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Abstract

Thousands of short open reading frames (sORFs) are translated outside of annotated coding sequences.
Recent studies have pioneered searching for sORF-encoded microproteins in mass spectrometry (MS)-
based proteomics and peptidomics datasets. Here, we assessed literature-reported MS-based
identifications of unannotated human proteins. We find that studies vary by three orders of magnitude
in the number of unannotated proteins they report. Of nearly 10,000 reported sORF-encoded peptides,
96% were unique to a single study, and 12% mapped to annotated proteins or proteoforms. Manual
curation of a benchmark dataset of 406 manually evaluated spectra from 204 sORF-encoded proteins
revealed large variation in peptide-spectrum match (PSM) quality between studies, with
immunopeptidomics studies generally reporting higher quality PSMs than conventional enzymatic
digests of whole cell lysates. We estimate that 65% of predicted sORF-encoded protein detections in
immunopeptidomics studies were supported by high-quality PSMs versus 7.8% in non-
immunopeptidomics datasets. Our work stresses the need for standardized protocols and analysis
workflows to guide future advancements in microprotein detection by MS towards uncovering how
many human microproteins exist.



Introduction

Ribosome profiling (Ribo-Seq) studies have demonstrated widespread translation of short open reading
frames (sORFs) outside of annotated coding sequences in eukaryotic genomes'?, suggesting that the
proteome may be much larger than currently annotated in databases such as UniProtKB.3® Several such
individual sORF-encoded microproteins were experimentally found to be implicated in diverse biological
processes across the tree of life such as muscle physiology and cancer.””*? Yet, these well-characterized
cases represent only a small fraction of the microproteins that could be encoded by translated sORFs.?
The translation products of many sORFs may be poorly conserved, of low abundance, or rapidly
degraded, leading to uncertainty about their biological significance.>'*! There is a need, therefore, to
identify the sORF-encoded microproteins that exist in the cell and have the potential to perform
biological activities.

One systematic approach to identify unannotated microproteins predicted by Ribo-Seq is to search for
peptide-level evidence in mass spectrometry (MS)-based proteomics or peptidomics datasets.?®” In the
typical case, a sequence database is constructed that consists of a curated protein sequence database
(e.g. the UniProtkB human reference proteome®®) joined together with a list of putative unannotated
proteins (e.g. predicted products of translated sORFs cataloged by Ribo-Seq). This protein sequence
database may then be used for analyzing conventional “shotgun” MS proteomics datasets, in which
protein samples are digested using a protease, or for analyzing datasets generated by
immunopeptidomics experiments, which attempt to identify peptides presented by human leukocyte
antigens (HLAs) without requiring protease pretreatment.’ In both conventional proteomics
experiments and immunopeptidomics experiments, the collected spectra will be generated from
peptides derived from both annotated and unannotated proteins in the sample. Confident inference of
an unannotated protein detection requires that the peptide uniquely supports an unannotated protein;
i.e., that one can exclude the possibility that it derives from a protein in a curated protein sequence
database. Detection confidence is generally controlled using a target-decoy approach?, which enables
the calculation of a false discovery rate (FDR). The FDR can be set at the level of peptide-spectrum
matches (PSMs), peptides, or proteins. Peptides and their inferred proteins passing the thresholds,
usually 1% FDR at the peptide/protein level, are reported as detected.?? Protein-level MS evidence in a
conventional proteomics experiment using trypsin or other proteases indicates that the protein existed
in the cell. Immunopeptidomics can be used to validate Ribo-Seq predictions by confirming that an sORF
was translated and the processed forms of its translation product was presented by HLA molecules, but
cannot establish that the protein was stably present in the cell.?

Despite the promise of shotgun proteomics for rapid and large-scale microprotein identification, the
small size, low abundance, atypical sequence characteristics and frequent transmembrane localization
of microproteins pose major technical challenges for existing MS pipelines.?*¢ For example, it can be
impossible to observe multiple unique supporting peptides for microproteins whose sequence is too
short to hold multiple cleavage sites, or if only one peptide is within the mass-over-charge range of the
spectrometer. Therefore, the guidelines established by the Human Proteome Project?” for MS detection
of proteins are difficult to apply fully, and researchers use a variety of ad hoc strategies.!® As the field
develops and the number of reported microprotein detections grows, there is a need to assess which
strategies are most effective for identifying genuine microproteins while minimizing false positives.



In this work, we brought together a group of experts to perform a systematic confidence assessment of
previously reported unannotated protein MS detections. We find wide variation in the number of
unannotated microproteins reported between different proteomic studies, with few microproteins
reported in more than one study. Manual evaluation indicates a division between immunopeptidomics
studies and studies using conventional tryptic proteomics: most microproteins reported in
immunopeptidomics studies are supported by high-quality PSMs, while most microproteins reported in
conventional proteomics studies are supported by only low-quality PSMs and may not represent
genuine discoveries. Yet, a subset of microproteins is supported by strong evidence in conventional
proteomics datasets, suggesting that more remain to be discovered. We outline advice for increasing
confidence in proteomic detection of microproteins as this area of investigation continues to grow.

Results
Reported numbers of unannotated proteins vary greatly between studies

To evaluate the extent to which unannotated proteins can be detected in proteomics data, our group of
microprotein researchers assembled in 2023 to conduct a literature search for all papers reporting
human unannotated protein detections published between 2019 and 2022. We identified 12 such
studies that were published in this time window (Table 1). Seven studies searched for unannotated
proteins in conventional proteomics data, while two studies searched for peptides derived from
unannotated proteins in immunopeptidomics data, and three studies searched both classes of
proteomics data. From each study, we obtained a list of the unannotated proteins reported to be
detected (of any length), together with the PSMs supporting these detections (Supplementary Data 1,
Supplementary Table 1).

A key motivation for initiating this community effort was the large variation in the number of validated
unannotated proteins reported between studies, ranging from 6% to 4,903% (Figure 1A, Table 1). The
peptides reported in support of unannotated proteins in each study were largely distinct: of 9,414 total
reported peptides across the considered studies, only 326 (3.5%) were reported in more than one study.
For 8 of 12 studies, fewer than 10% of the reported peptides were found in any of the other analyzed
studies (Figure 1B, Supplementary Data 2). The low rate of replication is despite some studies analyzing
the same collections of mass spectra, albeit with not fully overlapping databases of sSORF sequences
(Table 1). We do not interpret the high variability between studies as indicating that most reported
detections are false: this high variability among reported detected peptides likely reflects in part the
high variability in the size and composition of the sORF databases tested (Table 1) and the quantity of
proteomic data analyzed, as well as the diversity of cell types examined, MS techniques used, HLA
allotypes among the immunopeptidomics studies, and search algorithms. Nevertheless, in the absence
of robust replicability to establish confidence, a closer assessment of the strength of evidence provided
in each study for their reported detected unannotated proteins is needed.

Do reported peptides uniquely support an unannotated protein?

We first assessed whether PSMs reported as evidence for the detection of an unannotated protein may
also be attributed to an annotated protein. All the studies in our meta-analysis attempted to exclude
potential annotated protein-matching peptides, but different analysis pipelines were implemented that
might not have equally accounted for the full space of potential proteoforms of annotated proteins.*®



To assess whether some peptides reported to derive from an unannotated protein could potentially be
attributed to an annotated protein, we used the PeptideAtlas ProteoMapper® tool. ProteoMapper takes
neXtProt*® reported amino acid variants into account; i.e., it will find matches not just to the reference
proteome but to proteins that differ from the reference by one or more variant amino acids. We
restricted our analysis to peptides that differed from the reference sequence by at most one single
amino acid variant. Given this restriction, 12% of peptides reported to support detection of an
unannotated protein (1,161 of 9,732) also had a putative match to an annotated protein on
ProteoMapper, with this rate varying from 0% to 96% across individual studies (Supplementary Data 1).

Recent updates in annotation could potentially explain why some reported peptides mapped to
annotated proteins when we conducted this ProteoMapper search in 2023. To evaluate this possibility,
we checked whether these annotated proteins were annotated in the 2016 version of UniProtKB/Swiss-
Prot®®, as all studies in our analysis used protein databases published after 2016 to define their
annotated set (Table 1). Only eight distinct annotated proteins matching reported unannotated peptides
in 2023 were absent from UniProtKB/Swiss-Prot in 2016, indicating that annotation updates are not a
major explanation for peptides reported to support unannotated proteins mapping to annotated
proteins.

Peptides reported to support unannotated proteins might also map to annotated proteins if the studies
did not account for non-tryptic peptides or protein variants. We therefore divided the peptides mapping
to annotated proteins by whether they were perfect matches to the UniProtKB/Swiss-Prot reference
protein or differed by one single amino acid variant, and by whether they were predicted tryptic (i.e.,
peptides that could be generated by cleavage after arginine or lysine residues) or non-tryptic (including
semi-tryptic) (Figure 1C). We note that some peptides in Chong et al. 2020*> map to both unannotated
proteins and common variants of annotated proteins, but since this study used customized databases of
annotated proteins reflecting each patients’ sequenced genotypes, these common variants were shown
to be absent in the patient samples. Without such a customized database, it is difficult to fully rule out
an annotated protein source given the possibility of unknown variants of annotated proteins, especially
in cell lines or cancer samples.

For two studies, Prensner et al. 202138 and Duffy et al. 202234, a substantial fraction of reported
unannotated peptides (10% or more) were perfect matches to tryptic peptides in reference proteins.
The relatively high rate of matching UniProtKB protein references in Prensner et al. 20213% might be
explained by either the use of the UCSC RefSeq database to define the set of annotated proteins rather
than UniProtKB, which was used by most other studies (Table 1), or not preferentially allocating all
shared peptides to the annotated set. For Duffy et al. 20223%, spectra searches were conducted against
custom databases of both annotated and unannotated proteins inferred to be expressed in the specific
type of brain tissue or cell based on Ribo-Seq data, while all other studies included the full set of human
annotated proteins in their protein database. Likely, annotated proteins not detected by Ribo-Seq may
still be present in the sample, leading to peptides from annotated proteins potentially being falsely
assigned to unannotated proteins. For two other studies®*!, more than half of reported peptides that
mapped to both unannotated and annotated proteins were non-tryptic (Figure 1C). A peptide with a
match to an annotated protein does not uniquely support an unannotated protein detection, even if the
match is non-tryptic, as trypsin does not have perfect specificity and can vary in grade, cleavage could
have been induced by other proteases (e.g. upon lysing cells and tissues), and protein processing in cells
can yield non-tryptic peptides.



Overall, these results indicate a need to consider non-tryptic peptides and possible amino acid variants
of annotated proteins to ensure that peptides uniquely map to an unannotated protein. Excluding
potential hits to annotated proteins can be done with tools such as ProteoMapper® or the neXtProt
peptide uniqueness checker?’, as suggested by the HUPO-HPP MS data interpretation guidelines?’, or,
ideally, using sample-specific customized protein sequence databases based on sequenced genotypes.

After excluding all reported peptides that mapped to annotated proteins according to ProteoMapper,
the general trends we observed for the entire set of reported peptides supporting unannotated protein
detections remained: for 8 of 12 studies, at least 90% of reported unannotated peptides were only
reported in that study (Figure 1D). Therefore, we next examined the level of support PSMs provided for
claimed unannotated protein detections.

Assessing PSM quality by manual evaluation

To assess PSM quality among literature-reported peptides supporting detection of unannotated
proteins, a random sample of PSMs from each study was manually evaluated by a panel of six expert
evaluators. A total of 406 PSMs from 12 studies were evaluated (1.3% of total), corresponding to 307
peptides from 204 unannotated proteins. These PSMs were sampled after excluding peptides mapping
to annotated proteins or proteoforms (Figure 1C). Of these 406 PSMs, 155 were evaluated by two
evaluators each to enable determination of the overall consistency between evaluators. Additionally, a
common set of 10 negative control PSMs was included in each sample, consisting of high-scoring decoy-
spectrum matches intended to mimic PSMs that perform relatively well according to algorithms. Each
PSM was rated on a scale of 1-5. Full evaluation criteria along with example spectra and explanations of
their rating are given in Appendix 1. The PSMs assigned to each evaluator were ordered randomly and
the evaluators were not informed as to the source publication of each PSM (Supplementary Data 3).

Agreement among evaluators was generally high. For the PSMs rated by two evaluators, ratings were
well correlated (r = 0.82, p < 101 (Figure 2A). Only 14 of 155 (9%) PSM scores differed by more than
one point. The negative controls scored consistently poorly (average score of 1.5), as expected.
Evaluator ratings were also well correlated (r = 0.74, p < 101°) with the dot product between the
observed spectra and the spectra predicted by MS2PIP (Supplementary Figure 1).*® Among
immunopeptidomics studies, PSMs with peptides that were predicted to bind to MHC molecules by
NetMHC* were rated more highly (n = 71, mean rating 3.94) than those with peptides not predicted to
bind (n = 14, mean rating 3.29, p = 0.037 by two-sided permutation test, Supplementary Figure 2,
Supplementary Data 4), consistent with manual evaluation discriminating between true and false
discoveries. To investigate consistency between manual ratings and machine learning methods for
spectral prediction, we generated predicted spectral libraries for all evaluated PSMs under several
models using Oktoberfest (see Methods).>® We observed a moderate correlation between the best
spectral angle between the model-predicted and experimental spectra (a measure of spectral similarity)
and evaluator rating (r = -0.56, p < 10'1°, n=274, Figure 2B), suggesting both similarities and differences
in how expert evaluators and this spectral prediction method assess PSM quality.

There was also a general consistency between evaluators in average rating per study (Figure 2C). The
evaluated PSM quality varied across studies, with average rating ranging from 1.0 to 4.1 (Figure 2C).
Three studies had average PSM ratings that did not exceed the negative controls. For one of these
studies, van Heesch et al. 20195, the authors recognized the high FDR in their search results, which led
them to develop a customized strategy for estimating a microprotein-specific FDR and to favor selected



reaction monitoring (SRM) for their downstream analyses. We did not evaluate these SRM results but
focused solely on the reported shotgun proteomics hits. For Douka et al. 20213, the low ratings are
understandable because, rather than using a 1% FDR threshold, this study used a 10% threshold in
anticipation of the low abundance of microproteins. For Chothani et al. 2022*, unannotated protein
PSMs were identified by searching hundreds of MS runs individually with a 1% FDR threshold after
removing all matches to the annotated proteome, then assembling the hits into a master list. A likely
explanation is that, since spectra matching annotated proteins were removed prior to searching for
unannotated proteins, there were few genuine detections in the MS runs analyzed. Under conditions of
few genuine detections, it is difficult to precisely estimate FDR, leading to potential false positives
(Supplementary Figure 3).°! Chothani et al. highlighted peptides found in multiple datasets; these
peptides were not separately evaluated here.

The immunopeptidomics studies (Ouspenskaia et al. 2021%°, Martinez et al. 2020*, and Chong et al.
2020%, and some peptides from Prensner et al. 202138) reported substantially higher quality PSMs than
most of the other studies (mean rating 3.8 vs. 2.3, n=13, p = 0.024 for difference in mean by two-sided
permutation test, Figure 2C-D). The three studies that focused on HLA data have average scores above
three, as do the HLA PSMs (but not non-HLA PSMs) from Prensner et al. 2021.%2 The only non-HLA
studies with average scores of three or more were Cao et al. 20223° and Bogaert et al. 202228, which
reported only 28 and 8 PSMs derived from unannotated proteins, respectively (Figure 2C, Table 1).
Overall, most (70%) evaluated PSMs supporting unannotated protein detections from HLA studies
received a rating of at least 4, the threshold for convincing evidence of detection (See Appendix, Figure
2D). In contrast, only 15% of ratings for reported matches in non-HLA data were in the 4-5 range. These
results are consistent with a recent study, Deutsch et al. 2024, where MS searches for peptide-level
evidence supporting Ribo-Seq identified sORFs also found higher support in HLA than non-HLA
datasets.”

Among 98 high-rated HLA peptides, 33 were reported in multiple studies, and 37 were validated by
Deutsch et al. 2024 (1 supporting an ORF in Tier 1A, 26 in Tier 1B, and 10 in Tier 2B, Supplementary
Figure 4). Of the 28 high-rated PSMs from non-HLA data, two involved peptides that were reported in
multiple studies. Both peptides derive from the same sORF, located in the 5" UTR of the MKKS locus. The
protein encoded by this sORF (UniProt identifier Q9HB66 in UniProtKB/TrEMBL) has now accumulated
enough peptide-level evidence to have become annotated as “core canonical” in PeptideAtlas in 2025,
though it remains unannotated in UniProtKB/Swiss-Prot so far. Two high-rated non-HLA peptides were
also identified as having strong evidence in Deutsch et al. 2024.% These peptides mapped to the sORFs
cllriboseqorf4 in the Tier 1A class (the highest level of support that an ORF is protein-coding) and
c12norep33in the Tier 2A class (weaker support). These observations illustrate how searching multiple
sources of MS data contributes towards a more comprehensive view of sORF-expressed proteins and
improves annotations of the human proteome.

Higher rated PSMs are derived from more highly expressed sORFs

To assess whether our PSM ratings were influenced by the expression levels of the corresponding
proteins, we compiled a large collection of human Ribo-Seq studies and analyzed translation levels
harmoniously, using the iRibo program, for all the sORFs corresponding to evaluated PSMs for which
genomic coordinates were provided by the original studies (191 sORFs; see Methods, Supplementary
Data 5-6).>* We found that reported unannotated proteins with corresponding PSMs rated 4 or 5 were



more highly translated than those with corresponding PSMs rated 1 or 2 (difference in log Ribo-Seq read
count per codon by two-sided permutation test, p = 0.005, Figure 2E). This is consistent with more highly
expressed proteins being more readily detectable by MS and thus generating higher quality PSMs.>®
Unexpectedly, high-rated proteins were also shorter on average by 37 amino acids than low-rated
proteins (two-sided permutation test, p = 0.01, Figure 2F). There was no significant correlation between
log iRibo p-value, indicating level of confidence that the ORF is translated, and PSM rating (r = 0.098, p =
0.18).

Discovery of potential unannotated proteins

We next estimated the number of unannotated proteins we would expect to have strong MS support
had we evaluated all reported detections. To do this, we extrapolated the number of unannotated
protein detections that would be supported by high-scoring PSMs had we evaluated all PSMs among all
studies, assuming the frequency of scores for each study would be the same as in the tested set (Figure
2G). Among unannotated proteins reported in non-HLA data, 27 evaluated proteins were supported by
at least one PSM rated 4 or 5. We predict 137 of 1,749 (7.8%) would be supported by PSMs of this
quality across the whole aggregated dataset. For HLA data, 94 evaluated proteins were supported by at
least one PSM rated 4 or 5; we predict 3,706 of 5,705 (65%) would be found across the entire dataset.
Other unannotated proteins are likely detectable in datasets outside our study scope. Thus, there is
considerable potential for discovery even in the particularly challenging case of finding unannotated
proteins in conventional enzymatically digested samples.

Discussion

Given the growing recognition of the importance of microproteins in human health®®, there is an urgent
need to prioritize sSORF-encoded microproteins that are supported by MS evidence. Here, we reanalyzed
twelve published studies that reported detection of unannotated microproteins with MS. While most
reported PSMs (70%) in immunopeptidomics studies were of high quality, around 85% of non-HLA PSMs
were evaluated by a panel of proteomics experts to be of too low quality to provide evidence of peptide
detection. These results point to a need for caution in interpreting claimed unannotated protein
detections reported in the literature and motivate technological improvements for the evaluation of
microprotein evidence moving forward. Many unannotated protein detections do appear strong, and
the microprotein literature has provided great value in expanding the protein universe with real
discoveries of likely biological significance.>® However, the idea that several hundreds to even thousands
of unannotated proteins are genuinely detected in existing mass spectrometry datasets of conventional
trypsin digests reflects an unrealistic expectation about the extent to which current shotgun proteomics
can validate sORFs identified by Ribo-Seq.

Why do immunopeptidomics studies identify many high-quality PSMs supporting unannotated protein
detections while studies using conventional enzymatic digests identify only few? Many unannotated
sequences found to be translated by Ribo-Seq lack signatures of evolutionary conservation and may not
encode proteins that provide any benefit to the organism.>*>>’ It is plausible that many of these poorly
conserved proteins are expressed but quickly degraded, and so can be found only as peptides bound to
HLAs.'**8 However, there are also technical explanations for why HLA-bound peptides derived from
unannotated microproteins may be easier to detect. Immunopeptidomics concentrates peptides bound
to HLAs, which decreases sample complexity and may thereby enrich for low abundance microproteins.
HLA peptides also have physical and chemical properties different from tryptic peptides that may affect



detectability. Most immunopeptidomics datasets are from cancer samples, and some proteins may be
expressed in some cancers but not in normal physiological conditions. Furthermore, microproteins may
preferentially reside in cellular compartments that are hard to sample through non-HLA MS, such as
membranes.2® Moreover, the laboratories that perform immunopeptidomics are often distinct from
those that analyze non-HLA data and may differ in their sample preparation techniques, experimental
setup, and analytical choices. Understanding which factors are most important to explaining the
difference between immunopeptidomics and conventional shotgun proteomics may require the
development of more sensitive proteomic techniques for identifying low-abundance and short-lived
microproteins in the cell.

Why do several studies report low-quality spectra despite controlling FDR at 1%? Most of the studies we
evaluated control only the proteome-wide FDR instead of controlling FDR for unannotated peptides or
proteins specifically (Table 1).1?**°Since the proteome-wide FDR does not imply any particular FDR
among unannotated proteins!’?, it does not imply high confidence in the unannotated list specifically.
In a theoretical example experiment in which 1 million PSMs, 50,000 peptides and 10,000 proteins pass
threshold, a 1% FDR corresponds to 10,000 incorrect PSMs, 500 incorrect peptides, or 100 incorrect
proteins. If the analysis purports to detect 50 sORFs, the default assumption should be that these are
mostly incorrect identifications until very carefully scrutinized. Studies that controlled FDR for
unannotated proteins in a class-specific manner, such as Chong et al. 2020%? and Ouspenskaia et al.
202229, scored high in our evaluations. We recommend that studies of the unannotated proteome
report local or class-specific unannotated FDRs instead of, or in addition to, whole proteome FDRs, so
that confidence in the list of reported unannotated proteins can itself be evaluated. To facilitate future
work on the detection of unannotated microproteins by MS-based proteomics, we developed a set of
guidelines based on our findings (brief advice in Box 1, detailed guidelines in Appendix 2). The guidelines
in Appendix 2 are an extension of the Human Proteome Project Mass Spectrometry Data Interpretation
Guidelines 3.0.7 It is important to note that false positives can occur across the full range of PSM
quality; a low-quality spectrum does not prove that a claimed detection is a false positive; nor is a high-
quality spectrum conclusive evidence of detection. The gold standard for rigorous MS-based proteomics
data validation requires demonstration that a synthetic peptide generates the observed spectrum and is
retained on the liquid chromatography column to the same extent as the originally detected peptide,
and that the endogenous spectrum is eliminated when the ORF is disabled genetically. Supporting
evidence for the biological significance of a protein with inconclusive MS support can also come from
outside proteomics, such as by demonstrating the evolutionary conservation of its amino acid sequence
or reporting phenotypic impacts upon genetic perturbations.?->3

The thousands of sORFs identified by Ribo-Seq experiments suggest a massive potential for
undiscovered microproteins of biomedical relevance, even at low proteomic validation rates. While our
community assessment found relatively low proteomic support for these microproteins in the datasets
generated by the pioneering studies we analyzed, this finding should not be interpreted to mean that
only few sORF-encoded proteins are present in the cell. There are major technical limitations in the
ability of proteomic experiments to find short and low-abundance proteins'®?32?°, and the microproteins
field is still in its infancy. The extent to which sORFs encode stable functional proteins thus remains an
open question. To answer it, we will need to expand the limits of protein detectability through further
methodological developments, including but not limited to improving the sensitivity of MS instruments.
We hope the dataset of 406 manually curated PSMs generated here will prove useful for benchmarking



much-needed new data analysis tools and pipelines for unannotated microprotein detection by MS
(Supplementary Data 3).

Box 1: Advice for detection of unannotated microproteins using mass spectrometry-based
proteomics

e Ensure peptides appearing to support an unannotated protein detection uniquely support that

protein:
a.

Conduct a search using tools such as ProteoMapper® or PepQuery®® to exclude peptides
with possible matches to canonical proteins, including post- and co-translational
modifications and common genetic variants. When possible, construct a sample-specific
protein database that accounts for genotype. Do not assume a canonical protein is
absent from the sample solely on the basis of gene transcription or translation evidence.
Consider whether the peptide may come from a previously unannotated isoform of a
known protein-coding gene, as gene annotation databases do not comprehensively
capture all transcript diversity. Ideally, integrate short- or long-read transcriptomics data
to determine whether the evidence supports an unannotated alternative transcript or
splicing event that could explain the observed translation.

Pseudogene annotations can significantly impact microprotein discovery. Always check
whether the peptide overlaps with a known pseudogene locus from either the Ensembl-
GENCODE or RefSeq catalog.

e Ensure that the PSMs used to support an unannotated protein detection are high quality:

a.

Among PSMs that score highly in a search engine, spectra match quality can be further
supported by comparison to experimental spectra generated from synthetized peptides,
comparison to in silico fragmentation spectra generated by methods such as Prosit®® or
MS2PIP,*® and machine learning rescoring using approaches such as Oktoberfest>° or
MS2Rescore.®?

Manual evaluation of a representative subset of PSMs is important to ensure reported
detections are supported by high quality evidence.

To accurately convey confidence in the list of unannotated protein detections, report
local FDRs or FDRs specific to the list of unannotated proteins instead of or in addition to
proteome-wide global FDR. The less stringent the FDR threshold used, the more it is
necessary to examine candidates further to ensure they are correct.

e Make the MS data available in a public data repository. Report universal spectrum identifiers

(USIs)®3 for all spectra supporting discovery of an unannotated protein.

Methods

Study selection

We conducted a search for all studies published in the 2019-2022 period that attempted to detect
unannotated proteins using shotgun proteomics. For each study, we obtained information on the PSMs
claimed to support each reported unannotated detection (Supplementary Data 1). For each PSM, we
collected the information needed to construct a universal spectrum identifier (USI)®3 so the PSM could
be visualized. Where possible, we obtained the PSM data from the supplementary information provided



with the study; otherwise, we attempted to obtain them from the study authors. The sources of data for
each study are given in Supplementary Table 1. The authors of one study (Cai et al. 2021)% were unable
to provide the necessary data so this study was not evaluated.

The set of “unannotated” proteins depends on the annotation database used; the proteins included in
our analysis followed the definition used in each study. Unannotated proteoforms of annotated proteins
were not included.

ProteoMapper analysis

All reported unannotated peptides were submitted to the ProteoMapper online tool* in July 2023 using

default settings. For each peptide, ProteoMapper returns a list of matches to known or predicted
proteins, accounting for neXtProt*® amino acid variants. We determined whether each peptide mapped
to a human annotated protein according to the 2023 build of the PeptideAtlas database® and whether
each peptide mapped to a protein present in the 2016 version of UniProtkKB/Swiss-Prot.’® Any peptide
that mapped to a core canonical PeptideAtlas protein on ProteoMapper was not passed on for manual
evaluation, even if it differed from the reference sequence by multiple neXtProt amino acid variants.

Manual evaluation of PSM quality

PSMs for each study were evaluated by a group of six expert evaluators. Each evaluator rated a random
sample of PSMs from each study. A total of 424 PSMs from 12 studies were given for evaluation, out of
which 406 were given ratings, as a few PSMs could not be displayed from the input USI. Out of the 406
PSMs evaluated, 155 were evaluated by two evaluators each to enable determination of the overall
consistency between evaluators. Evaluations were done by visual inspection of the PSM using the
ProteomeCentral USI web application (https://proteomecentral.proteomexchange.org/usi/) in May to
June 2023. The evaluators were told to use no other information except the PSM as displayed on the USI
application. A common set of 10 negative control PSMs was given to each evaluator; the evaluators
were not informed of the existence of these controls. These negative controls consisted of high-scoring
decoy-spectrum matches manually selected from among the strongest 30 decoy-spectrum matches in
Duffy et al. 2022.3* Each PSM was rated on a scale of 1-5; the rating scale is given in Appendix 1.

Comparing manual evaluations to spectral prediction machine learning methods

Spectra were predicted for each manually evaluated peptide sequence annotated to the set of
experimental spectra using the open-source spectral library prediction pipeline Oktoberfest.>® Multiple
predicted spectra were generated for each peptide at various collision energies (CE = 25, 30, 35 and 40)
and using 4 different intensity models (Prosit 2020 intensity HCD®?, Prosit 2020 intensity CID, Prosit 2020
intensity TMT, AlphaPept ms2 generic)®*¢% Only methionine oxidation, cysteine
carbamidomethylation, and TMT6plex modifications were considered in the spectral predictions;
peptides with other modifications were excluded for this analysis. MSP spectral library files output by
Oktoberfest were then converted to MGF formatted spectra. Internal python scripts compared the
experimental spectra vs. the predicted spectra by calculating spectral angles (SA) between each spectral
pair. Similarity was ranked as being high if SA < 20°, moderate if SA between 20° - 45°, poor if SA
between 45° - 70°, and terrible if SA > 70°. The script further generated mirrored plots for each spectral
pair and annotated peptide fragment ions. These spectral angles were then compared to the manual
ratings for each PSM given by the evaluators.



Predicting HLA binding for immunopeptides supporting unannotated protein detections

For each evaluated immunopeptide from Ouspenskaia et al. 2021, Martinez et al. 2020, or Chong et al.
2020 used to support an unannotated protein detection, the HLA alleles for the cell type used in the
experiment producing the peptide was found in the supplemental data of the study. NetMHC 4.0 was
then used to predict binding of the peptide to the HLA-A, HLA-B, and HLA-C allele if the allele was
available in NetMHC 4.0. A peptide was classified as being HLA-binding if it met the default criteria for
being a weak (% rank < 2%) or strong (% rank < 0.5%) binder in NetMHC 4.0.

Relating ORF properties to the probability of detection

The coordinates of each ORF with an evaluated peptide were taken from the supplementary data of
each study and the ORF length determined. All ORF coordinates were converted to hg38 coordinates
using LiftOver. ORFs from Chen et al. 2020%, Chong et al. 2020%?, Cao et al. 2022%°, and Lu et al. 2019*
were not considered because we were not able to identify the ORF coordinates from supplementary
data files. To assess translation levels, we aggregated Ribo-Seq data from 109 studies (Supplementary
Data 5-6) using the following procedure. Transcriptomes from MiTranscriptome®®, FANTOMS robust
set®, CHESS’®, RNA Atlas’, and Ensembl version 108 were merged using Stringtie’? version 2.2.1with
Ensembl version 108 as the reference annotation (-G parameter). MiTranscriptome and FANTOMS5
coordinates were lifted over from hg19 to hg38 prior to merging. Adapters in each ribo-seq run were
removed with TrimGalore version 0.6.7 using default options. Trimmed Ribo-seq reads were then
mapped to the merged transcriptome using STAR”® version STAR-2.7.10b using the parameters--
outSAMtype BAM Unsorted --outFilterMismatchNmax 2 --outFilterMultimapNmax 1 --outSAMattributes
Standard. The iRibo program®* was then used to aggregate the mapped reads from all studies and assign
counts of ribosome P-sites to each position of each analyzed ORF.

Data Availability

All data analyzed are available in a Figshare database (
https://doi.org/10.6084/m9.figshare.30131869.v1). Source data are provided with this paper.

Code Availability

All code required to reproduce the figures and data for analyses are available at:
https://doi.org/10.6084/m9.figshare.30131869.v1
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Tables

Table 1: Properties of reanalyzed studies. List of all studies reanalyzed. sORF database size indicates the
number of sORFs in the protein sequence database in the MS analysis for each study. The number of
these ORFs with proteomic support according to the study is also given. Considered noncanonical PSMs
is the number of PSMs supporting a sSORF-encoded protein reported in each study for which we could
obtain the necessary information to evaluate; PSMs actually evaluated were selected randomly from
this set. Annotation definition indicates the database used by each study to define the set of annotated
or “canonical” proteins; all other proteins are considered to be unannotated, sORF-expressed proteins.
Reported false discovery rate indicates the FDR given in each study for the list of SORF detections and
whether this was calculated proteome-wide (a common FDR considering both unannotated and
annotated proteins) or specific to the unannotated proteins.



Citation sORF database Considered Reported HLA or Source material Annotation Reported false
size noncanonical sORFs non-HLA definition discovery rate
PSMs with MS
support
Caoetal. Three-frame 28 17 non-HLA HEK293T Human 1% at peptide and
20223° translation of UniProtkB protein level,
transcriptome 2019 proteome-wide
Bogaert et 16,919 8 6 non-HLA HEK293T cellular cytosol Human <1% peptide, <2.5%
al. 202228 UniProtkB/Sw | protein, proteome-wide
iss-Prot 2021
Chothani 7,767 5,763 614 non-HLA NHDF and HUVEC (Slany Human 1% PSM level,
etal. et al. 20163!), ES (Shekari UniProtkB unannotated specific
20224 et al. 2017%?), Heart (Doll 2017
etal. 2017%)
Duffy etal. | 38,187 2,445 366 non-HLA Adult brain, Prenatal Human 1% at peptide and
20223 brain, hESC-derived UniProtKB protein level,
neurons proteome-wide
Douka et 45 18 8 non-HLA SH-SY5Y cells (Murillo et Human 10% at peptide level,
al. 20213 al. 20183¢ and Brenig et UniProtKB proteome-wide
al. 2020%7) 2019
Prensner 553 6,236 140 HLA and 14 published mass UCSC RefSeq 1% at PSM level,
etal. non-HLA spectrometry datasets proteome-wide
2021%
Ouspenska | 237,437 9985 4903 HLA and Lymphoblastoid cell line Annotated 1% at PSM level, class-
jaetal. non-HLA* (Sarkizova et al. 2020%°), genes on specific FDR for each
2021%° patient-derived ucsc type of unannotated
melanoma cell line, Genome ORF (e.g., UORF, dORF)
patient-derived Browser hg19
glioblastoma cell line
(Shraibman et al. 2019%),
chronic lymphocytic
leukemia tumor, ovarian
carcinoma, renal cell
carcinoma
Chen et al. 7,824 33 12 HLA and iPSCs Human 1% at PSM level,
20204 non-HLAt UniProtKB proteome-wide
Chong et Three-frame 2,597 384 HLA Patient-derived Human Class-specific FDR for
al. 2020*? translation of melanoma cell lines and UniProtKB/Tr unannotated, keep only
transcriptome lung cancer samples with EMBL 2018 PSMs identified by both
matched normal tissues Comet and MaxQuant.
Estimated FDR <0.001%
Martinez 7,554 1,160 319 HLA Six cancer cell lines from Human 1% FDR at peptide level,
etal. Bassani-Sternberg 2015 UniProtKB/Sw | proteome-wide
20204 (25576301): B-cells EBV iss-Prot
transformed, B-cell
leukemia, basal like
breast cancer, colon
carcinoma, primary
fibroblast
van 1,598 1,942 500 non-HLA Heart (Doll et al., Human 1% targeted FDR, 50-
Heesch et 29133944), iPSC-derived UniProtkB 60% estimated FDR
al. 2019° cardiomyocytes 2017
Luetal. 2,969 964 308 non-HLA Cell lines: lung, colorectal Human 1% FDR at PSM, peptide
2019* cancer, liver cancer, UniProtkKB/Sw | and protein level.

cervical cancer

iss-Prot

*Only HLA spectra were evaluated. TOnly non-HLA spectra were evaluated.




Figure Legends

Figure 1: Broad variation among studies in reports of unannotated microprotein detection. A)
The relation between the number of sORFs used to construct the protein database of each
study and the number of sORF-encoded proteins reported detected by MS (Spearman
correlation = 0.43, p = 0.2). Whether the sORF database was constructed using a curated list of
known sORFs, all possible sORFs from three frame translation of a transcriptome, or a list of
ORFs found to be translated using Ribo-Seq or RNC-seq data is indicated. B) For each study, the
proportion of reported peptides supporting an unannotated protein that are also found by
another study in our analysis is shown. The numbers of peptides found in other studies out of
the total reported in the study are indicated above the bars. C) Proportion of peptides mapping
to annotated proteins using the ProteoMapper tool, divided into categories depending on the
number of common single nucleotide polymorphism (SNP) differences separating the peptide
from the peptide present in the reference protein and whether the annotated peptide is tryptic;
i.e., could be generated by cleavage after lysine or arginine. Semi-tryptic peptides (where only
one peptide end is tryptic) are grouped with non-tryptic. Peptides from immunopeptidomics
experiments were not generated by trypsin digestion and therefore are not classified as tryptic
or non-tryptic. Peptides matching currently annotated proteins that were not annotated on
UniProtKB/Swiss-Prot in 2016 (i.e., recently annotated proteins) are excluded. D) For each study,
the proportion of reported peptides supporting an unannotated protein that are also found by
another study in our analysis, excluding peptides that match to annotated proteins according to
the ProteoMapper tool. Note that most studies have focused on different biological systems,
which can limit the overlap. Source data are provided as a Source Data file.

Figure 2: Expert manual evaluation of literature reported unannotated protein detections in
mass spectrometry datasets. A) Counts of each pair of ratings among the PSMs that were
assessed by two evaluators (n=155). The Pearson correlation between pairs of ratings is
indicated. B) For a set of manually evaluated PSMs (n=274), the spectrum was also predicted
using several machine learning models (see Methods). The spectral angle is an indicator of how
different the observed PSM was from the closest predicted spectrum, with larger angles
indicating a worse match. The best spectral angles are indicated among PSMs grouped by
evaluator rating. The box in each boxplot indicates interquartile range between the first and
third quartiles, while the center line indicates the median. The whiskers indicate minima and
maxima within 1.5 times the interquartile range. C) Mean * standard error of ratings of PSMs
sampled from each study, per each of six evaluators (n=620 rated PSMs in total). Standard
errors were corrected for finite population (total count of reported PSMs supporting
unannotated proteins in the study). Ratings were given on a 1-5 scale. D) Overall distribution of
ratings for unannotated protein PSMs among all studies and evaluators (n=620 PSMs). Bars
indicate proportions +/- standard errors. E) Log Ribo-Seq read counts for ORFs expressing
proteins in PSMs rated highly (rating >3, n=65 proteins) or lowly (rating <3, n=105 proteins).
Reads are from a collection of human Ribo-Seq studies (see Methods). The box in each boxplot
indicates interquartile range between the first and third quartiles, while the center line indicates
the median. The whiskers indicate minima and maxima within 1.5 times the interquartile range.
Differences between group means are tested using a two-sided permutation test. F) Predicted
lengths of proteins rated highly (>3,n=65 proteins) or lowly (<3, n=105 proteins). Box plot



meaning is same as above. Differences between group means are tested using a two-sided
permutation test. G) Evaluated and extrapolated counts (+/- SEM) of HLA and non-HLA high-
rated (rating of 4 or 5) protein detections. Extrapolated counts give the number of high-rated
protein detections expected if the entire dataset had been evaluated. Source data are provided
as a Source Data file.



Editor’'s Summary

Several recent publications have attempted to detect novel unannotated microproteins using mass
spectrometry proteomics. Here, the authors reassess these claimed microprotein detections, finding
that many are poorly supported, while a subset represents likely genuine discoveries of novel proteins.

Peer Review Information: Nature Communications thanks the anonymous reviewer(s) for their
contribution to the peer review of this work. A peer review file is available.
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