW8) did not detect such low
15 HTT1a levels. More sensitive HTT1a-specific antibodies have been developed by the CHDI
16 Foundation (e.g. 1B12),⁵² and whilst we were able to use 1B12 for immunohistochemistry, it
17 was not available in time for the bioassay work.

18 The very low levels of soluble HTT1a in the *HdhQ150ΔI* brain delayed the appearance
19 of aggregated HTT in the form of diffuse nuclear aggregation and inclusion bodies by several
20 months. Immunohistochemistry with the 1B12 antibody demonstrated that the aggregates
21 were composed of HTT1a in both *HdhQ150* and *HdhQ150ΔI* brains. Whether HTT aggregates
22 contain HTT proteins other than HTT1a is not certain. We have never been able to detect
23 aggregated HTT in knock-in mouse brains with antibodies that detect epitopes C-terminal to
24 HTT1a.³⁰ However, we previously showed that, as HTT aggregated, the soluble levels of the
25 two smallest proteolytic fragments of HTT, as well as HTT1a, decreased with age in *HdhQ150*
26 brain, suggesting that all three contributed to the threshold concentration required for HTT
27 aggregation.³¹ Our novel MSD assays also suggested that HTT fragments longer than HTT1a
28 were present in HTT aggregates at low levels, which would be consistent with at least a low
29 level of recruitment of longer HTT fragments.²⁹

30 The deposition of aggregated HTT in the brain and transcriptional dysregulation,
31 especially in the striatum, are molecular phenotypes that appear early in the disease course
32 in all knock-in models. That they have become standard read-outs in preclinical studies for
33 HTT-lowering studies is valid,^{33,38,53} as they are proximal to the mutation, and are phenotypes
34 that are present in the human Huntington's disease brain.⁵⁴⁻⁵⁶ Transcriptional dysregulation
35 in the *HdhQ150* striatum was found to have a comparable signature to that in other knock-
36 in mouse models of Huntington's disease and was consistent with phenotypes in the

1 *HdhQ150* line developing at a slower rate than knock-in lines with a mutated version of
2 human exon 1 *HTT*, even with comparable CAG repeat length mutations.⁵⁷ The
3 transcriptional dysregulation in the *HdhQ150ΔI* striatum was delayed, such that
4 transcription levels were improved in 25% genes at 6 months of age and 40% at 12 months
5 of age. Given the low level of HTT1a in *HdhQ150ΔI* mice, a greater improvement might have
6 been expected. However, immunohistochemistry with the 1B12 antibody revealed a faint
7 diffuse aggregated HTT1a signal in striatal nuclei at 6 months of age, that was absent at 2
8 months. Therefore, there was sufficient HTT1a, probably together with small HTT proteolytic
9 fragments, to initiate the aggregation process, resulting in some transcriptional
10 dysregulation. However, the subsequent aggregate polymerization was substantially
11 delayed. These data are comparable to several HTT-lowering preclinical studies, in which the
12 'reversal' of gene dysregulation was consistently less than 50%.^{38,58}

13 The choice of functional read-outs for preclinical studies in all knock-in mouse
14 models of Huntington's disease is limited. They do not develop robust behavioural
15 phenotypes that are reproducible between laboratories, have good statistical power or
16 develop at ages amenable to the design of preclinical trials.^{59,60} However, CSF and plasma
17 biomarkers such as NEFL and BRP39 (YKL40 in human) can be detected in Huntington's
18 disease mouse biofluids,⁴¹ and have the advantage that they are directly translatable to
19 clinical trials.^{47,49} We found that NEFL and BRP39 were at wild-type levels in the *HdhQ150ΔI*
20 CSF indicating that the reduction in HTT1a in the brain had prevented the disease-associated
21 increase in these biomarkers. This complete rescue of the CSF biomarkers had occurred
22 despite the fact that more than 50% of the Huntington's disease transcriptional signature
23 remained dysregulated.

24 Somatic CAG repeat expansion drives the age of onset of Huntington's disease and
25 the allelic series of knock-in mouse models has been used to determine the effect of a
26 repeat expansion from (CAG)₅₀ to (CAG)₁₉₀ on the levels of huntingtin transcripts and protein
27 isoforms.¹⁰ As the CAG repeat expanded, *Htt1a* mRNA and HTT1a protein levels increased,
28 whilst full-length mutant HTT levels decreased.¹⁰ Single cell nuclear sequencing from post
29 *mortem* brain has shown that, in the caudate-putamen, CAG repeat expansion is specific to
30 spiny projection neurons (medium spiny neurons).^{16,17} Expansion from an inherited allele of
31 (CAG)₄₀₋₄₃ had occurred in most neurons to a median length of (CAG)₆₀₋₇₃ with 2-5% cells
32 having highly expanded alleles of (CAG)₁₀₀₋₅₀₀.¹⁷ That only a small proportion of alleles have
33 such long repeat tracts explains why the *HTT1a* transcripts were easier to detect in brains
34 from juvenile onset cases with inherited alleles of (CAG)_{>90}. In these juvenile cases, as in the
35 *HdhQ111*, Q140 and zQ175 mouse lines, somatic expansion starts from a highly expanded
36 baseline, as compared to adult-onset Huntington's disease brains.^{9,61} For the same reason,
37 the detection of the HTT1a protein in CSF for target engagement in clinical trials is likely to

1 be challenging, even with the more potent 1B12 HTT1a-specific antibodies and platforms
2 with greater sensitivity.^{52,62}

3 There are several HTT-lowering modalities that have progressed to clinical evaluation.
4 Agents that only target full-length *HTT* (mutant and wild-type) include the antisense
5 oligonucleotide (ASO) tominersen⁶³ and the small molecule splicing modulators
6 branaplam⁶⁴ and PTC518⁶⁵. A large phase 3 trial of tominersen was halted prematurely
7 because it showed no benefit, and for safety reasons.⁶⁶ Agents that target exon 1 *HTT*
8 sequences lower both full-length HTT and HTT1a and include AMT130, a miRNA packaged in
9 adeno-associated virus,^{67,68} ALN-HTT02, an siRNA that targets exon 1,⁶⁹ and V0659, an ASO
10 that targets CAG repeats.⁶⁵ Recent preclinical studies using siRNAs and ASOs have
11 highlighted the importance of decreasing HTT1a, showing that this is much more beneficial
12 than lowering full-length HTT alone.^{58,70} The evaluation of patients 36 months after treatment
13 with the AMT-130 gene therapy has also supported this conclusion, with a 75% slowing of
14 disease progression and a reduction in CSF NEFL from baseline in those who had received
15 the high dose (www.unique.com/investors-media/press-releases). Given the safety
16 concerns of lowering wild-type HTT,^{71,72} a therapy that targeted HTT1a alone would have
17 advantages and could be achieved with siRNAs against intron 1 *HTT* sequences. The data
18 presented here strongly support targeting HTT1a in the design of therapeutic approaches to
19 lower huntingtin.

20

21 Data availability

22 RNA-seq data have been deposited in GEO with the accession number GSE310158.
23 Nanopore data have been deposited in GEO with the accession number GSE307808. The
24 authors confirm that all other data supporting the findings in this study are available within
25 the article and its Supplementary Material. Raw data will be shared by the corresponding
26 author upon request.

27

28 Acknowledgements

29 The authors wish to thank David Howland for insightful discussions throughout this project, the
30 Zentrum für Quantitative Biologie (QBiC) for excellent technical expertise and help during RNA
31 sequencing and Viktoria Andreeva for the RNA-seq GEO submission.

1

2 Funding

3 This work was supported by grants from the CHDI Foundation and the Medical Research
4 Council (MR/L003627/1) to GPB and the German Research Foundation (DFG project
5 553092974) to AN.

6

7 Competing interests

8 JRG is an employee of Rancho BioSciences. The authors declare no other competing
9 interests.

10

11 Supplementary material

12 Supplementary material is available at *Brain* online.

13

14 References

- 15 1. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. *Nat Rev Dis Primers*. Apr 23 2015;1:15005. doi:10.1038/nrdp.2015.5
- 16 2. HDCRG. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. *Cell*. 1993;72(6):971-983.
- 17 3. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Hayden MR, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the

1 Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly
2 individuals with 36-39 repeats. *Am J Hum Genet.* 1996;59(1):16-22.

3 4. Telenius H, Kremer HP, Theilmann J, Andrew SE, Almqvist E, Anvret M, Greenberg C,
4 Greenberg J, Lucotte G, Squitieri F, et al. Molecular analysis of juvenile Huntington disease: the
5 major influence on (CAG)n repeat length is the sex of the affected parent. *Hum Mol Genet.*
6 1993;2(10):1535-1540.

7 5. Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JP, Faull RL. The Neuropathology of
8 Huntington's Disease. *Curr Top Behav Neurosci.* 2015;22:33-80. doi:10.1007/7854_2014_354

9 6. Rub U, Vonsattel JP, Heinsen H, Korf HW. The Neuropathology of Huntington's disease:
10 classical findings, recent developments and correlation to functional neuroanatomy. *Adv Anat
11 Embryol Cell Biol.* 2015;217:1-146.

12 7. Guo Q, Bin H, Cheng J, Seefelder M, Engler T, Pfeifer G, Oeckl P, Otto M, Moser F,
13 Maurer M, Pautsch A, Baumeister W, Fernandez-Busnadio R, Kochanek S. The cryo-electron
14 microscopy structure of huntingtin. *Nature.* Mar 1 2018;555(7694):117-120.
15 doi:10.1038/nature25502

16 8. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, Smith
17 DL, Faull RL, Roos RA, Howland D, Detloff PJ, Housman DE, Bates GP. Aberrant splicing of
18 HTT generates the pathogenic exon 1 protein in Huntington disease. Research Support, Non-U.S.
19 Gov't. *Proc Natl Acad Sci U S A.* Feb 5 2013;110(6):2366-2370. doi:10.1073/pnas.1221891110

20 9. Neueder A, Landles C, Ghosh R, Howland D, Myers RH, Faull RLM, Tabrizi SJ, Bates
21 GP. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's
22 disease patients. *Sci Rep.* May 2 2017;7(1):1307. doi:10.1038/s41598-017-01510-z

23 10. Landles C, Osborne GF, Phillips J, Canibano-Pico M, Nita IM, Ali N, Bobkov K, Greene
24 JR, Sathasivam K, Bates GP. Mutant huntingtin protein decreases with CAG repeat expansion:
25 implications for therapeutics and bioassays. *Brain Commun.* 2024;6(6):fcae410.
26 doi:10.1093/braincomms/fcae410

27 11. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M,
28 Trottier Y, Lehrach H, Davies SW, Bates GP. Exon 1 of the HD gene with an expanded CAG

1 repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. *Cell*.
2 1996;87(3):493-506.

3 12. Bates GP, Tabrizi SJ, Jones L, eds. *Huntington's disease*. 4th ed. Oxford University Press;
4 2014.

5 13. Kennedy L, Evans E, Chen CM, Craven L, Detloff PJ, Ennis M, Shelbourne PF. Dramatic
6 tissue-specific mutation length increases are an early molecular event in Huntington disease
7 pathogenesis. *Hum Mol Genet*. Dec 15 2003;12(24):3359-3367.

8 14. Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ, Faull RL, Bates GP. DNA
9 instability in postmitotic neurons. *Proc Natl Acad Sci U S A*. Mar 4 2008;105(9):3467-3472.
10 doi:0800048105

11 15. Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K,
12 Mysore JS, Grote Urtubey DM, Parwez CR, von Heim SM, Clark HB, Nguyen HP, Forster E,
13 Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-
14 Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and
15 periphery in Huntington's disease and in spinocerebellar ataxia type 1. *Hum Mol Genet*. Aug 29
16 2020;29(15):2551-2567. doi:10.1093/hmg/ddaa139

17 16. Matlik K, Baffuto M, Kus L, Deshmukh AL, Davis DA, Paul MR, Carroll TS, Caron MC,
18 Masson JY, Pearson CE, Heintz N. Cell-type-specific CAG repeat expansions and toxicity of
19 mutant Huntington in human striatum and cerebellum. *Nat Genet*. Mar 2024;56(3):383-394.
20 doi:10.1038/s41588-024-01653-6

21 17. Handsaker RE, Kashin S, Reed NM, Tan S, Lee W-S, McDonald TM, Morris K, Kamitaki
22 N, Mullally CD, Morakabati N, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K,
23 Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in
24 Huntington's disease. *Cell*. 2025;doi:doi.org/10.1101/2024.05.17.592722

25 18. GEM-HD. Identification of Genetic Factors that modify clinical onset of Huntington's
26 disease. *Cell* 2015;162:516-526.

27 19. GeM-HD. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's
28 Disease Onset. *Cell*. Aug 8 2019;178(4):887-900 e14. doi:10.1016/j.cell.2019.06.036

1 20. Moss DJH, Pardinas AF, Langbehn D, Lo K, Leavitt BR, Roos R, Durr A, Mead S,
2 investigators T-H, investigators R, Holmans P, Jones L, Tabrizi SJ. Identification of genetic
3 variants associated with Huntington's disease progression: a genome-wide association study.
4 *Lancet Neurol*. Sep 2017;16(9):701-711. doi:10.1016/S1474-4422(17)30161-8

5 21. Lee JM, Chao MJ, Harold D, Abu Elneel K, Gillis T, Holmans P, Jones L, Orth M, Myers
6 RH, Kwak S, Wheeler VC, MacDonald ME, Gusella JF. A modifier of Huntington's disease onset
7 at the MLH1 locus. *Hum Mol Genet*. Oct 1 2017;26(19):3859-3867. doi:10.1093/hmg/ddx286

8 22. Iyer RR, Pluciennik A. DNA Mismatch Repair and its Role in Huntington's Disease. *J
9 Huntington's Dis*. 2021;10(1):75-94. doi:10.3233/JHD-200438

10 23. Goold R, Hamilton J, Menneteau T, Flower M, Bunting EL, Aldous SG, Porro A, Vicente
11 JR, Allen ND, Wilkinson H, Bates GP, Sartori AA, Thalassinos K, Balmus G, Tabrizi SJ. FAN1
12 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat
13 expansion in Huntington's disease. *Cell Rep*. Aug 31 2021;36(9):109649.
14 doi:10.1016/j.celrep.2021.109649

15 24. Manley K, Shirley TL, Flaherty L, Messer A. Msh2 deficiency prevents in vivo somatic
16 instability of the CAG repeat in Huntington disease transgenic mice. *Nat Genet*. 1999;23(4):471-
17 473.

18 25. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, Panigrahi GB, Hou C,
19 Holloway K, Gillis T, Guide JR, Cohen PE, Li GM, Pearson CE, Daly MJ, Wheeler VC. Mismatch
20 repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide
21 and candidate approaches. *PLoS Genet*. Oct 2013;9(10):e1003930.
22 doi:10.1371/journal.pgen.1003930

23 26. Wheeler VC, Dion V. Modifiers of CAG/CTG Repeat Instability: Insights from
24 Mammalian Models. *J Huntington's Dis*. 2021;10(1):123-148. doi:10.3233/JHD-200426

25 27. Hong EP, MacDonald ME, Wheeler VC, Jones L, Holmans P, Orth M, Monckton DG,
26 Long JD, Kwak S, Gusella JF, Lee JM. Huntington's Disease Pathogenesis: Two Sequential
27 Components. *J Huntington's Dis*. 2021;10(1):35-51. doi:10.3233/JHD-200427

28 28. Fienko S, Landles C, Sathasivam K, McAteer SJ, Milton RE, Osborne GF, Smith EJ, Jones
29 ST, Bondulich MK, Danby ECE, Phillips J, Taxy BA, Kordasiewicz HB, Bates GP. Alternative

1 processing of human HTT mRNA with implications for Huntington's disease therapeutics. *Brain*.
2 Dec 19 2022;145(12):4409-4424. doi:10.1093/brain/awac241

3 29. Landles C, Milton RE, Jean A, McLarmon S, McAteer SJ, Taxy BA, Osborne GF, Zhang
4 C, Duan W, Howland D, Bates GP. Development of novel bioassays to detect soluble and
5 aggregated Huntingtin proteins on three technology platforms. *Brain Commun*. 2021;3(1):fcaa231.
6 doi:10.1093/braincomms/fcaa231

7 30. Smith EJ, Sathasivam K, Landles C, Osborne GF, Mason MA, Gomez-Paredes C, Taxy
8 BA, Milton RE, Ast A, Schindler F, Zhang C, Duan W, Wanker EE, Bates GP. Early detection of
9 exon 1 huntingtin aggregation in zQ175 brains by molecular and histological approaches. *Brain*
10 *Commun*. 2023;5(1):fcad010. doi:10.1093/braincomms/fcad010

11 31. Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J,
12 Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP. Proteolysis of mutant
13 huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal
14 nuclei in Huntington disease. *J Biol Chem*. Mar 19 2010;285(12):8808-8823. doi:M109.075028

15 32. Landles C, Milton RE, Ali N, Flomen R, Flower M, Schindler F, Gomez-Paredes C,
16 Bondulich MK, Osborne GF, Goodwin D, Salsbury G, Benn CL, Sathasivam K, Smith EJ, Tabrizi
17 SJ, Wanker EE, Bates GP. Subcellular Localization And Formation Of Huntingtin Aggregates
18 Correlates With Symptom Onset And Progression In A Huntington'S Disease Model. *Brain*
19 *Commun*. 2020;2(2):fcaa066. doi:10.1093/braincomms/fcaa066

20 33. Aldous SG, Smith EJ, Landles C, Osborne GF, Canibano-Pico M, Nita IM, Phillips J,
21 Zhang Y, Jin B, Hirst MB, Benn CL, Bond BC, Edelmann W, Greene JR, Bates GP. A CAG repeat
22 threshold for therapeutics targeting somatic instability in Huntington's disease. *Brain*. May 3
23 2024;147(5):1784-1798. doi:10.1093/brain/awae063

24 34. Ast A, Buntru A, Schindler F, Hasenkopf R, Schulz A, Brusendorf L, Klockmeier K, Grelle
25 G, McMahon B, Niederlechner H, Jansen I, Diez L, Edel J, Boeddrich A, Franklin SA, Baldo B,
26 Schnoegl S, Kunz S, Purfurst B, Gaertner A, Kampinga HH, Morton AJ, Petersen A, Kirstein J,
27 Bates GP, Wanker EE. mHTT Seeding Activity: A Marker of Disease Progression and
28 Neurotoxicity in Models of Huntington's Disease. *Mol Cell*. Sep 6 2018;71(5):675-688 e6.
29 doi:10.1016/j.molcel.2018.07.032

1 35. Heiden R, Hannig L, Bernhard JS, Vallon M, Schlecht A, Hofmann N, Ergun S, Hoschek
2 F, Wagner M, Neueder A, Forster CY, Braunger BM. Tissue origin of endothelial cells determines
3 immune system modulation and regulation of HIF-1alpha-, TGF-beta-, and VEGF signaling.
4 *iScience*. Feb 21 2025;28(2):111740. doi:10.1016/j.isci.2024.111740

5 36. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome
6 assembly from long-read RNA-seq alignments with StringTie2. *Genome Biol*. Dec 16
7 2019;20(1):278. doi:10.1186/s13059-019-1910-1

8 37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
9 RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550. doi:10.1186/s13059-014-0550-8

10 38. Marchionini DM, Liu JP, Ambesi-Impiombato A, Kerker K, Cirillo K, Bansal M, Mushlin
11 R, Brunner D, Ramboz S, Kwan M, Kuhlbrodt K, Tillack K, Peters F, Rauhala L, Obenauer J,
12 Greene JR, Hartl C, Khetarpal V, Lager B, Rosinski J, Aaronson J, Alam M, Signer E, Munoz-
13 Sanjuan I, Howland D, Zeitlin SO. Benefits of global mutant huntingtin lowering diminish over
14 time in a Huntington's disease mouse model. *JCI Insight*. Oct 24
15 2022;7(20)doi:10.1172/jci.insight.161769

16 39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski
17 K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC,
18 Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of
19 biology. The Gene Ontology Consortium. *Nat Genet*. May 2000;25(1):25-29. doi:10.1038/75556

20 40. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
21 themes among gene clusters. *OMICS*. May 2012;16(5):284-287. doi:10.1089/omi.2011.0118

22 41. Bondulich MK, Phillips J, Canibano-Pico M, Nita IM, Byrne LM, Wild EJ, Bates GP.
23 Translatable plasma and CSF biomarkers for use in mouse models of Huntington's disease. *Brain*
24 *Commun*. 2024;6(1):fcae030. doi:10.1093/braincomms/fcae030

25 42. Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li
26 XJ, Albin RL, Detloff PJ. Neurological abnormalities in a knock-in mouse model of Huntington's
27 disease. *Hum Mol Genet*. 2001;10(2):137-144.

28 43. Reindl W, Baldo B, Schulz J, Janack I, Lindner I, Kleinschmidt M, Sedaghat Y, Thiede C,
29 Tillack K, Schmidt C, Cardaun I, Schwagarus T, Herrmann F, Hotze M, Osborne GF, Herrmann

1 S, Weiss A, Zerbinatti C, Bates GP, Bard J, Munoz-Sanjuan I, Macdonald D. Meso scale
2 discovery-based assays for the detection of aggregated huntingtin. *PLoS One*.
3 2019;14(3):e0213521. doi:10.1371/journal.pone.0213521

4 44. Baldo B, Paganetti P, Grueninger S, Marcellin D, Kaltenbach LS, Lo DC, Semmelroth M,
5 Zivanovic A, Abramowski D, Smith D, Lotz GP, Bates GP, Weiss A. TR-FRET-based duplex
6 immunoassay reveals an inverse correlation of soluble and aggregated mutant huntingtin in
7 huntington's disease. *Chem Biol*. Feb 24 2012;19(2):264-275. doi:S1074-5521(12)00016-6

8 45. Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu XH, Ramos
9 EM, El-Zein K, Zhao Y, Deverasetty S, Tebbe A, Schaab C, Lavery DJ, Howland D, Kwak S,
10 Botas J, Aaronson JS, Rosinski J, Coppola G, Horvath S, Yang XW. Integrated genomics and
11 proteomics define huntingtin CAG length-dependent networks in mice. *Nat Neurosci*. Apr
12 2016;19(4):623-633. doi:10.1038/nn.4256

13 46. Rodrigues FB, Byrne LM, Tortelli R, Johnson EB, Wijeratne PA, Arridge M, De Vita E,
14 Ghazaleh N, Houghton R, Furby H, Alexander DC, Tabrizi SJ, Schobel S, Scahill RI, Heslegrave
15 A, Zetterberg H, Wild EJ. Mutant huntingtin and neurofilament light have distinct longitudinal
16 dynamics in Huntington's disease. *Sci Transl Med*. Dec 16
17 2020;12(574)doi:10.1126/scitranslmed.abc2888

18 47. Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, Scahill RI, Tabrizi
19 SJ, Zetterberg H, Langbehn D, Wild EJ. Neurofilament light protein in blood as a potential
20 biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. *Lancet
Neurol*. Aug 2017;16(8):601-609. doi:10.1016/S1474-4422(17)30124-2

22 48. Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S, Parker C, Lowe J, Nair
23 A, O'Callaghan C, Langley C, Papoutsi M, McColgan P, Estevez-Fraga C, Fayer K, Wellington
24 H, Rodrigues FB, Byrne LM, Heselgrave A, Hyare H, Sampaio C, Zetterberg H, Zhang H, Wild
25 EJ, Rees G, Robbins TW, Sahakian BJ, Langbehn D, Tabrizi SJ. Biological and clinical
26 characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult
27 Study (HD-YAS): a cross-sectional analysis. *Lancet Neurol*. Jun 2020;19(6):502-512.
28 doi:10.1016/S1474-4422(20)30143-5

1 49. Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H, Wild EJ.
2 Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease.
3 *PLoS One*. 2016;11(9):e0163479. doi:10.1371/journal.pone.0163479

4 50. Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A, Duyao MP,
5 Vrbanac V, Weaver M, Gusella JF, Joyner AL, MacDonald ME. Length-dependent gametic CAG
6 repeat instability in the Huntington's disease knock-in mouse. *Hum Mol Genet*. 1999;8(1):115-
7 122.

8 51. Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF. Time course of early motor
9 and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140
10 CAG repeats. *J Comp Neurol*. Oct 6 2003;465(1):11-26.

11 52. Baldo B, Peladan J, Albers J, Temowski TS, Ferrari F, Piai A, Menalled L, Doherty EM,
12 Monteagudo E, MacDonald D, Somalinga B. Development of an HTT exon 1-selective MSD
13 immunoassay with novel HTT P90 neo-epitope specific antibodies. *J Neurol Neurosurg
14 Psychiatry*. 2024;95(1):A32.

15 53. Wang N, Zhang S, Langfelder P, Ramanathan L, Gao F, Plascencia M, Vaca R, Gu X,
16 Deng L, Dionisio LE, Vu H, Maciejewski E, Ernst J, Prasad BC, Vogt TF, Horvath S, Aaronson
17 JS, Rosinski J, Yang XW. Distinct mismatch-repair complex genes set neuronal CAG-repeat
18 expansion rate to drive selective pathogenesis in HD mice. *Cell*. Mar 20 2025;188(6):1524-1544
19 e22. doi:10.1016/j.cell.2025.01.031

20 54. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N.
21 Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.
22 *Science*. 1997;277(5334):1990-1993.

23 55. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog
24 C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler
25 NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RL, Olson JM, Jones L, Luthi-Carter R.
26 Regional and cellular gene expression changes in human Huntington's disease brain. *Hum Mol
27 Genet*. Mar 15 2006;15(6):965-977.

1 56. Neueder A, Bates GP. A common gene expression signature in Huntington's disease patient
2 brain regions. Research Support, Non-U.S. Gov't. *BMC Med Genomics*. 2014;7:60.
3 doi:10.1186/s12920-014-0060-2

4 57. Franich NR, Hickey MA, Zhu C, Osborne GF, Ali N, Chu T, Bove NH, Lemesre V, Lerner
5 RP, Zeitlin SO, Howland D, Neueder A, Landles C, Bates GP, Chesselet MF. Phenotype onset in
6 Huntington's disease knock-in mice is correlated with the incomplete splicing of the mutant
7 huntingtin gene. *J Neurosci Res*. Dec 2019;97(12):1590-1605. doi:10.1002/jnr.24493

8 58. Papadopoulou AS, Alterman JF, Landles C, Smith EJ, Conway F, Phillips J, Canibano-
9 Pico M, Nita IM, Osborne GF, Iqbal A, Aldous SG, Bondulich MK, Gomez-Parades C, Sathasivam
10 K, O'Reilly D, Echeverria D, Bobkov K, Greene JR, Aronin N, Khvorova A, Bates GP. Lowering
11 the HTT1a transcript as an efffective therapy for Huntington's disease. *bioRxiv*.
12 2025;doi:10.1101/2025.06.10.658804

13 59. Woodman B, Butler R, Landles C, Lupton MK, Tse J, Hockly E, Moffitt H, Sathasivam K,
14 Bates GP. The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop
15 comparable and widespread molecular phenotypes. *Brain Res Bull*. Apr 30 2007;72(2-3):83-97.

16 60. Harrison DJ, Linehan P, Patel Y, Bayram-Weston Z, Rosser AE, Dunnett SB, Brooks SP,
17 Lelos MJ. Complex cognitive and motivational deficits precede motor dysfunction in the zQ175
18 (190 CAG repeat) Huntington's disease model. *Exp Neurol*. Oct 2025;392:115350.
19 doi:10.1016/j.expneurol.2025.115350

20 61. Hoschek F, Natan J, Wagner M, Sathasivam K, Abdelmoez A, von Einem B, Bates GP,
21 Landwehrmeyer GB, Neueder A. Huntingtin HTT1a is generated in a CAG repeat-length-
22 dependent manner in human tissues. *Mol Med*. Mar 8 2024;30(1):36. doi:10.1186/s10020-024-
23 00801-2

24 62. Feng W, Beer JC, Hao Q, Ariyapala IS, Sahajan A, Komarov A, Cha K, Moua M, Qiu X,
25 Xu X, Iyengar S, Yoshimura T, Nagaraj R, Wang L, Yu M, Engel K, Zhen L, Xue W, Lee CJ,
26 Park CH, Peng C, Zhang K, Grzybowski A, Hahm J, Schmidt SV, Odainic A, Spitzer J, Buddika
27 K, Kuo D, Fang L, Zhang B, Chen S, Latz E, Yin Y, Luo Y, Ma XJ. NULISA: a proteomic liquid
28 biopsy platform with attomolar sensitivity and high multiplexing. *Nat Commun*. Nov 9
29 2023;14(1):7238. doi:10.1038/s41467-023-42834-x

1 63. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, Blair NF,
2 Craufurd D, Priller J, Rickards H, Rosser A, Kordasiewicz HB, Czech C, Swayze EE, Norris DA,
3 Baumann T, Gerlach I, Schobel SA, Paz E, Smith AV, Bennett CF, Lane RM. Targeting
4 Huntingtin Expression in Patients with Huntington's Disease. *N Engl J Med.* May 6
5 2019;doi:10.1056/NEJMoa1900907

6 64. Keller CG, Shin Y, Monteys AM, Renaud N, Beibel M, Teider N, Peters T, Faller T, St-
7 Cyr S, Knehr J, Roma G, Reyes A, Hild M, Lukashev D, Theil D, Dales N, Cha JH, Borowsky B,
8 Dolmetsch R, Davidson BL, Sivasankaran R. An orally available, brain penetrant, small molecule
9 lowers huntingtin levels by enhancing pseudoexon inclusion. *Nat Commun.* Mar 3
10 2022;13(1):1150. doi:10.1038/s41467-022-28653-6

11 65. Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: March
12 2024. *J Huntingtons Dis.* 2024;13(1):1-14. doi:10.3233/JHD-240017

13 66. Kingwell K. Double setback for ASO trials in Huntington disease. *Nat Rev Drug Discov.*
14 Jun 2021;20(6):412-413. doi:10.1038/d41573-021-00088-6

15 67. Valles A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C,
16 Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, Pintauro R, Fodale V, Bresciani A, Liscak
17 R, Urgosik D, Starek Z, Crha M, Blits B, Petry H, Ellederova Z, Motlik J, van Deventer S,
18 Konstantinova P. Widespread and sustained target engagement in Huntington's disease minipigs
19 upon intrastriatal microRNA-based gene therapy. *Sci Transl Med.* Apr 7
20 2021;13(588)doi:10.1126/scitranslmed.abb8920

21 68. Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D,
22 van Deventer S, Bates GP, Valles A, Evers M. Exon 1-targeting miRNA reduces the pathogenic
23 exon 1 HTT protein in Huntington disease models. *Brain.* Aug 18
24 2024;doi:10.1093/brain/awae266

25 69. Sloan K. ALN-HTT02. a novel C16-sirna conjugate fro HTT-lowering in he CNS. *J Neurol*
26 *Neurosurg Psychiatry* 2024;95(1):A158. doi:10.1136/jnnp-2024-EHDN.325

27 70. Bragg RM, Landles C, Smith EJ, Osborne GF, Cantle JP, Bates GP, Carroll JB. Selective
28 targeting of mutant huntingtin intron-1 improves rescue provided by antisense oligonucleotides.
29 *BioRxiv.* 2025;doi:1101/2025.07.29.665998

1 71. Bragg RM, Mathews EW, Grindeland A, Cantle JP, Howland D, Vogt T, Carroll JB. Global
2 huntingtin knockout in adult mice leads to fatal neurodegeneration that spares the pancreas. *Life*
3 *Sci Alliance*. Sep 2024;7(9):doi:10.26508/lsc.202402571

4 72. Dietrich P, Johnson IM, Alli S, Dragatsis I. Elimination of huntingtin in the adult mouse
5 leads to progressive behavioral deficits, bilateral thalamic calcification, and altered brain iron
6 homeostasis. *PLoS Genet*. Jul 2017;13(7):e1006846. doi:10.1371/journal.pgen.1006846

7

8

9 **Figure legends**

10

11 **Figure 1 HTT1a is depleted in *HdhQ150ΔI* mice.** (A) Mutant HTT was immunoprecipitated
12 with 3B5H10 from WT, *HdhQ150* and *HdhQ150ΔI* cortical lysates from mice at 2 months of
13 age and fractionated on a 7.5% SDS-PAGE gel. Western blots were immunoprobed with
14 S830, with the MW8 and CHDI-0148 HTT1a-specific antibodies and with AB2644 that
15 detects exon 2 HTT. Mutant and WT HTT were immunoprecipitated with MAB2166 and the
16 western blot was immunoprobed with MAB5490. Size standards are in kDa. (B-D) HTRF
17 assays were performed on the cortex, striatum and hippocampus from *HdhQ150* and
18 *HdhQ150ΔI* mice at 2, 6, 9, 12 and 17 months of age and from WT and WTΔI mice at 2 and 17
19 months. (B) Total soluble full-length HTT levels (WT and mutant) were measured using the
20 D7F7-MAB5490 HTRF assay. (C) Soluble full-length mutant HTT levels were measured by the
21 MAB5490-MW1 assay. (D) Soluble HTT1a protein levels (2B7-MW8 assay) were dramatically
22 decreased in *HdhQ150ΔI* as compared to *HdhQ150* brain regions. $n = 6$ / genotype, equal
23 sexes. Statistical analysis was two-way ANOVA with Tukey's *post hoc* correction. Two-way
24 ANOVA comparisons were *HdhQ150* vs *HdhQ150ΔI* and WT vs WTΔI. Error bars: mean \pm
25 SEM. ** $P \leq 0.01$, *** $P \leq 0.001$. aa = amino acids, A.U. = arbitrary units, FL = full-length, ID =
26 immunodetect, IP = immunoprecipitate, M = months, WT = wild type.

27

28 **Figure 2 HTT aggregation appears much later in the brains of *HdhQ150ΔI* mice.** Coronal
29 sections were immunostained with the S830 antibody and imaged for (A) striatum, (B) layers
30 5/6 of the cortex, (C) CA1 of the hippocampus and (D) dentate gyrus and hilus of the
31 hippocampus for *HdhQ150* and *HdhQ150ΔI* animals at 2, 6, 9, 12 and 17 months of age. In
32 zoomed images, nuclear aggregation is on the bottom in (A), (B) and (C) and on the top for

1 the dentate gyrus in (D). Neuropil aggregation in the hilus is on the bottom in (D). $n = 3$. Scale
2 bar = 20 μm , zoomed images are 20 μm^2 . Ly = layers, DG = dentate gyrus, WT = wild type.

3
4 **Figure 3 HTT1a is present in the HTT aggregates in the *HdhQ150ΔI* mice.** Coronal sections
5 of the brain were immunostained with the 1B12 antibody and imaged for (A) striatum, (B)
6 layers 5/6 of the cortex, (C) CA1 of the hippocampus and (D) dentate gyrus and hilus of the
7 hippocampus for *HdhQ150* and *HdhQ150ΔI* animals at 2, 6, 9, 12 and 17 months of age. In
8 zoomed images, nuclear aggregation is on the bottom in (A), (B) and (C) and on the top for
9 the dentate gyrus in (D). Neuropil aggregation in the hilus is on the bottom in (D). $n = 3$. Scale
10 bar = 20 μm , zoomed images are 20 μm^2 . Ly = layers, DG = dentate gyrus, WT = wild type. (E)
11 Aggregated HTT1a levels were measured by HTRF (MW8 – CHDI-1414 assay) in the cortex,
12 striatum and hippocampus from *HdhQ150* and *HdhQ150ΔI* mice at 2, 6, 9, 12 and 17 months
13 of age and from WT and WT Δ I mice at 2 and 17 months. $n = 6$ / genotype, equal sexes.
14 Statistical analysis was two-way ANOVA with Tukey's *post hoc* correction. Two-way ANOVA
15 comparisons were *HdhQ150* vs *HdhQ150ΔI* and WT vs WT Δ I. Error bars: mean \pm SEM. * $P \leq$
16 0.05, ** $P \leq 0.01$, *** $P \leq 0.001$. A.U. = arbitrary units, M = months, WT = wild type.

17
18 **Figure 4 Striatal huntingtin transcripts generated from the genetically modified loci.** (A)
19 Schematic illustrating the 5' end of the *Htt* gene and the transcripts identified by nanopore
20 sequencing. *Htt1a* contains exon 1 and intron 1 sequences and is translated to produce the
21 HTT1a protein. *Htt readthrough* contains exon 1, the deleted intron 1, exon 2 and intron 2
22 sequences; if translated it would generate the HTT1a protein. *Htt2a* contains exon 1, exon 2,
23 and a novel exon 2a located in intron 2 and intron 2 sequences; if translated it would generate
24 the HTT2a protein (Supplementary Fig. 4A). (B-E) Quantification of (B) the full length *Htt*
25 transcript (C) the *Htt1a* transcript (D) the *Htt readthrough* transcript and (E) the *Htt2a*
26 transcript in WT, WT Δ I, *HdhQ150* and *HdhQ150ΔI* striatum at 6 months of age and WT,
27 *HdhQ150* and *HdhQ150ΔI* striatum at 12 months. $n = 8$ / genotype, equal sexes. Statistical
28 analysis was by DESeq2 with Benjamini-Hochberg correction. Error bars: mean \pm SEM. * $P \leq$
29 0.05, ** $P \leq 0.01$, *** $P \leq 0.001$. TPM (transcripts per million) were computed from RNA-seq
30 data at the indicated ages. WT = wild type.

31
32 **Figure 5 The reduction in the HTT1a protein improves transcriptional dysregulation in**
33 **the striatum and hippocampus of *HdhQ150ΔI* mice.** (A) A common signature of HD-
34 related biological processes dysregulation across different mouse models. The differentially
35 expressed genes (RNA-seq) in the striatum of *HdhQ111* mice at 10 months of age, Q140 mice

1 at 6 and 10 months, zQ175 mice at 6 and 10 months and *Hdh*Q150 mice at 6 and 12 months
2 were analyzed by ranked gene set enrichment analysis (GSEA) against the gene ontology
3 biological process (GOBP) collection. NES = normalized enrichment score. m = months. The
4 star indicates that the dysregulated process has an *FDR* < 0.05 (false discovery rate). (B)
5 Reversal of the HD-signature in *Hdh*Q150ΔI mice. The proportion of dysregulated genes for
6 which the level of expression was reversed toward WT levels in the *Hdh*Q150ΔI striatum and
7 hippocampus at 6 months of age and the *Hdh*Q150ΔI striatum and hippocampus at 12
8 months as compared to *Hdh*Q150 mice. n = 8 / genotype, equal sexes. Hippo =
9 hippocampus.

10

11 **Figure 6 Plasma and CSF biomarkers are at wild-type levels in *Hdh*Q150ΔI mice.** NEFL
12 and BRP39 were measured in WT, WTΔI, *Hdh*Q150 and *Hdh*Q150ΔI CSF and plasma at 12
13 and 17 months of age. (A) NEFL and BRP39 levels were raised in *Hdh*Q150 CSF by 12 months
14 of age but remained at WT levels in *Hdh*Q150ΔI CSF even at 17 months. (B) NEFL and BRP39
15 levels were raised in *Hdh*Q150 plasma by 12 months of age. The increase in plasma NEFL
16 was much reduced in *Hdh*Q150ΔI mice and BRP39 remained at WT levels in *Hdh*Q150ΔI
17 plasma even at 17 months of age. n = 6-10/genotype, 3-5/ sex. Statistical analysis was one-
18 way ANOVA with Tukey's *post hoc* correction or Kruskal-Wallis with Dunn's *post hoc*
19 correction. Error bars: mean ± SEM. **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001. WT = wild type.

20

21

22

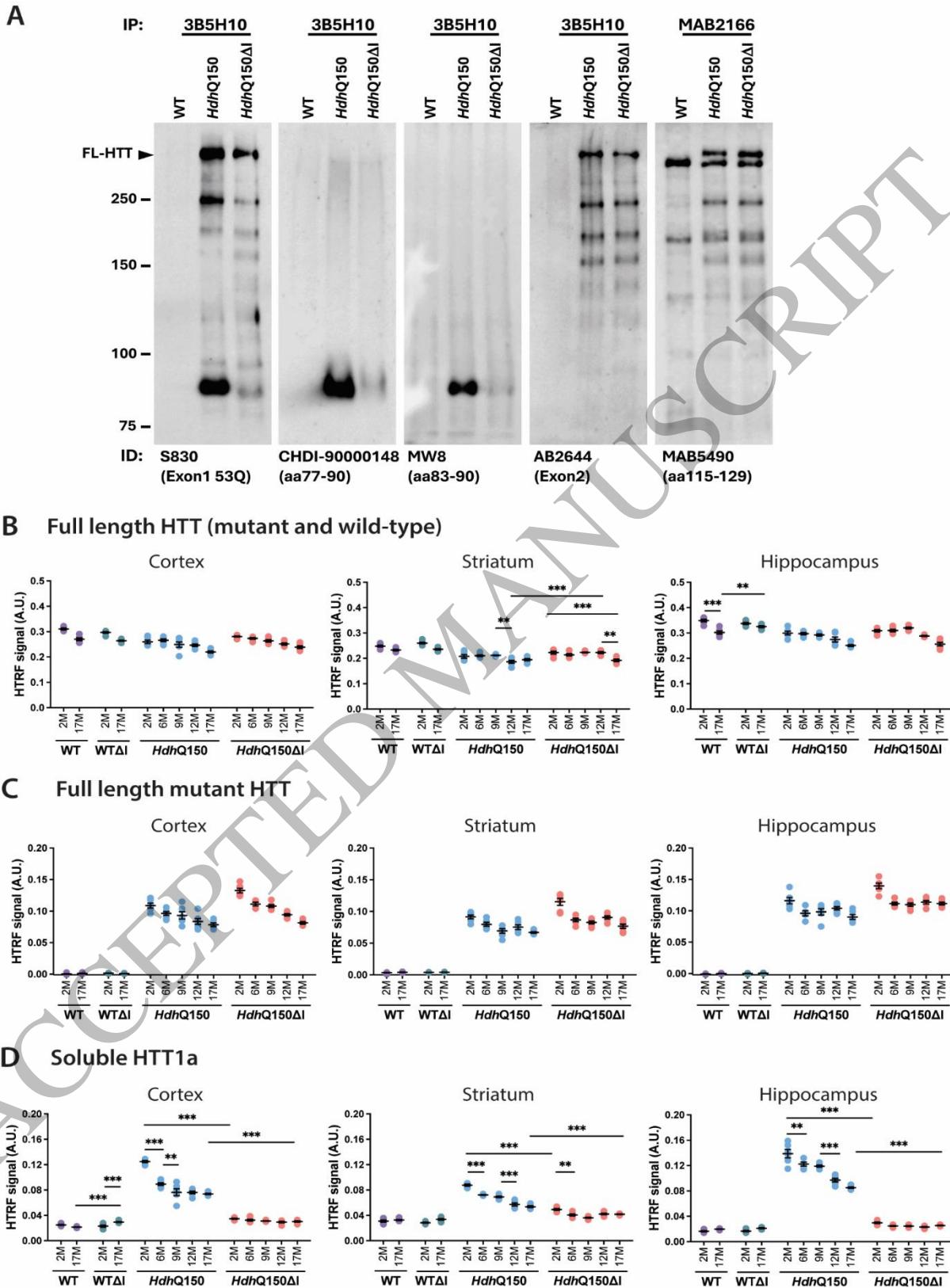


Figure 1
203x285 mm (x DPI)

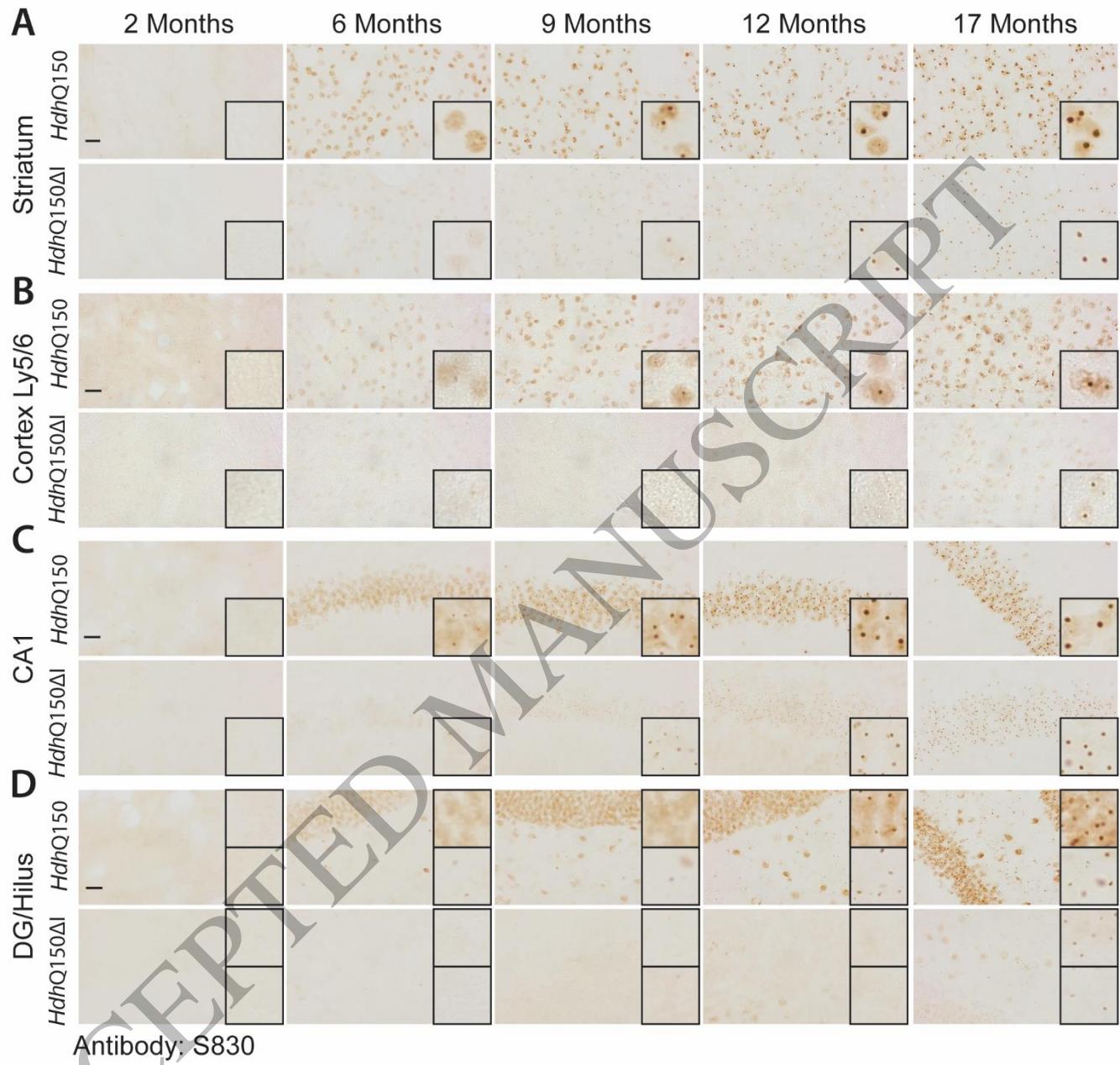
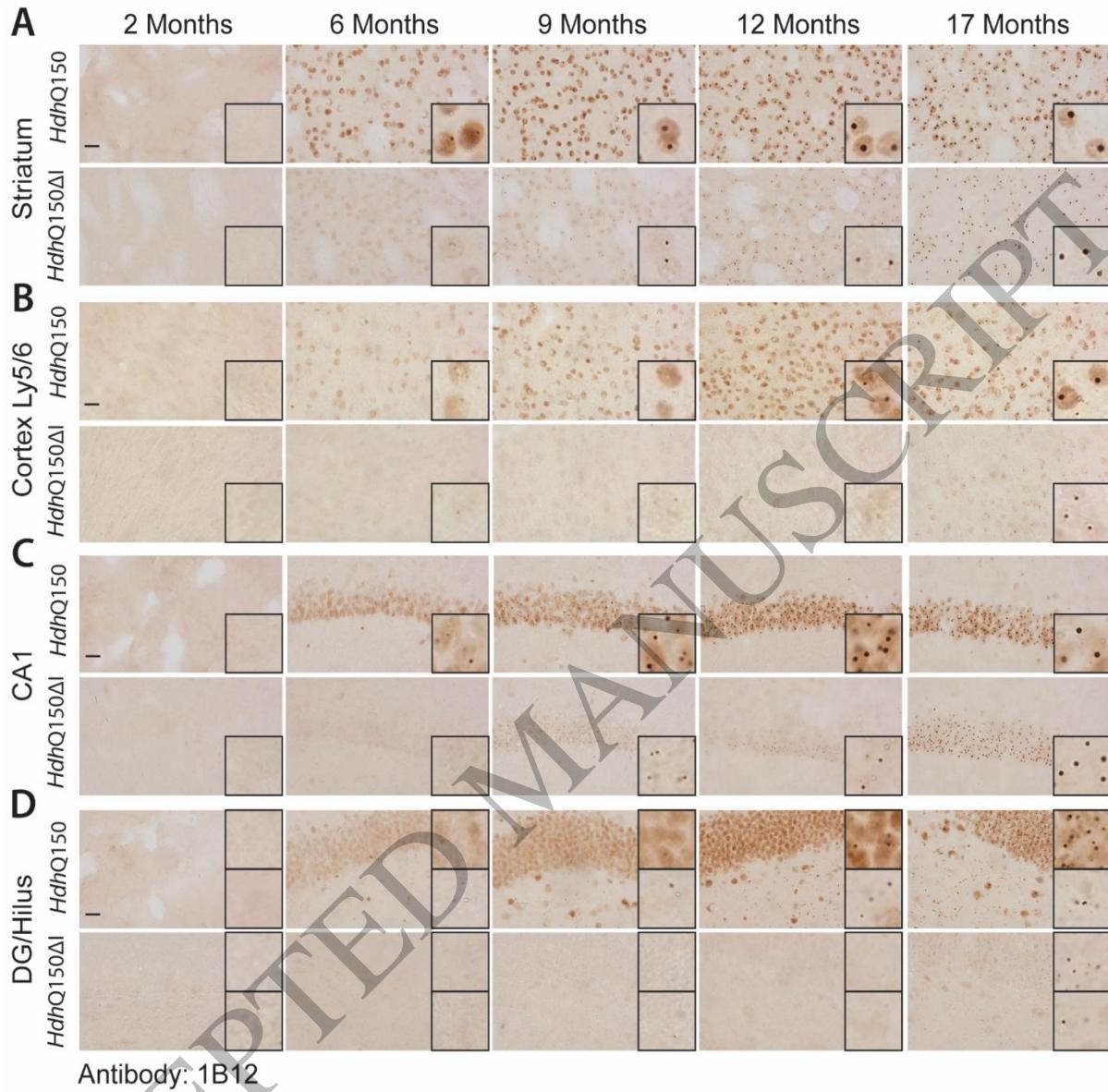



Figure 2
180x167 mm (x DPI)

E HTT1a aggregation

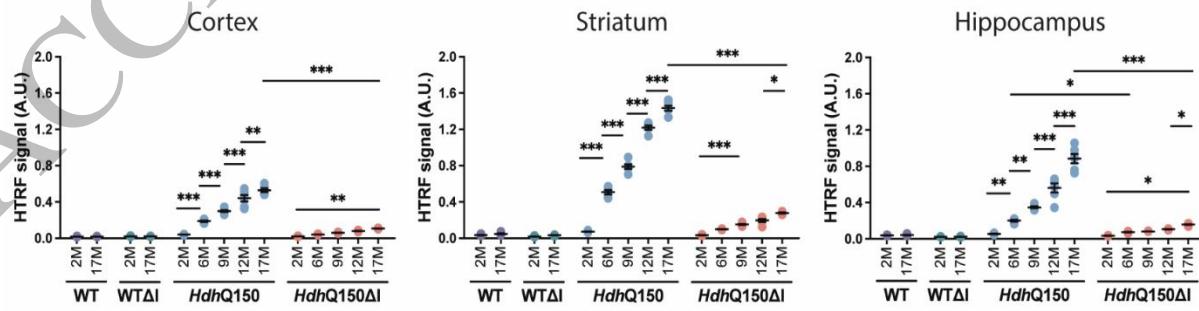
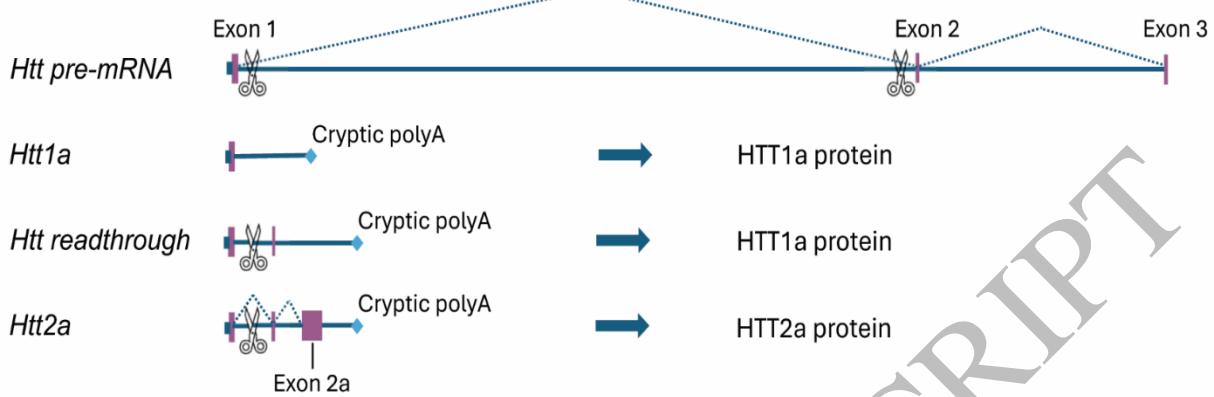
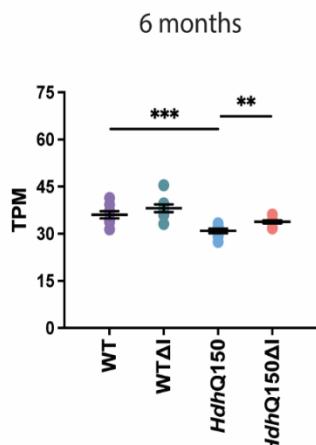
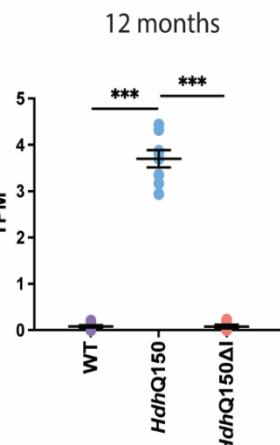
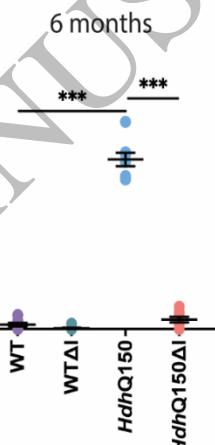


Figure 3
199x242 mm (x DPI)

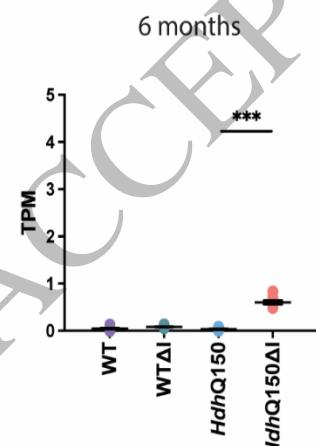
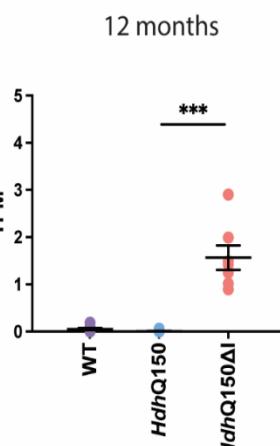
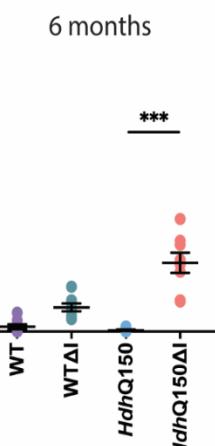
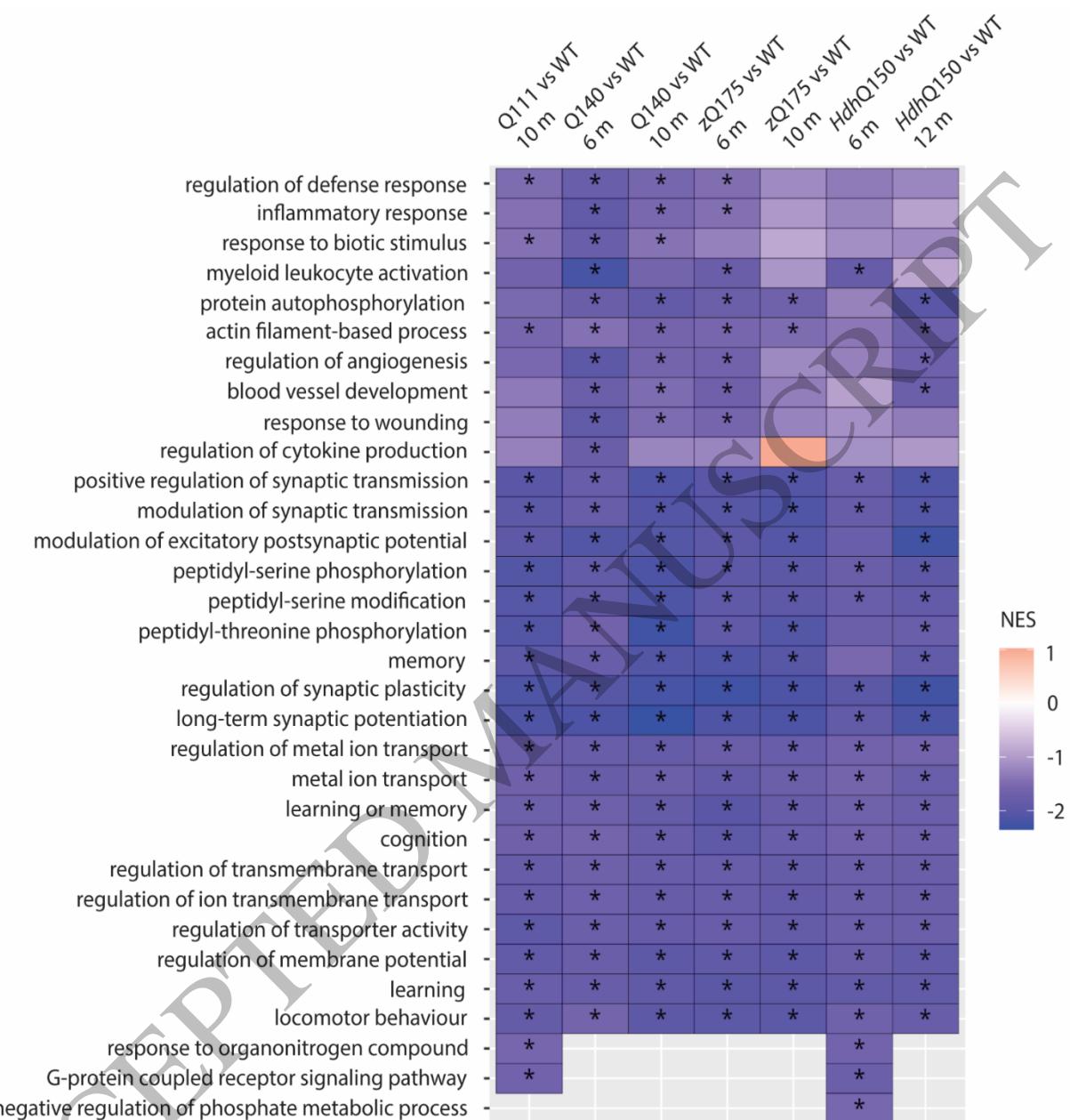
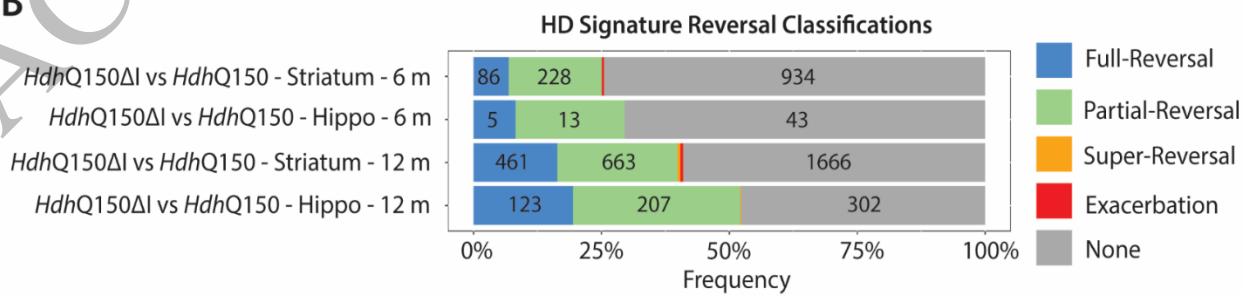
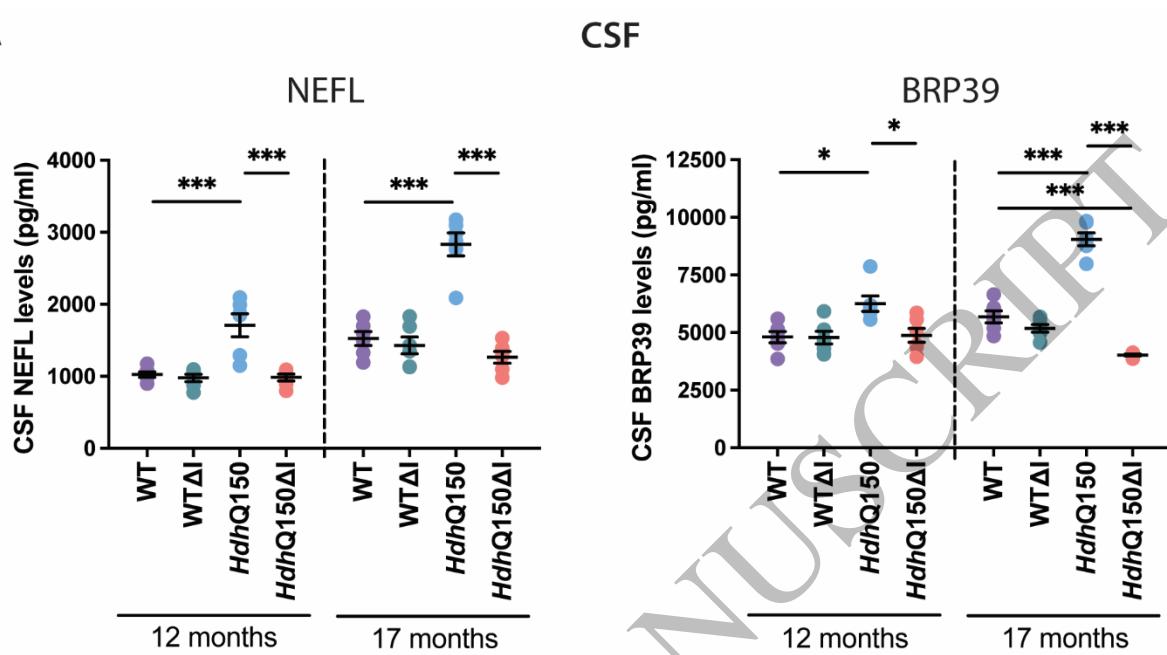





A**B****Full-length Htt****C*****Htt1a*****D*****Htt readthrough*****E*****Htt2a***1
2
3
4

Figure 4
206x230 mm (x DPI)

A**B**

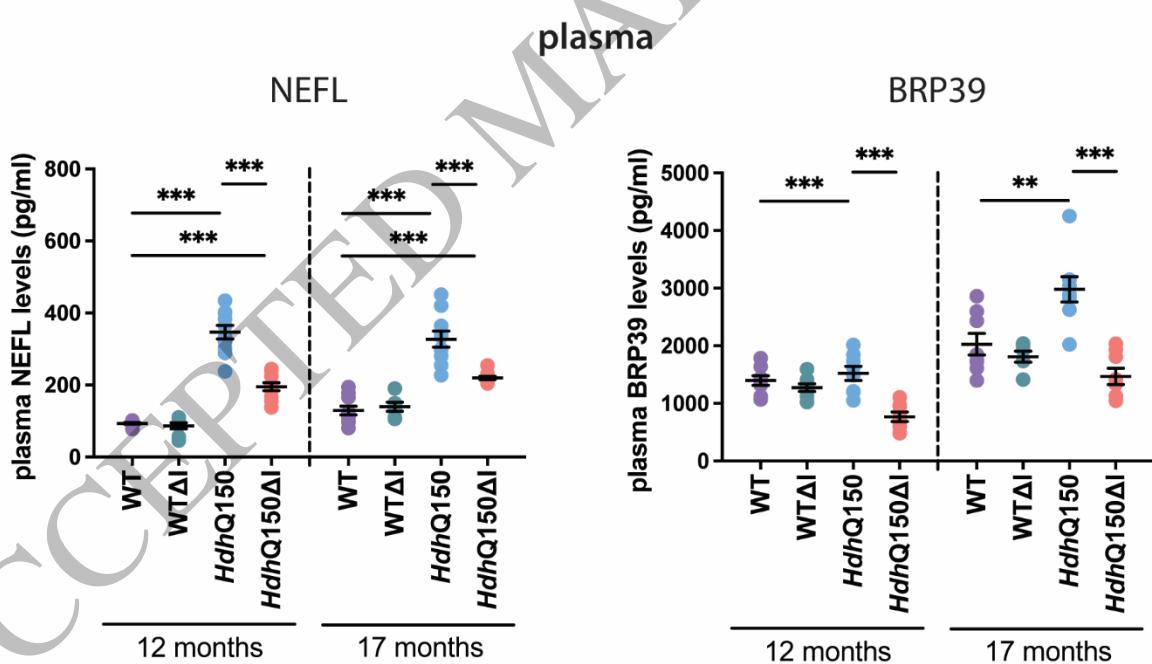

1

2

3

Figure 5
197x244 mm (x DPI)

A



CSF

NEFL

BRP39

B

plasma

NEFL

BRP39

Figure 6
161x179 mm (x DPI)