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Abstract 

Thousands of short open reading frames (sORFs) are translated outside of annotated coding sequences. 

Recent studies have pioneered searching for sORF-encoded microproteins in mass spectrometry (MS)-

based proteomics and peptidomics datasets. Here, we assessed literature-reported MS-based 

identifications of unannotated human proteins. We find that studies vary by three orders of magnitude 

in the number of unannotated proteins they report. Of nearly 10,000 reported sORF-encoded peptides, 

96% were unique to a single study, and 12% mapped to annotated proteins or proteoforms. Manual 

curation of a benchmark dataset of 406 manually evaluated spectra from 204 sORF-encoded proteins 

revealed large variation in peptide-spectrum match (PSM) quality between studies, with 

immunopeptidomics studies generally reporting higher quality PSMs than conventional enzymatic 

digests of whole cell lysates. We estimate that 65% of predicted sORF-encoded protein detections in 

immunopeptidomics studies were supported by high-quality PSMs versus 7.8% in non-

immunopeptidomics datasets. Our work stresses the need for standardized protocols and analysis 

workflows to guide future advancements in microprotein detection by MS towards uncovering how 

many human microproteins exist. 
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Introduction 

Ribosome profiling (Ribo-Seq) studies have demonstrated widespread translation of short open reading 

frames (sORFs) outside of annotated coding sequences in eukaryotic genomes1,2, suggesting that the 

proteome may be much larger than currently annotated in databases such as UniProtKB.3–6 Several such 

individual sORF-encoded microproteins were experimentally found to be implicated in diverse biological 

processes across the tree of life such as muscle physiology and cancer.7–12 Yet, these well-characterized 

cases represent only a small fraction of the microproteins that could be encoded by translated sORFs.13 

The translation products of many sORFs may be poorly conserved, of low abundance, or rapidly 

degraded, leading to uncertainty about their biological significance.5,14,15 There is a need, therefore, to 

identify the sORF-encoded microproteins that exist in the cell and have the potential to perform 

biological activities. 

One systematic approach to identify unannotated microproteins predicted by Ribo-Seq is to search for 

peptide-level evidence in mass spectrometry (MS)-based proteomics or peptidomics datasets.16,17 In the 

typical case, a sequence database is constructed that consists of a curated protein sequence database 

(e.g. the UniProtKB human reference proteome18) joined together with a list of putative unannotated 

proteins (e.g. predicted products of translated sORFs cataloged by Ribo-Seq). This protein sequence 

database may then be used for analyzing conventional “shotgun” MS proteomics datasets, in which 

protein samples are digested using a protease, or for analyzing datasets generated by 

immunopeptidomics experiments, which attempt to identify peptides presented by human leukocyte 

antigens (HLAs) without requiring protease pretreatment.19 In both conventional proteomics 

experiments and immunopeptidomics experiments, the collected spectra will be generated from 

peptides derived from both annotated and unannotated proteins in the sample. Confident inference of 

an unannotated protein detection requires that the peptide uniquely supports an unannotated protein; 

i.e., that one can exclude the possibility that it derives from a protein in a curated protein sequence 

database. Detection confidence is generally controlled using a target-decoy approach20, which enables 

the calculation of a false discovery rate (FDR). The FDR can be set at the level of peptide-spectrum 

matches (PSMs), peptides, or proteins. Peptides and their inferred proteins passing the thresholds, 

usually 1% FDR at the peptide/protein level, are reported as detected.21  Protein-level MS evidence in a 

conventional proteomics experiment using trypsin or other proteases indicates that the protein existed 

in the cell. Immunopeptidomics can be used to validate Ribo-Seq predictions by confirming that an sORF 

was translated and the processed forms of its translation product was presented by HLA molecules, but 

cannot establish that the protein was stably present in the cell.22  

Despite the promise of shotgun proteomics for rapid and large-scale microprotein identification, the 

small size, low abundance, atypical sequence characteristics and frequent transmembrane localization 

of microproteins pose major technical challenges for existing MS pipelines.23–26 For example, it can be 

impossible to observe multiple unique supporting peptides for microproteins whose sequence is too 

short to hold multiple cleavage sites, or if only one peptide is within the mass-over-charge range of the 

spectrometer. Therefore, the guidelines established by the Human Proteome Project27 for MS detection 

of proteins are difficult to apply fully, and researchers use a variety of ad hoc strategies.16 As the field 

develops and the number of reported microprotein detections grows, there is a need to assess which 

strategies are most effective for identifying genuine microproteins while minimizing false positives. 
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In this work, we brought together a group of experts to perform a systematic confidence assessment of 

previously reported unannotated protein MS detections. We find wide variation in the number of 

unannotated microproteins reported between different proteomic studies, with few microproteins 

reported in more than one study. Manual evaluation indicates a division between immunopeptidomics 

studies and studies using conventional tryptic proteomics: most microproteins reported in 

immunopeptidomics studies are supported by high-quality PSMs, while most microproteins reported in 

conventional proteomics studies are supported by only low-quality PSMs and may not represent 

genuine discoveries. Yet, a subset of microproteins is supported by strong evidence in conventional 

proteomics datasets, suggesting that more remain to be discovered. We outline advice for increasing 

confidence in proteomic detection of microproteins as this area of investigation continues to grow.  

Results 

Reported numbers of unannotated proteins vary greatly between studies 

To evaluate the extent to which unannotated proteins can be detected in proteomics data, our group of 

microprotein researchers assembled in 2023 to conduct a literature search for all papers reporting 

human unannotated protein detections published between 2019 and 2022. We identified 12 such 

studies that were published in this time window (Table 1). Seven studies searched for unannotated 

proteins in conventional proteomics data, while two studies searched for peptides derived from 

unannotated proteins in immunopeptidomics data, and three studies searched both classes of 

proteomics data. From each study, we obtained a list of the unannotated proteins reported to be 

detected (of any length), together with the PSMs supporting these detections (Supplementary Data 1, 

Supplementary Table 1).  

A key motivation for initiating this community effort was the large variation in the number of validated 

unannotated proteins reported between studies, ranging from 628 to 4,90329 (Figure 1A, Table 1). The 

peptides reported in support of unannotated proteins in each study were largely distinct: of 9,414 total 

reported peptides across the considered studies, only 326 (3.5%) were reported in more than one study. 

For 8 of 12 studies, fewer than 10% of the reported peptides were found in any of the other analyzed 

studies (Figure 1B, Supplementary Data 2). The low rate of replication is despite some studies analyzing 

the same collections of mass spectra, albeit with not fully overlapping databases of sORF sequences 

(Table 1). We do not interpret the high variability between studies as indicating that most reported 

detections are false: this high variability among reported detected peptides likely reflects in part the 

high variability in the size and composition of the sORF databases tested (Table 1)16 and the quantity of 

proteomic data analyzed, as well as the diversity of cell types examined, MS techniques used, HLA 

allotypes among the immunopeptidomics studies, and search algorithms. Nevertheless, in the absence 

of robust replicability to establish confidence, a closer assessment of the strength of evidence provided 

in each study for their reported detected unannotated proteins is needed.  

Do reported peptides uniquely support an unannotated protein? 

We first assessed whether PSMs reported as evidence for the detection of an unannotated protein may 

also be attributed to an annotated protein. All the studies in our meta-analysis attempted to exclude 

potential annotated protein-matching peptides, but different analysis pipelines were implemented that 

might not have equally accounted for the full space of potential proteoforms of annotated proteins.16  
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To assess whether some peptides reported to derive from an unannotated protein could potentially be 

attributed to an annotated protein, we used the PeptideAtlas ProteoMapper45 tool. ProteoMapper takes 

neXtProt46 reported amino acid variants into account; i.e., it will find matches not just to the reference 

proteome but to proteins that differ from the reference by one or more variant amino acids. We 

restricted our analysis to peptides that differed from the reference sequence by at most one single 

amino acid variant. Given this restriction, 12% of peptides reported to support detection of an 

unannotated protein (1,161 of 9,732) also had a putative match to an annotated protein on 

ProteoMapper, with this rate varying from 0% to 96% across individual studies (Supplementary Data 1).  

Recent updates in annotation could potentially explain why some reported peptides mapped to 

annotated proteins when we conducted this ProteoMapper search in 2023. To evaluate this possibility, 

we checked whether these annotated proteins were annotated in the 2016 version of UniProtKB/Swiss-

Prot18, as all studies in our analysis used protein databases published after 2016 to define their 

annotated set (Table 1). Only eight distinct annotated proteins matching reported unannotated peptides 

in 2023 were absent from UniProtKB/Swiss-Prot in 2016, indicating that annotation updates are not a 

major explanation for peptides reported to support unannotated proteins mapping to annotated 

proteins.  

Peptides reported to support unannotated proteins might also map to annotated proteins if the studies 

did not account for non-tryptic peptides or protein variants. We therefore divided the peptides mapping 

to annotated proteins by whether they were perfect matches to the UniProtKB/Swiss-Prot reference 

protein or differed by one single amino acid variant, and by whether they were predicted tryptic (i.e., 

peptides that could be generated by cleavage after arginine or lysine residues) or non-tryptic (including 

semi-tryptic) (Figure 1C). We note that some peptides in Chong et al. 202042 map to both unannotated 

proteins and common variants of annotated proteins, but since this study used customized databases of 

annotated proteins reflecting each patients’ sequenced genotypes, these common variants were shown 

to be absent in the patient samples. Without such a customized database, it is difficult to fully rule out 

an annotated protein source given the possibility of unknown variants of annotated proteins, especially 

in cell lines or cancer samples. 

For two studies, Prensner et al. 202138 and Duffy et al. 202234, a substantial fraction of reported 

unannotated peptides (10% or more) were perfect matches to tryptic peptides in reference proteins. 

The relatively high rate of matching UniProtKB protein references in Prensner et al. 202138 might be 

explained by either the use of the UCSC RefSeq database to define the set of annotated proteins rather 

than UniProtKB, which was used by most other studies (Table 1), or not preferentially allocating all 

shared peptides to the annotated set. For Duffy et al. 202234, spectra searches were conducted against 

custom databases of both annotated and unannotated proteins inferred to be expressed in the specific 

type of brain tissue or cell based on Ribo-Seq data, while all other studies included the full set of human 

annotated proteins in their protein database. Likely, annotated proteins not detected by Ribo-Seq may 

still be present in the sample, leading to peptides from annotated proteins potentially being falsely 

assigned to unannotated proteins.  For two other studies6,41, more than half of reported peptides that 

mapped to both unannotated and annotated proteins were non-tryptic (Figure 1C). A peptide with a 

match to an annotated protein does not uniquely support an unannotated protein detection, even if the 

match is non-tryptic, as trypsin does not have perfect specificity and can vary in grade, cleavage could 

have been induced by other proteases (e.g. upon lysing cells and tissues), and protein processing in cells 

can yield non-tryptic peptides.  
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Overall, these results indicate a need to consider non-tryptic peptides and possible amino acid variants 

of annotated proteins to ensure that peptides uniquely map to an unannotated protein. Excluding 

potential hits to annotated proteins can be done with tools such as ProteoMapper45 or the neXtProt 

peptide uniqueness checker47, as suggested by the HUPO-HPP MS data interpretation guidelines27, or, 

ideally, using sample-specific customized protein sequence databases based on sequenced genotypes. 

After excluding all reported peptides that mapped to annotated proteins according to ProteoMapper, 

the general trends we observed for the entire set of reported peptides supporting unannotated protein 

detections remained: for 8 of 12 studies, at least 90% of reported unannotated peptides were only 

reported in that study (Figure 1D). Therefore, we next examined the level of support PSMs provided for 

claimed unannotated protein detections. 

Assessing PSM quality by manual evaluation 

To assess PSM quality among literature-reported peptides supporting detection of unannotated 

proteins, a random sample of PSMs from each study was manually evaluated by a panel of six expert 

evaluators. A total of 406 PSMs from 12 studies were evaluated (1.3% of total), corresponding to 307 

peptides from 204 unannotated proteins. These PSMs were sampled after excluding peptides mapping 

to annotated proteins or proteoforms (Figure 1C). Of these 406 PSMs, 155 were evaluated by two 

evaluators each to enable determination of the overall consistency between evaluators. Additionally, a 

common set of 10 negative control PSMs was included in each sample, consisting of high-scoring decoy-

spectrum matches intended to mimic PSMs that perform relatively well according to algorithms. Each 

PSM was rated on a scale of 1-5. Full evaluation criteria along with example spectra and explanations of 

their rating are given in Appendix 1. The PSMs assigned to each evaluator were ordered randomly and 

the evaluators were not informed as to the source publication of each PSM (Supplementary Data 3).  

Agreement among evaluators was generally high. For the PSMs rated by two evaluators, ratings were 

well correlated (r = 0.82, p < 10-10) (Figure 2A). Only 14 of 155 (9%) PSM scores differed by more than 

one point. The negative controls scored consistently poorly (average score of 1.5), as expected. 

Evaluator ratings were also well correlated (r = 0.74, p < 10-10) with the dot product between the 

observed spectra and the spectra predicted by MS2PIP (Supplementary Figure 1).48 Among 

immunopeptidomics studies, PSMs with peptides that were predicted to bind to MHC molecules by 

NetMHC49 were rated more highly (n = 71, mean rating 3.94) than those with peptides not predicted to 

bind (n = 14, mean rating 3.29, p = 0.037 by two-sided permutation test, Supplementary Figure 2, 

Supplementary Data 4), consistent with manual evaluation discriminating between true and false 

discoveries. To investigate consistency between manual ratings and machine learning methods for 

spectral prediction, we generated predicted spectral libraries for all evaluated PSMs under several 

models using Oktoberfest (see Methods).50 We observed a moderate correlation between the best 

spectral angle between the model-predicted and experimental spectra (a measure of spectral similarity) 

and evaluator rating (r = -0.56, p < 10-10, n=274, Figure 2B), suggesting both similarities and differences 

in how expert evaluators and this spectral prediction method assess PSM quality.  

There was also a general consistency between evaluators in average rating per study (Figure 2C). The 

evaluated PSM quality varied across studies, with average rating ranging from 1.0 to 4.1 (Figure 2C). 

Three studies had average PSM ratings that did not exceed the negative controls. For one of these 

studies, van Heesch et al. 20196, the authors recognized the high FDR in their search results, which led 

them to develop a customized strategy for estimating a microprotein-specific FDR and to favor selected 
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reaction monitoring (SRM) for their downstream analyses. We did not evaluate these SRM results but 

focused solely on the reported shotgun proteomics hits. For Douka et al. 202135, the low ratings are 

understandable because, rather than using a 1% FDR threshold, this study used a 10% threshold in 

anticipation of the low abundance of microproteins. For Chothani et al. 20224, unannotated protein 

PSMs were identified by searching hundreds of MS runs individually with a 1% FDR threshold after 

removing all matches to the annotated proteome, then assembling the hits into a master list. A likely 

explanation is that, since spectra matching annotated proteins were removed prior to searching for 

unannotated proteins, there were few genuine detections in the MS runs analyzed. Under conditions of 

few genuine detections, it is difficult to precisely estimate FDR, leading to potential false positives 

(Supplementary Figure 3).51 Chothani et al. highlighted peptides found in multiple datasets; these 

peptides were not separately evaluated here. 

The immunopeptidomics studies (Ouspenskaia et al. 202129, Martinez et al. 202043, and Chong et al. 

202042, and some peptides from Prensner et al. 202138) reported substantially higher quality PSMs  than 

most of the other studies (mean rating 3.8 vs. 2.3, n=13, p = 0.024 for difference in mean by two-sided 

permutation test, Figure 2C-D). The three studies that focused on HLA data have average scores above 

three, as do the HLA PSMs (but not non-HLA PSMs) from Prensner et al. 2021.52 The only non-HLA 

studies with average scores of three or more were Cao et al. 202230 and Bogaert et al. 202228, which 

reported only 28 and 8 PSMs derived from unannotated proteins, respectively (Figure 2C, Table 1). 

Overall, most (70%) evaluated PSMs supporting unannotated protein detections from HLA studies 

received a rating of at least 4, the threshold for convincing evidence of detection (See Appendix, Figure 

2D). In contrast, only 15% of ratings for reported matches in non-HLA data were in the 4-5 range. These 

results are consistent with a recent study, Deutsch et al. 2024, where MS searches for peptide-level 

evidence supporting Ribo-Seq identified sORFs also found higher support in HLA than non-HLA 

datasets.53 

Among 98 high-rated HLA peptides, 33 were reported in multiple studies, and 37 were validated by 

Deutsch et al. 2024 (1 supporting an ORF in Tier 1A, 26 in Tier 1B, and 10 in Tier 2B, Supplementary 

Figure 4). Of the 28 high-rated PSMs from non-HLA data, two involved peptides that were reported in 

multiple studies. Both peptides derive from the same sORF, located in the 5’ UTR of the MKKS locus. The 

protein encoded by this sORF (UniProt identifier Q9HB66 in UniProtKB/TrEMBL) has now accumulated 

enough peptide-level evidence to have become annotated as “core canonical” in PeptideAtlas in 2025, 

though it remains unannotated in UniProtKB/Swiss-Prot so far. Two high-rated non-HLA peptides were 

also identified as having strong evidence in Deutsch et al. 2024.53 These peptides mapped to the sORFs 

c11riboseqorf4 in the Tier 1A class (the highest level of support that an ORF is protein-coding) and 

c12norep33 in the Tier 2A class (weaker support). These observations illustrate how searching multiple 

sources of MS data contributes towards a more comprehensive view of sORF-expressed proteins and 

improves annotations of the human proteome.  

Higher rated PSMs are derived from more highly expressed sORFs 

To assess whether our PSM ratings were influenced by the expression levels of the corresponding 

proteins, we compiled a large collection of human Ribo-Seq studies and analyzed translation levels 

harmoniously, using the iRibo program, for all the sORFs corresponding to evaluated PSMs for which 

genomic coordinates were provided by the original studies (191 sORFs; see Methods, Supplementary 

Data 5-6).54 We found that reported unannotated proteins with corresponding PSMs rated 4 or 5 were 
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more highly translated than those with corresponding PSMs rated 1 or 2 (difference in log Ribo-Seq read 

count per codon by two-sided permutation test, p = 0.005, Figure 2E). This is consistent with more highly 

expressed proteins being more readily detectable by MS and thus generating higher quality PSMs.55 

Unexpectedly, high-rated proteins were also shorter on average by 37 amino acids than low-rated 

proteins (two-sided permutation test, p = 0.01, Figure 2F). There was no significant correlation between 

log iRibo p-value, indicating level of confidence that the ORF is translated, and PSM rating (r = 0.098, p = 

0.18). 

Discovery of potential unannotated proteins 

We next estimated the number of unannotated proteins we would expect to have strong MS support 

had we evaluated all reported detections. To do this, we extrapolated the number of unannotated 

protein detections that would be supported by high-scoring PSMs had we evaluated all PSMs among all 

studies, assuming the frequency of scores for each study would be the same as in the tested set (Figure 

2G). Among unannotated proteins reported in non-HLA data, 27 evaluated proteins were supported by 

at least one PSM rated 4 or 5. We predict 137 of 1,749 (7.8%) would be supported by PSMs of this 

quality across the whole aggregated dataset. For HLA data, 94 evaluated proteins were supported by at 

least one PSM rated 4 or 5; we predict 3,706 of 5,705 (65%) would be found across the entire dataset. 

Other unannotated proteins are likely detectable in datasets outside our study scope. Thus, there is 

considerable potential for discovery even in the particularly challenging case of finding unannotated 

proteins in conventional enzymatically digested samples.  

Discussion 

Given the growing recognition of the importance of microproteins in human health56, there is an urgent 

need to prioritize sORF-encoded microproteins that are supported by MS evidence. Here, we reanalyzed 

twelve published studies that reported detection of unannotated microproteins with MS. While most 

reported PSMs (70%) in immunopeptidomics studies were of high quality, around 85% of non-HLA PSMs 

were evaluated by a panel of proteomics experts to be of too low quality to provide evidence of peptide 

detection. These results point to a need for caution in interpreting claimed unannotated protein 

detections reported in the literature and motivate technological improvements for the evaluation of 

microprotein evidence moving forward. Many unannotated protein detections do appear strong, and 

the microprotein literature has provided great value in expanding the protein universe with real 

discoveries of likely biological significance.53 However, the idea that several hundreds to even thousands 

of unannotated proteins are genuinely detected in existing mass spectrometry datasets of conventional 

trypsin digests reflects an unrealistic expectation about the extent to which current shotgun proteomics 

can validate sORFs identified by Ribo-Seq.  

Why do immunopeptidomics studies identify many high-quality PSMs supporting unannotated protein 

detections while studies using conventional enzymatic digests identify only few? Many unannotated 

sequences found to be translated by Ribo-Seq lack signatures of evolutionary conservation and may not 

encode proteins that provide any benefit to the organism.5,15,57 It is plausible that many of these poorly 

conserved proteins are expressed but quickly degraded, and so can be found only as peptides bound to 

HLAs.14,58 However, there are also technical explanations for why HLA-bound peptides derived from 

unannotated microproteins may be easier to detect. Immunopeptidomics concentrates peptides bound 

to HLAs, which decreases sample complexity and may thereby enrich for low abundance microproteins. 

HLA peptides also have physical and chemical properties different from tryptic peptides that may affect 
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detectability. Most immunopeptidomics datasets are from cancer samples, and some proteins may be 

expressed in some cancers but not in normal physiological conditions. Furthermore, microproteins may 

preferentially reside in cellular compartments that are hard to sample through non-HLA MS, such as 

membranes.26 Moreover, the laboratories that perform immunopeptidomics are often distinct from 

those that analyze non-HLA data and may differ in their sample preparation techniques, experimental 

setup, and analytical choices. Understanding which factors are most important to explaining the 

difference between immunopeptidomics and conventional shotgun proteomics may require the 

development of more sensitive proteomic techniques for identifying low-abundance and short-lived 

microproteins in the cell. 

Why do several studies report low-quality spectra despite controlling FDR at 1%? Most of the studies we 

evaluated control only the proteome-wide FDR instead of controlling FDR for unannotated peptides or 

proteins specifically (Table 1).17,23,59 Since the proteome-wide FDR does not imply any particular FDR 

among unannotated proteins17,23, it does not imply high confidence in the unannotated list specifically. 

In a theoretical example experiment in which 1 million PSMs, 50,000 peptides and 10,000 proteins pass 

threshold, a 1% FDR corresponds to 10,000 incorrect PSMs, 500 incorrect peptides, or 100 incorrect 

proteins. If the analysis purports to detect 50 sORFs, the default assumption should be that these are 

mostly incorrect identifications until very carefully scrutinized.  Studies that controlled FDR for 

unannotated proteins in a class-specific manner, such as Chong et al. 202042 and Ouspenskaia et al. 

202229, scored high in our evaluations. We recommend that studies of the unannotated proteome 

report local or class-specific unannotated FDRs instead of, or in addition to, whole proteome FDRs, so 

that confidence in the list of reported unannotated proteins can itself be evaluated. To facilitate future 

work on the detection of unannotated microproteins by MS-based proteomics, we developed a set of 

guidelines based on our findings (brief advice in Box 1, detailed guidelines in Appendix 2). The guidelines 

in Appendix 2 are an extension of the Human Proteome Project Mass Spectrometry Data Interpretation 

Guidelines 3.0.27 It is important to note that false positives can occur across the full range of PSM 

quality; a low-quality spectrum does not prove that a claimed detection is a false positive; nor is a high-

quality spectrum conclusive evidence of detection. The gold standard for rigorous MS-based proteomics 

data validation requires demonstration that a synthetic peptide generates the observed spectrum and is 

retained on the liquid chromatography column to the same extent as the originally detected peptide, 

and that the endogenous spectrum is eliminated when the ORF is disabled genetically. Supporting 

evidence for the biological significance of a protein with inconclusive MS support can also come from 

outside proteomics, such as by demonstrating the evolutionary conservation of its amino acid sequence 

or reporting phenotypic impacts upon genetic perturbations.23,53 

The thousands of sORFs identified by Ribo-Seq experiments suggest a massive potential for 

undiscovered microproteins of biomedical relevance, even at low proteomic validation rates. While our 

community assessment found relatively low proteomic support for these microproteins in the datasets 

generated by the pioneering studies we analyzed, this finding should not be interpreted to mean that 

only few sORF-encoded proteins are present in the cell. There are major technical limitations in the 

ability of proteomic experiments to find short and low-abundance proteins16,23,25, and the microproteins 

field is still in its infancy. The extent to which sORFs encode stable functional proteins thus remains an 

open question. To answer it, we will need to expand the limits of protein detectability through further 

methodological developments, including but not limited to improving the sensitivity of MS instruments. 

We hope the dataset of 406 manually curated PSMs generated here will prove useful for benchmarking 
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much-needed new data analysis tools and pipelines for unannotated microprotein detection by MS 

(Supplementary Data 3).  

Box 1: Advice for detection of unannotated microproteins using mass spectrometry-based 

proteomics 

• Ensure peptides appearing to support an unannotated protein detection uniquely support that 

protein: 

a. Conduct a search using tools such as ProteoMapper45 or PepQuery60 to exclude peptides 

with possible matches to canonical proteins, including post- and co-translational 

modifications and common genetic variants. When possible, construct a sample-specific 

protein database that accounts for genotype. Do not assume a canonical protein is 

absent from the sample solely on the basis of gene transcription or translation evidence. 

b. Consider whether the peptide may come from a previously unannotated isoform of a 

known protein-coding gene, as gene annotation databases do not comprehensively 

capture all transcript diversity. Ideally, integrate short- or long-read transcriptomics data 

to determine whether the evidence supports an unannotated alternative transcript or 

splicing event that could explain the observed translation. 

c. Pseudogene annotations can significantly impact microprotein discovery. Always check 

whether the peptide overlaps with a known pseudogene locus from either the Ensembl-

GENCODE or RefSeq catalog. 

• Ensure that the PSMs used to support an unannotated protein detection are high quality: 

a. Among PSMs that score highly in a search engine, spectra match quality can be further 

supported by comparison to experimental spectra generated from synthetized peptides, 

comparison to in silico fragmentation spectra generated by methods such as Prosit61 or 

MS2PIP,48 and machine learning rescoring using approaches such as  Oktoberfest50 or 

MS2Rescore.62 

b. Manual evaluation of a representative subset of PSMs is important to ensure reported 

detections are supported by high quality evidence.  

c. To accurately convey confidence in the list of unannotated protein detections, report 

local FDRs or FDRs specific to the list of unannotated proteins instead of or in addition to 

proteome-wide global FDR. The less stringent the FDR threshold used, the more it is 

necessary to examine candidates further to ensure they are correct.   

• Make the MS data available in a public data repository.  Report universal spectrum identifiers 

(USIs)63 for all spectra supporting discovery of an unannotated protein. 

Methods 

Study selection 

We conducted a search for all studies published in the 2019-2022 period that attempted to detect 

unannotated proteins using shotgun proteomics. For each study, we obtained information on the PSMs 

claimed to support each reported unannotated detection (Supplementary Data 1). For each PSM, we 

collected the information needed to construct a universal spectrum identifier (USI)63 so the PSM could 

be visualized. Where possible, we obtained the PSM data from the supplementary information provided 
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with the study; otherwise, we attempted to obtain them from the study authors. The sources of data for 

each study are given in Supplementary Table 1. The authors of one study (Cai et al. 2021)64 were unable 

to provide the necessary data so this study was not evaluated. 

The set of “unannotated” proteins depends on the annotation database used; the proteins included in 

our analysis followed the definition used in each study. Unannotated proteoforms of annotated proteins 

were not included.  

ProteoMapper analysis  

All reported unannotated peptides were submitted to the ProteoMapper online tool45 in July 2023 using 

default settings. For each peptide, ProteoMapper returns a list of matches to known or predicted 

proteins, accounting for neXtProt46 amino acid variants. We determined whether each peptide mapped 

to a human annotated protein according to the 2023 build of the PeptideAtlas database65 and whether 

each peptide mapped to a protein present in the 2016 version of UniProtKB/Swiss-Prot.18 Any peptide 

that mapped to a core canonical PeptideAtlas protein on ProteoMapper was not passed on for manual 

evaluation, even if it differed from the reference sequence by multiple neXtProt amino acid variants. 

Manual evaluation of PSM quality 

PSMs for each study were evaluated by a group of six expert evaluators. Each evaluator rated a random 

sample of PSMs from each study. A total of 424 PSMs from 12 studies were given for evaluation, out of 

which 406 were given ratings, as a few PSMs could not be displayed from the input USI. Out of the 406 

PSMs evaluated, 155 were evaluated by two evaluators each to enable determination of the overall 

consistency between evaluators. Evaluations were done by visual inspection of the PSM using the 

ProteomeCentral USI web application (https://proteomecentral.proteomexchange.org/usi/) in May to 

June 2023. The evaluators were told to use no other information except the PSM as displayed on the USI 

application. A common set of 10 negative control PSMs was given to each evaluator; the evaluators 

were not informed of the existence of these controls. These negative controls consisted of high-scoring 

decoy-spectrum matches manually selected from among the strongest 30 decoy-spectrum matches in 

Duffy et al. 2022.34 Each PSM was rated on a scale of 1-5; the rating scale is given in Appendix 1.  

Comparing manual evaluations to spectral prediction machine learning methods  

Spectra were predicted for each manually evaluated peptide sequence annotated to the set of 

experimental spectra using the open-source spectral library prediction pipeline Oktoberfest.50 Multiple 

predicted spectra were generated for each peptide at various collision energies (CE = 25, 30, 35 and 40) 

and using 4 different intensity models (Prosit 2020 intensity HCD61, Prosit 2020 intensity CID, Prosit 2020 

intensity TMT, AlphaPept ms2 generic)61,66–68. Only methionine oxidation, cysteine 

carbamidomethylation, and TMT6plex modifications were considered in the spectral predictions; 

peptides with other modifications were excluded for this analysis. MSP spectral library files output by 

Oktoberfest were then converted to MGF formatted spectra. Internal python scripts compared the 

experimental spectra vs. the predicted spectra by calculating spectral angles (SA) between each spectral 

pair. Similarity was ranked as being high if SA ≤ 20⁰ , moderate if SA between 20⁰ - 45⁰ , poor if SA 

between 45⁰ - 70⁰ , and terrible if SA > 70⁰. The script further generated mirrored plots for each spectral 

pair and annotated peptide fragment ions. These spectral angles were then compared to the manual 

ratings for each PSM given by the evaluators. 
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Predicting HLA binding for immunopeptides supporting unannotated protein detections 

For each evaluated immunopeptide from Ouspenskaia et al. 2021, Martinez et al. 2020, or Chong et al. 

2020 used to support an unannotated protein detection, the HLA alleles for the cell type used in the 

experiment producing the peptide was found in the supplemental data of the study. NetMHC 4.0 was 

then used to predict binding of the peptide to the HLA-A, HLA-B, and HLA-C allele if the allele was 

available in NetMHC 4.0. A peptide was classified as being HLA-binding if it met the default criteria for 

being a weak (% rank < 2%) or strong (% rank < 0.5%)  binder in NetMHC 4.0. 

Relating ORF properties to the probability of detection 

The coordinates of each ORF with an evaluated peptide were taken from the supplementary data of 

each study and the ORF length determined. All ORF coordinates were converted to hg38 coordinates 

using LiftOver. ORFs from Chen et al. 202041, Chong et al. 202042, Cao et al. 202230, and Lu et al. 201944 

were not considered because we were not able to identify the ORF coordinates from supplementary 

data files.  To assess translation levels, we aggregated Ribo-Seq data from 109 studies (Supplementary 

Data 5-6) using the following procedure. Transcriptomes from MiTranscriptome69, FANTOM5 robust 

set69, CHESS70, RNA Atlas71, and Ensembl version 108 were merged using Stringtie72 version 2.2.1with 

Ensembl version 108 as the reference annotation (-G parameter). MiTranscriptome and FANTOM5 

coordinates were lifted over from hg19 to hg38 prior to merging. Adapters in each ribo-seq run were 

removed with TrimGalore version 0.6.7 using default options. Trimmed Ribo-seq reads were then 

mapped to the merged transcriptome using STAR73 version STAR-2.7.10b using the parameters--

outSAMtype BAM Unsorted --outFilterMismatchNmax 2 --outFilterMultimapNmax 1 --outSAMattributes 

Standard. The iRibo program54 was then used to aggregate the mapped reads from all studies and assign 

counts of ribosome P-sites to each position of each analyzed ORF. 

Data Availability  

All data analyzed are available in a Figshare database ( 
https://doi.org/10.6084/m9.figshare.30131869.v1). Source data are provided with this paper. 

Code Availability 

All code required to reproduce the figures and data  for analyses are available at: 

https://doi.org/10.6084/m9.figshare.30131869.v1  
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Tables 

Table 1: Properties of reanalyzed studies. List of all studies reanalyzed. sORF database size indicates the 

number of sORFs in the protein sequence database in the MS analysis for each study. The number of 

these ORFs with proteomic support according to the study is also given. Considered noncanonical PSMs 

is the number of PSMs supporting a sORF-encoded protein reported in each study for which we could 

obtain the necessary information to evaluate; PSMs actually evaluated were selected randomly from 

this set. Annotation definition indicates the database used by each study to define the set of annotated 

or “canonical” proteins; all other proteins are considered to be unannotated, sORF-expressed proteins. 

Reported false discovery rate indicates the FDR given in each study for the list of sORF detections and 

whether this was calculated proteome-wide (a common FDR considering both unannotated and 

annotated proteins) or specific to the unannotated proteins. 
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Citation sORF database 
size 

Considered 
noncanonical 

PSMs 

Reported 
sORFs 

with MS 
support 

HLA or 
non-HLA 

Source material Annotation 
definition 

Reported false 
discovery rate 

Cao et al. 
202230 

Three-frame 
translation of 
transcriptome 

28 17 non-HLA HEK293T Human 
UniProtKB 
2019 

1% at peptide and 
protein level, 
proteome-wide 
 

Bogaert et 
al. 202228 

16,919 8 6 non-HLA HEK293T cellular cytosol Human 
UniProtKB/Sw
iss-Prot 2021 

<1% peptide, <2.5% 
protein, proteome-wide 

Chothani 
et al. 
20224 

7,767 5,763 614 non-HLA NHDF and HUVEC (Slany 
et al. 201631), ES (Shekari 
et al. 201732), Heart (Doll 
et al. 201733) 

Human 
UniProtKB 
2017  

1% PSM level, 
unannotated specific 

Duffy et al. 
202234 

38,187 2,445 366 non-HLA Adult brain, Prenatal 
brain, hESC-derived 
neurons 

Human 
UniProtKB 

1% at peptide and 
protein level, 
proteome-wide 
 

Douka et 
al. 202135 

45 18 8 non-HLA SH-SY5Y cells (Murillo et 
al. 201836 and Brenig et 
al. 202037) 

Human 
UniProtKB 
2019  

10% at peptide level, 
proteome-wide 

Prensner 
et al. 
202138 

553 6,236 140 HLA and 
non-HLA  

14 published mass 
spectrometry datasets 

 UCSC RefSeq 1% at PSM level, 
proteome-wide 

Ouspenska
ia et al. 
202129 

237,437 9985 4903 HLA and 
non-HLA* 

Lymphoblastoid cell line 
(Sarkizova et al. 202039), 
patient-derived 
melanoma cell line, 
patient-derived 
glioblastoma cell line 
(Shraibman et al. 201940), 
chronic lymphocytic 
leukemia tumor, ovarian 
carcinoma, renal cell 
carcinoma 

Annotated 
genes on 
UCSC 
Genome 
Browser hg19 

1% at PSM level, class-
specific FDR for each 
type of unannotated 
ORF (e.g., uORF, dORF) 
 

Chen et al. 
202041  

7,824 33 12 HLA and 
non-HLA† 

iPSCs  Human 
UniProtKB  

1% at PSM level, 
proteome-wide  

Chong et 
al. 202042 

Three-frame 
translation of 
transcriptome 

2,597 384 HLA Patient-derived 
melanoma cell lines and 
lung cancer samples with 
matched normal tissues 

Human 
UniProtKB/Tr
EMBL 2018 

Class-specific FDR for 
unannotated, keep only 
PSMs identified by both 
Comet and MaxQuant. 
Estimated FDR <0.001% 

Martinez 
et al. 
202043 

7,554 1,160 319 HLA Six cancer cell lines from 
Bassani-Sternberg 2015 
(25576301): B-cells EBV 
transformed, B-cell 
leukemia, basal like 
breast cancer, colon 
carcinoma, primary 
fibroblast 

Human 
UniProtKB/Sw
iss-Prot  

1% FDR at peptide level, 
proteome-wide 

van 
Heesch et 
al. 20196  

1,598 1,942 500 non-HLA Heart (Doll et al., 
29133944), iPSC-derived 
cardiomyocytes 

Human 
UniProtKB 
2017 

1% targeted FDR, 50-
60% estimated FDR 

Lu et al. 
201944  

2,969 964 308 non-HLA Cell lines: lung, colorectal 
cancer, liver cancer, 
cervical cancer 

Human 
UniProtKB/Sw
iss-Prot 

1% FDR at PSM, peptide 
and protein level. 

*Only HLA spectra were evaluated. †Only non-HLA spectra were evaluated. 
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Figure Legends 

Figure 1: Broad variation among studies in reports of unannotated microprotein detection. A) 
The relation between the number of sORFs used to construct the protein database of each 
study and the number of sORF-encoded proteins reported detected by MS (Spearman 
correlation = 0.43, p = 0.2). Whether the sORF database was constructed using a curated list of 
known sORFs, all possible sORFs from three frame translation of a transcriptome, or a list of 
ORFs found to be translated using Ribo-Seq or RNC-seq data is indicated. B) For each study, the 
proportion of reported peptides supporting an unannotated protein that are also found by 
another study in our analysis is shown. The numbers of peptides found in other studies out of 
the total reported in the study are indicated above the bars. C) Proportion of peptides mapping 
to annotated proteins using the ProteoMapper tool, divided into categories depending on the 
number of common single nucleotide polymorphism (SNP) differences separating the peptide 
from the peptide present in the reference protein and whether the annotated peptide is tryptic; 
i.e., could be generated by cleavage after lysine or arginine. Semi-tryptic peptides (where only 
one peptide end is tryptic) are grouped with non-tryptic. Peptides from immunopeptidomics 
experiments were not generated by trypsin digestion and therefore are not classified as tryptic 
or non-tryptic. Peptides matching currently annotated proteins that were not annotated on 
UniProtKB/Swiss-Prot in 2016 (i.e., recently annotated proteins) are excluded. D) For each study, 
the proportion of reported peptides supporting an unannotated protein that are also found by 
another study in our analysis, excluding peptides that match to annotated proteins according to 
the ProteoMapper tool. Note that most studies have focused on different biological systems, 
which can limit the overlap. Source data are provided as a Source Data file. 

Figure 2: Expert manual evaluation of literature reported unannotated protein detections in 
mass spectrometry datasets. A) Counts of each pair of ratings among the PSMs that were 
assessed by two evaluators (n=155). The Pearson correlation between pairs of ratings is 
indicated. B) For a set of manually evaluated PSMs (n=274), the spectrum was also predicted 
using several machine learning models (see Methods). The spectral angle is an indicator of how 
different the observed PSM was from the closest predicted spectrum, with larger angles 
indicating a worse match. The best spectral angles are indicated among PSMs grouped by 
evaluator rating. The box in each boxplot indicates interquartile range between the first and 
third quartiles, while the center line indicates the median. The whiskers indicate minima and 
maxima within 1.5 times the interquartile range. C) Mean ± standard error of ratings of PSMs 
sampled from each study, per each of six evaluators (n=620 rated PSMs in total). Standard 
errors were corrected for finite population (total count of reported PSMs supporting 
unannotated proteins in the study). Ratings were given on a 1-5 scale. D) Overall distribution of 
ratings for unannotated protein PSMs among all studies and evaluators (n=620 PSMs). Bars 
indicate proportions +/- standard errors. E) Log Ribo-Seq read counts for ORFs expressing 
proteins in PSMs rated highly (rating >3, n=65 proteins) or lowly (rating <3, n=105 proteins). 
Reads are from a collection of human Ribo-Seq studies (see Methods). The box in each boxplot 
indicates interquartile range between the first and third quartiles, while the center line indicates 
the median. The whiskers indicate minima and maxima within 1.5 times the interquartile range. 
Differences between group means are tested using a two-sided permutation test. F) Predicted 
lengths of proteins rated highly (>3,n=65 proteins) or lowly (<3, n=105 proteins). Box plot 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

meaning is same as above. Differences between group means are tested using a two-sided 
permutation test. G) Evaluated and extrapolated counts (+/- SEM) of HLA and non-HLA high-
rated (rating of 4 or 5) protein detections. Extrapolated counts give the number of high-rated 
protein detections expected if the entire dataset had been evaluated. Source data are provided 
as a Source Data file. 
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Editor’s Summary 

Several recent publications have attempted to detect novel unannotated microproteins using mass 

spectrometry proteomics. Here, the authors reassess these claimed microprotein detections, finding 

that many are poorly supported, while a subset represents likely genuine discoveries of novel proteins. 
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