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PURPOSE

DESIGN

RESULTS

CONCLUSION

High levels of DNA replication stress and defects in the DNA damage response
(DDR) pathways are vulnerabilities of many poor prognosis childhood malig-
nancies. Ataxia telangiectasia and Rad3-related protein (ATR) is a key regulator
of these pathways and constitutes an attractive target, especially in combi-
nation. However, the malignancies where ATR inhibitors have maximum
benefit and synergistic combinations differ between adults and children.

ACCELERATE convened a multistakeholder meeting and conducted review and
analysis to propose the optimal pathway for the development of ATR inhibitors
in pediatric malignancies.

Considering the lack of identified biomarkers, the initial evaluation of ATR
inhibitors should focus on Ewing sarcoma, rhabdomyosarcoma, and neuro-
blastoma in view of their high levels of DNA replication stress and defects in DDR
pathways. Early phase trials of ATR inhibitors should be iterative, based on a
clear hypothesis with responders and nonresponders undergoing detailed
molecular analysis and a revised new hypothesis generated. Trial designs should
restrict monotherapy evaluation to a brief exposure in a small number of pa-
tients and progress rapidly to combinations. Highlighted combination partners
are poly(ADP-ribose) polymerase inhibitors and antibody drug conjugates with
topoisomerase I inhibitor payloads. Combinations with ALK inhibitors (in ALK/
MYCN-aberrant neuroblastoma) and aurora A kinase (in MYCN-amplified) are
supported by robust mechanisms of action and preclinical data. Early inter-
actions with regulators are crucial, and early phase clinical trials should be
conducted in regulatory-approved, academic-sponsored, industry-supported,
platform trials.

ATR inhibitors are a prototype for the development of medicinal products in a
limited pediatric population. For the substantial potential of ATR inhibitors in
children with malignancy to be realized, strategic planning between academia,
industry, regulators, and patient advocates is vital.
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INTRODUCTION

High levels of DNA replication stress and defects in the DNA
damage response (DDR) pathways, which are critical for
maintaining genomic integrity,? are vulnerabilities of many
poor prognosis childhood malignancies.> Ataxia telangi-
ectasia and Rad3-related protein (ATR) is a key regulator of
the DDR machinery and functions in the replication stress
response.! ATR is an attractive therapeutic target holding
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significant promise, and several ATR inhibitors (ATRi) are
undergoing clinical studies in adults," but no drugs are ap-
proved. Although the class of drugs has potential benefit for
children with cancer, especially in combination, there are
many aspects regarding their development which are un-
clear. Moreover, there are challenges in evaluating multiple
new products in rare populations, making it of value to
identify for ATRi: (1) the optimal diseases and/or biomarker-
defined populations; (2) the value of monotherapy trials and
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best clinical trial design; (3) the most beneficial combina-
tions; and (4) the best approach to a coordinated and in-
tegrated drug development strategy of available assets, in
the context of the population size.

To address these issues, ACCELERATE, an international
multistakeholder organization, whose objective is to ad-
vance the timely investigation of new anticancer drugs,*"
convened multistakeholder meetings following the Paedi-
atric Strategy Forum on DDR pathway inhibitors.*> This is a
review and analysis of the issues identified and proposed
potential solutions focused on ATRi.

THE ROLE OF ATR IN DDR

ATR is a mediator of the cellular replication stress response,
which regulates the activation of cell cycle checkpoints and
DNA replication to control cell division and safeguard ge-
nomic integrity, and is a member of the phosphatidylinositol
3-kinase-related kinase (PI3-K) family, which includes
DNAPK and ATM.3-'¢ The ATR-CHK1-CDC25C-CDK1 path-
way preferentially responds to replication-associated
damage in S and G2/M to inhibit cell cycle progression
into mitosis. ATR principally senses, and is activated by, the
presence of extensive single-stranded DNA (ssDNA) at sites
of stalled replication forks or single-strand breaks incurred
from other sources of DNA damage.”">' On activation, ATR
initiates a cascade of coordinated downstream reactions that
lead to arrest of cell cycle progression and stabilization of
stalled replication forks, thus enabling DNA repair.6> The
ATR-CHKI1 signaling pathway acts as an important rheostat
in normal cells, but cancer cells can become addicted to this
pathway because of oncogene-induced enhanced replicative
stress.?>"24 These replication events lead to increased levels
of fork stalling and collapse, resulting in increased ssDNA
and toxic double-strand DNA breaks. Cancer cells may also
acquire increased dependency on co-occurrent loss or in-
activation of other key components of the DDR machinery*
and are potentially susceptible to synthetically lethal com-
binations. For example, poly(ADP-ribose) polymerase
(PARP) plays a key role in the repair of ssDNA. PARP in-
hibitors (PARPi) have demonstrated clinically relevant
synthetic lethality in patients with breast cancer harboring
DDR pathway alterations, most commonly BRCA1 or BRCA2
mutations.?>2% However, PARPi can also trap PARP1/2 at sites
of DNA damage, leading to stalled replication forks and
augmenting replication stress requiring ATR for resolution;
coincidently, ATR inhibition can suppress homologous re-
combination repair (HRR) potentially sensitizing cells to
PARPi.?72¢ ATM preferentially responds to and repairs DNA
double-strand breaks, inhibits cell cycle progression into
S-phase, and represents a complementary mechanism to
ATR-mediated DDR; thus, loss of ATM may also result in
synthetic lethality during ATR inhibition. ATR plays an
important role in development, and ATR deficiency during
embryogenesis results in high levels of replicative stress and
accelerated aging.” Furthermore, the ATR to ATM signaling
axis plays a role in the maintenance of telomere homeostasis
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and the surveillance of telomere dysfunction during
neurogenesis.’*3!

ATR INHIBITORS IN ADULT ONCOLOGY

Clinical trials of six ATR kinase inhibitors (berzosertib,3*3
ceralasertib,?#73¢ elimusertib,373® camonsertib,3>4° tuvusertib,*
and ART'0380%?) have been conducted, with berzosertib and
elimusertib being discontinued because of the lack of ac-
tivity. ATRi are generally tolerable with myelosuppression,
particularly anemia, and nausea being the most clinically
relevant toxicities in adults.

Generally, data from phase I dose-escalation cohorts of
unselected adult patients with advanced-stage cancer in-
dicate limited efficacy of ATRi as monotherapies.* 4 No
single integral biomarker of sensitivity to ATRi has been
established; potential biomarkers studied include individual
genomic alterations that predispose to HRR deficiency and
measurements of replication stress accumulation, including
gene signatures and functional assays."**4° Phase I single-
agent trials, which specifically recruited patients with
advanced-stage solid tumors harboring DDR defects, re-
ported higher overall response rates.3°"44> An early phase
trial of camonsertib used a chemogenomic screen for DDR
alterations across approximately 100 genes to identify pa-
tients for enrollment and demonstrated both response and
meaningful clinical benefit across multiple histologies.*° In
addition, preclinical investigation demonstrated that in vitro
models of ATM loss malignancies (either ATM mutation or
protein loss) are very sensitive to ATR inhibition.4%47 Ac-
cordingly, the phase I trial of elimusertib in adults focused on
patients with ATM aberrations and showed partial responses
in patients whose tumors lacked detectable ATM protein
expression. Unfortunately, this signal could not be con-
firmed in the expansion cohorts.*> ATRi delaying or over-
coming resistance to PARP4® and in combination with
immune checkpoint inhibitors*%5° are being explored.

ATR INHIBITORS IN CHILDREN

Biomarkers for ATR inhibitor activity in children are likely to
be different compared with that in adults. Generally, in
pediatric cancer, there are a relative lack of mutations and a
prominence of copy number aberrations, for example, 11q
deletion.>* For example, loss of HRR genes, especially bial-
lelic loss, is exceedingly rare in pediatric tumors, as are
mutations of BRCA1 and BRCA2 and ATM (<1%).5755 Loss of
function of ATM and the role of ATM mutations or ATM
protein expression have been problematic to determine374>
because of (1) the difficulty in predicting whether a specific
mutation is deleterious or a variant of uncertain signifi-
cance,*® (2) the zygosity of the alteration which may affect
the loss of protein function,” and (3) nonharmonized im-
munohistochemistry protocols.

Although the most discriminatory predictive biomarkers for
ATRi in pediatric malignancies are unknown, there are
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biological changes in pediatric malignancy which have been
related to the activity of ATRi: ATM deletion because of 11q
loss®®; MYCN/MYC amplification>9-%%; aberrant transcription
factor gene fusion (PAX3-FOXO01,”%> EWSR1-FLI>%3); epige-
netic modifier gene fusions (SS18-SSX1/2); ATRX mutation/
loss; STAG2 mutation; SETD2 mutation/loss; CHEK1/gH2AF,
MRE11A loss; histone mutations (H3K27, H3K36); TP53
mutations; and alternative lengthening of telomeres (ALT).
ALT is an independent mechanism of telomere maintenance,
in the absence of direct telomerase activation because of high
telomerase reverse transcriptase (TERT) expression.®* Pre-
clinical reports of the relevance of ALT as a biomarker of ATR
inhibitor activity are conflicting,®>%® and ALT-positive
neuroblastoma displays skewed sensitivity for ATM versus
ATR inhibition.®°

Ongoing trials in pediatrics are evaluating ceralasertib%o-74
and elimusertib757¢ (Table 1):

1. A phase I/1I study Bay 18953444 (elimusertib) in pediatric
patients with relapsed or refractory solid tumors
(PEPN2112).7>7¢ This study is based on preclinical data
demonstrating that Ewing sarcoma and fusion-positive
rhabdomyosarcoma are susceptible to in vitro and in vivo
ATR inhibition.>%7

2. Arm N of ESMART®?"7¢ uses the PARPi, olaparib, with
ceralasertib. Tumors have advanced molecular profiling
(whole-exome sequencing or whole-genome sequencing
[WGS] with or without RNA sequencing) allowing for both
enrichment of patients with certain molecular features
and detailed retrospective molecular analyses of re-
sponders and nonresponders. Eligibility for cohort 1 is
HRR deficiency with a focus on ATM alterations, and that
for cohort 2 is increased replication/transcription stress
including transcription factor fusions and amplifications.

3. Olaparib with ceralasertib in recurrent osteosarcoma’> 74
was recently completed. Only one of 37 patients had an
objective response. Data analysis is ongoing.

A PLAN FOR THE INCLUSION OF BIOMARKERS IN
CLINICAL TRIALS

At the Paediatric Strategy Forum on DDR pathway inhibitors,
the disparity of assessments to identify biomarkers for ATRi
hindered a comparison between the results generated be-
tween clinical trials.” It was concluded that “an integrated
strategy and a consensus to assess biomarkers, both in
academic and industry trials, of the investigations and
biomarkers to be explored would greatly enhance efficiency.
Tumor biopsies, prior to therapy, with acommon portfolio of
investigations for DNA sequencing are crucial, in order that
the responders and non-responders have similar molecular
analyses, helping to validate responder hypotheses.” Thus,
to be informative, it is mandatory that clinical trials of ATRi
have embedded, biocorrelative studies.

Tumor material: The goal should be to collect fresh-frozen
tumor tissue (high quality DNA), before entry to trial, in
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addition to formalin-fixed paraffin-embedded material.
Data from paired diagnosis and relapse samples have
demonstrated that mutations in certain genes, including
proposed biomarkers of ATRi (eg, Death Domain-Associated
protein [DAXX]), change at the time of relapse,’”?® as do
protein fusions and associated transcription/replication
stress, and thus, rebiopsy is required.”? With interven-
tional radiology, the risks of such biopsies are minimal and
should be considered safe and feasible. In several pediatric
precision oncology programs such as Stratified Medicine
Paediatrics,>#77:8°-82 biopsy at the time of relapse is con-
sidered standard of care. The results from biopsies at the
time of relapse can identify genomic abnormalities which
will guide enrollment on precision medicine trials. Patients
and parents are increasingly requesting to be offered the
possibility of biopsy at relapse. Patient advocates believed
that the probability of obtaining a biopsy before enrollment
and at relapse would be increased by ensuring that results are
made available to academia, patients, and parents. From
an industry perspective, Clinical Laboratory Improvement
Amendments and College of American Pathologists validated
that confirmation of eligibility is desirable and having ma-
terial available for a retrospective in-depth study is also
supported.

Details of potential biomarkers and their relevance to
pediatrics are given in Table 2. The current prioritized in-
vestigations are WGS sequencing and transcriptome se-
quencing, protein expression (ATM, ATRX, RB1, SLFN11,
PGBD5, and TP53) detected by immunohistochemistry, and
ALT (C-circle and associated promyelocytic leukaemia nu-
clear bodies-fluorescence in situ hybridization) for high
TERT RNA sequencing or reverse transcription-polymerase
chain reaction for TERT RNA levels and/or TERT rear-
rangements) and phosphoproteomic analyses. The objective
is to conduct all these investigations; however, in excep-
tionally small samples, WGS sequencing, transcriptome
sequencing, and obtaining circulating tumor DNA should be
prioritized.

POTENTIAL COMBINATIONS

There are some data for synthetic lethality of ATR alone,
but this can be substantially potentiated by combinations
which should be based on, and test, robust biological hy-
potheses, underpinned by preclinical in vivo data of syn-
ergy generated by panels of representative models and/or
adult clinical studies and nonoverlapping toxicity. It is
crucial that in vivo studies use clinically relevant doses and
schedules to inform clinical investigations. There is a
strong biological rationale for combinatorial approaches to
target DDR and replication including (1) pharmacologically
induced replication stress, such as by irinotecan and PARPj;
(2) overcoming single-agent resistance'*’; and (3) induc-
ing synthetic lethality in DDR mechanisms.'*® However,
there are concerns that synergistic toxicity may require
that doses be reduced to levels which are not active, and
therefore, toxicity and dose require careful monitoring.
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TABLE 1. ATR Inhibitors Evaluated in Patients Younger Than 18 Years

Eligibility (tumor

Drug Combination  Trial/Status type) Eligibility (biomarker) Trial Design Preliminary Results
Ceralasertib Olaparib NCT02813135  Relapsed/refrac- HR-deficient OR Phase I—Escalation follows a Bayesian optimal interval design N = 18 patients—8 sarcomas, 5 CNS, 4 neuro-
(AstraZeneca) ESMART tory solid tumors  replication/ starting at 100% of the adult-optimized dose to determine  blastomas, 1 carcinoma
Arm N57! transcription stress  the RP2D based on the MTD and toxicity and early signals of 2 PR (neuroblastoma and pineoblastoma), 8 SD
activity 1 neuroblastoma (11g LOH, ATRX VUS) with SD
28-day cycles. Continuous oral dosing: days 1-28 olaparib and ~ converted to PR, cycle 10
days 1-14 ceralasertib followed by expansion cohorts RP2D—olaparib 150 mg twice daily on days 1 to 28
(1) HRR-deficient with a focus on ATM alterations and ceralasertib 80 mg twice daily on days 1-14
(including 11q loss) for children 12 years and older
(2) Replication stress (MYC/MYCN amplification, CCNET Main toxicities—hematologic and gastrointestinal
amplification, and gene fusions, EWSRT: FLI1, SSE18: SSX,  (nausea)®’
PAX3/7: FOX01
Ceralasertib Olaparib NCT04417062  Recurrent 2 cohorts age 12-40 years with recurrent osteosarcoma N = 37,1 ORR
(AstraZeneca) 24 osteosarcoma T—Unresectable disease and 2—resectable disease limited to
the lung receive olaparib 300 mg orally twice a day on days
1-28 and ceralasertib 160 mg orally once a day on days 1-7
of a 28-day cycle
Elimusertib Monotherapy NCT05071209  Relapsed/refrac- No molecular eligibil- Initial phase | cohort followed by expansion cohorts: N = 8 patients, 6 evaluable, received adult RP2D of
(Bayer) PEPN2112776 tory solid ity for EWS or RMS (1) EWS or related EWSR1 fusion—positive tumors 24 mg/m? per maximum dose (40 mg, with 3
tumors Other tumors (2) Alveolar RMS, PAX3-FOXO1 fusion—positive days of drug administration and 4-day rest)
DDR alterations: ATM (3) Non-CNS primary tumors exhibiting specific DDR pathway No dose-limiting toxicities, pharmacokinetics were
ATRX defects anticipated to sensitize to ATR inhibition similar to adults
BRCAT, BRCA2, Trial not designed for dose escalation, to
CDK12 determine the optimal biological dose or MTD
CHEK1, CHECK?2, (June 2023)*
FANCA
MSH2, MRET1,

Abbreviations: ANR, active not recruiting; DDR, DNA damage response; EWS, Ewing sarcoma; HRR, homologous recombination repair; MTD, the maximal tolerated dose; OR, objective response;

PALB2, PARP1
POLD1, RADST,
XRCC2

ORR, overall response rate; PR, partial response; RMS, rhabdomyosarcoma; RP2D, recommended phase 2 dose; SD, stable disease; Trial status R, recruiting.
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TABLE 2. Details of Potential Biomarkers and Their Relevance to Pediatrics

Investigation

Description

Relevance to Pediatrics

Genomic
investigation

Gene panels have very good depth and accuracy; however, they lack breadth, and several

genes are not represented on commonly used panels. WES and WGS have good breadth
but may not detect specific variants at very low allele frequencies. Rearrangements are
included on many fusion panels, but novel fusion partners may be more likely to be detected
by RNA or WGS. Notably, some actionable targets may derive from the germling®#&3€°

Preferred approach would be to have a NGS
panel including specific genes of interest
to rapidly determine eligibility, followed by
retrospective, comprehensive analyses
by WGS and RNAseq to identify candi-
date biomarkers of response and confirm
eligibility

Protein
investigations

Protein expression can be detected by several assays including immunohistochemistry. ATM,

ATRX, RB1, SLFN11, PGBD5, and TP53 are the priority proteins to be measured. Phos-
phoproteomic analysis will provide greater insight; however, technical issues complicate
widespread use and often fresh-frozen tumor material is required.®® As new platforms for
spatial transcriptome and proteome analysis become more available and well-established,
these will likely yield valuable information

Immunohistochemistry at present; in the
future, spatial transcriptome and pro-
teome analysis

Biomarkers of
TMMs

With RNA sequencing, ALT can be identified by a combination of low hTERT and high

telomeric repeat containing RNA (TERRA) expression.8”#° If present, DNA mutations in
ATRX and DAXX are almost always associated with ALT activity. However, there are ALT-
positive tumors that do not have these mutations. Two investigational ALT-specific assays
are ALT-associated PML bodies and c-circles.®”#9 Determination of ALT-associated PML
bodies can use FFPE material, but interpretation is subjective and limited by expertise.
C-circle assays present various challenges to clinical implementation: (1) ssDNA is unstable
at room temperature, (2) fresh-frozen material is required, (3) the tumor material must
remain frozen, and (4) the intensity of signal depends on tumor content.®**? Real-time PCR
assays are being developed to more reliably and reproducibly quantify c-circles

There is no international consensus for ALT
determination, and a combination of
techniques demonstrating low hTERT
expression and an ALT-specific assay
should be used

CtDNA

Collection of ctDNA is crucial and should be mandatory as a complementary assay to tissue

sequencing; results should also be considered in cases where biopsy is unavailable. The
amount of detectable ctDNA may vary across tumor types, with neuroblastoma being the
greatest,”® potentially limiting its applicability. Detection of allelic imbalance can be chal-
lenging with low tumor fraction in cell-free DNA®*9%; however, if there are sufficient ctDNA
and a high allele frequency of a relevant mutation, ctDNA is feasible and reliable. By
contrast, if a very low allelic fraction of a point mutation is detected, the interpretation can
be complicated when the actual tumor fraction is not known

Collection of ctDNA is high priority in view of
(1) relative ease of collection, (2) ability to
collect serial samples, and (3) reflecting
the totality of the disease

DNA mutational
signature

DNA mutation signatures of HRR deficiency (eg, HRD BRCAness) have been developed

through WES or WGS. Data have recently reported the low prevalence of Signature 3
(COSMIC v3)89%9 in pediatric tumors

These signatures have not been confirmed
in the pediatric clinical setting

Genomic insta-

There are several assays to interrogate genomic instability.'°®'% The MyChoice CDx HRD

The utility of these assays for ATRi has not

bility from Myriad Genetics determines a genomic instability score. The Foundation Medicine T5  been fully explored nor validated in pe-
signatures NGS LOH test only examines loss of heterozygosity and FMI HRD-Sig. In addition, WGS or  diatric populations
WES data can be processed by open-source tools, such as scarHRD, to generate a genomic
instability score
Multigene ex- At the RNA level, multigene expression signatures have potential promise as dynamic Highly variable, experience is based on
pression biomarkers of HRR function and PARPI sensitivity.'%41% PARP, not ATRI, and no signature has
signatures been validated in pediatrics

Abbreviations: ALT, alternative lengthening of telomeres; ctDNA, circulating tumor DNA; FMI, Foundation Medicine Inc; HRD, homologous
recombination repair deficiency; HRR, homologous recombination repair; hTERT, human telomerase reverse transcriptase; LOH, loss of
heterozygosity; PARP, poly(ADP-ribose) polymerase; PARPi, PARP inhibitors; PCR, polymerase chain reaction; PML, promyelocytic leukemia;
ssDNA, single-stranded DNA; TMMs, telomere maintenance mechanisms; WES, whole-exome sequencing; WGS, whole-genome sequencing.

The acute toxicity profile of combinations is very likely to
be the same in older children as in adults, but long-term
toxicity is difficult to assess.

There are many potential combination partners, which are
supported by preclinical investigations (Table 3):

e Novel agents

e PARPI. There is a strong biological rationale for com-
binations of PARP and ATRi: (1) PARPi create PARP-
DNA adducts which stall replication forks; (2) ATR
catalytic inhibition interferes with the repair of single-
strand breaks, leading to replication fork damage that
requires HR repair”>'3; and (3) ATRi may delay or
overcome resistance to PARPi.*®"4"1'7 Preclinical data,

JCO Precision Oncology

including in neuroblastoma, suggest that the combined
inhibition of ATR and PARP is synergistic at sublethal
doses."45 Concomitant administration of an ATR
and PARPi in vitro had a better sustained efficacy than
sequential administration.’*~"® In neuroblastoma
cells, there is enhanced sensitivity to a PARPi, which
may correlate with DDR and replication stress alter-
ations, and this effect is further increased by inhibition
of ATR.

PARP 1 selective inhibitors are attractive as they hold
promise for reducing myelosuppression and increasing
the therapeutic window when used in combination, but
this class of agents is early in development.9::2°

ALK inhibitors specific to ALK-aberrant neuroblastoma. In
ALK-mutated, MYCN-amplified models, ALK signaling

ascopubs.org/journal/po | 5
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TABLE 3. Potential Indications for ATR Inhibitors in Children

Indication Combination

Molecularly defined indications

ALK + ATRWOQ,HD
Aurora kinase A + ATR®®

ALK-mutated neuroblastoma

MYCN-amplified neuroblastoma

Histology-defined populations

PARP + ATR
ADC+ ATR
Topoisomerase | inhibitors + ATR

Replication stress

EWS fusions, desmoplastic round
cell tumor clear cell sarcoma?

PAX3-FOXO1 fusion”

Neuroblastoma®

PARP + ATR
ADC + ATR
Topoisomerase | inhibitors + ATR

Alternative lengthening of
telomeres®>®’

Osteosarcoma®

Neuroblastoma

PARP + ATR
ADC+ ATR
Topoisomerase | inhibitors + ATR

ATRX mutations (eg, osteosarcoma,
neuroblastoma, medulloblastoma,
high-grade glioma)

NOTE. ATM mutation or protein loss/11q loss**#® could be an indication,
but data are not available, and there are methodological issues with
measurement of ATM mutation or protein loss.

Abbreviations: ADC, antibody drug conjugate; ALK, anaplastic
lymphoma kinase; PARP, poly(ADP-ribose) polymerase.

leads to phosphorylation of ATR and CHK1 to support an
effective DDR, suggesting that combined ALK/ATR in-
hibition would be superior to monotherapy. In in vivo
models, ATR inhibitor monotherapy resulted in a robust
initial response, but eventual relapse; however, com-
binations of ALK inhibitors and ATR inhibitors resulted
in a durable response.’*9*>!

e Aurora A kinase (AURKA) inhibitor (in MYCN-amplified
neuroblastoma). During the S phase, MYCN protein is
stabilized through its physical interaction with AURKA.
Pharmacologic inhibition of AURKA is known to inflict
transcription-replication stress. Combined inhibition of
AURKA and ATR induces extensive tumor-specific ap-
optosis and tumor regression in MYCN-amplified
transgenic mouse models."***

e Cytotoxic chemotherapy—Topoisomerase I inhibitors,
low-dose cisplatin, and gemcitabine are known to
synergize with ATRi.3>?2123

o Antibody drug conjugate (ADC) linked to a topoisomerase I
inhibitor payload. Here, the delivery as an ADC should
reduce the toxicity of topoisomerase I inhibition. Trials
in adults with HER2 ADCs may be very informative, and
new dose-limiting toxicities, for example, lung damage,
may be important.*>4*25

e Combination with WEE1 inhibition and ribonuclease re-
ductase inhibitors are still early in development and may
be limited by a potential feedback loop with DNA-PK for
CHK1 activation.?

In conclusion, early phase trials in pediatrics of ATRi and
ALK inhibitors (in ALK-aberrant neuroblastoma), PARP 1
selective inhibitors (in Ewing sarcoma, rhabdomyosar-
coma, and other malignancies), and AURKA inhibitors (in

6 | © 2026 by American Society of Clinical Oncology

MYCN-amplified neuroblastoma) are required to determine
the safety profile and the recommended phase II dose and
determine whether there are early signals of activity. De-
velopment of these combinations would address current
unmet needs.

ATR inhibition influences the immune system and the tumor
microenvironment,°9126127 potentially leading to further
combinations. Specifically, ATR inhibition stimulates the
cyclic GMP-AMP synthase (cGAS)-stimulator of interferon
genes (STING) pathway, recruits T cells (including antigen-
specific CD8" T cells), and augments the antitumor immune
response of PD-L1 blockade. Scheduling of ATRi might have
important effects on activity, for example, a short (3 day)
course of ATR inhibition, when given with radiotherapy,
generates an antigen-specific CD8* T-cell response, but this
effect is not observed with a more prolonged course of ATR
inhibition.”>® This observation should be considered when
designing clinical trials.

EARLY PHASE TRIAL DESIGN:

The need for limited monotherapy trials: Strong biological
rationale and clinical experience suggest that multiple
agents will be more efficacious than monotherapy for
most diseases.’?® Preclinically, in Ewing sarcoma'® and
rhabdomyosarcoma,” single-agent ATR inhibition only
resulted in slowing of growth, and in adult patients,
complete loss of ATM was required to achieve clinically
relevant synthetic lethality. Molecular profiling from
nonresponders to olaparib and irinotecan in arm D of
ESMART suggested possible primary resistance to this
combination and the potential need for additional ATR
inhibition.3°

It is proposed that early phase trials incorporate limited
monotherapy evaluation in a small number of patients to
fulfill any regulatory requirements during the initial cycle, to
be followed swiftly by a combination in the second cycle.’*®
The brief monotherapy evaluation can characterize dose,
pharmacokinetics, and toxicity, whereas the intention of the
combinatorial approach is to accelerate drug development
and maximize the potential for patient benefit. Limited data
on monotherapy in children can be complemented with data
extrapolated from adults. The results of the phase I/II study
of single-agent elimusertib should help inform subsequent
studies of ATR.7® Although scientifically and statistically
robust, a randomized trial of an ATRi versus an ATRi and
another product is likely not feasible.’3* In most instances,
however, the dose of the ATRi in combination will likely be
lower than the monotherapy dose because of potential
overlapping toxicity. For example, in arm N of ESMART, the
ceralasertib and olaparib doses are lower than the maximal
tolerated dose of each agent alone but optimized for more
continuous exposures and based on adult dosing.” Notably,
there have been late responses to ATRi seen in pediatric trials
and this agrees with studies in adults.
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GENERAL STRATEGY

Going forward, there is strong support for the approach
taken in ESMART, which includes combination therapy and
enrichment for patients with biomarker-positive tumors,
but broader eligibility criteria.”-7>'2® There are some his-
tologies (neuroblastoma and translocation-driven sarco-
mas) that appear to be enriched for susceptibilities to DDR
inhibitors. There is strong preliminary evidence that there
will not be a single biomarker but rather a constellation of
molecular findings, and there are disadvantages to being too
stringent in restricting investigations of biomarkers. Ana-
lyses should be iterative, and clinical data from studies in
adults or pediatric patients and early observations, for ex-
ample, 11q loss in neuroblastoma, should inform future
prospective biomarker selection for trial eligibility. One
approach could be to use an adaptive clinical trial platform
design that uses a Bayesian statistical model, monitoring
response and enriching for the relevant biomarkers as the
trial progresses, as has been done in the I-SPY trials.
Optimal biomarkers may vary according to the combina-
tion of agents and disease subtypes. The adaptive clinical
trial platform could be within a master protocol (basket
trial). Trials of single ATRi with multiple combination agents
are proposed. One of the many strengths of an industry-
supported, academic-sponsored platform trial is that assets
from different pharmaceutical companies can be included.
The platform trial would be conducted to very high-quality
standards with intent to file, that is, fit for filling a pediatric
investigation plan and early input sought from regulators. It
is important to design a complex clinical trial around its
primary objective, which should be initially exploratory and
hypothesis-generating. Once the trial has generated data,
there should be further discussions with regulators on the
necessary data needed toward confirmatory evidence (fit for
market authorization).”®> With the same eligibility criteria,
end points, and methods of patient monitoring, contem-
poraneous nonrandomized arms can serve as controls.

The current challenge is that despite there are many po-
tential biomarkers, there is difficulty in defining the optimal
pediatric screening assay. From an industry viewpoint, de-
fining the population is a critical decision that is often made
early. There is a concern that if the approach is too broad, a
meaningful response may be diluted. One potential approach
is to commence with narrower populations and, if results are
encouraging, allow inclusion to become broader. Another
strategy is a tissue-agnostic multilayered approach in-
cluding (1) ATM loss defined by immunochemistry or 11q
loss, (2) gene fusions, and (3) ALT by ATRX loss or c-circle
assay. However, these groupings are not mutually exclusive
as biomarkers might overlap, for example, ATRX and 11 q
loss. In addition, combinations designed to elicit synthetic
lethality or enhance exogenous DNA damage are different
mechanistically and will probably have different biomarkers.
The major challenge with a histology-agnostic approach is
the current lack of established biomarkers. The key will be to
evaluate a biomarker both in biomarker-positive and
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biomarker-negative populations and then revise the bio-
marker hypothesis. As such, an industry-supported,
academic-sponsored international platform trial that pro-
vides clinical trial data that can be used for licensing
purposes—f{it for filing—would be a highly efficient ap-
proach to evaluate ATRi in the pediatric population. These
concepts were discussed and endorsed at a recent meeting in
the Childhood Cancer Academic-Industry Collaborative:
Platform Trials of the Multi-Regional Clinical Trials Center
(MRCT Center), Brigham, and Women’s Hospital and Har-
vard University, in Boston.'>?

OVERALL PLAN FOR DEVELOPMENT

In very rare patient populations, overlap of clinical studies
evaluating similar drugs for the same clinical indications
needs to be avoided; otherwise, the same hypothesis will be
addressed repeatedly, knowledge will not be advanced, and
trials will fail to recruit. Clinical trials, driven by regulatory
requirements, should fulfill patient needs.’**3% A coordi-
nated and integrated drug development strategy is required
when developing multiple products of the same class in a
rare group of children.’34*3¢ One approach is to encourage
industry partners to develop different products within the
same class for different indications. For example, there is
strong preclinical evidence for combinations of ATRi with
PARP, ALK, and aurora kinase A inhibitors in neuroblastoma.
One proposal is that the academic early phase cooperative
groups help guide companies to potential nonoverlapping
indications. For example cooperative groups, suggest one
company evaluates a combination with PARPi, another a
combination with an ALK inhibitor and a further with an
aurora A kinase inhibitor. Another approach is a focused and
sequential development. For this approach to work, there
should be agreement by all involved (industry and academia)
through external agencies, on which product(s) based on
current evidence should be advanced first for regulatory
approval, without delay. The sequence (based on scientific
arguments) for other available or emerging products should
be agreed upon, and as soon as the development of the
first product is completed (either because of futility or ef-
ficacy), other products should already be prepared to be
evaluated.'®*35 Academic-sponsored platform trials, such as
ESMART, ComboMATCH, and Global Study of Novel Agents
in Paediatric and Adolescent Relapsed and Refractory B-cell
Non-Hodgkin Lymphoma (Glo-BNHL),69:7:128137-139  can
evaluate different combinations of different products from
different companies.

Despite recent or impending major regulatory develop-
ments, the challenge remains that pediatric drug develop-
ment is driven by adult indications. There is reluctance for
companies to evaluate a new class of medicinal products in
pediatrics until they have identified an adult indication and
started the process to submit a New Drug Application or
Biologics License Application with a route forward to market
authorization. Given the legislative mandate for pediatric
evaluation of compounds directed at a molecular target
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which is relevant to the growth or progression of a pediatric
cancer, regulators should be encouraged when there is in-
tense investigator interest based on evidence to entertain
discussions with industry sponsors about possible pediatric
investigation as early as possible in the development
timeline of appropriate molecules, rather than limiting
pediatric discussion plans contingent upon a decision for the
adult indication for which they plan to seek approval. Im-
portantly, proof of concept from adult studies may not be
relevant to pediatric studies as the mechanism of action may
be different. Currently, this is the situation with ATRi. For
example, there are a strong mechanism of action and pre-
clinical evidence supporting combining ATRi with ALK in-
hibitors in ALK/MYCN-aberrant neuroblastoma, where there
is an unmet need for new therapies. Yet, companies are
reluctant to provide ATRIi for these trials as there is no adult
indication for a market authorization. To enhance the
early evaluation and development of ATRi in children and
make this attractive to industry, early phase investigation
clinical trials should be conducted in regulatory-approved,
academic-sponsored, industry-supported, platform trials,
which have been designed so that data produced can be used
for regulatory purposes. In Europe, the European Medicines
Agency (EMA) supports this via scientific advice, and such a
platform can be used in a pediatric investigation plan
to generate evidence supporting clinical proof of concept
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(eg, early go/no go decision making) such that only the most
promising product(s) move toward evidence generation,
supporting a registration.’*® An example is the Glo-BNHL
study where the EMA, not part of Glo-BNHL, provided
qualification advice with a letter of support on its website on
the methodological and scientific aspects, endorsing the
trial. This has facilitated the development of products for
B-cell lymphoma, and companies have used the platform for
regulatory purposes. Such a platform could provide benefits
and efficiencies to industry, with a clear value proposition
supporting development efforts.

To rapidly advance knowledge, protect patients, and
avoid redundancy (which can hinder enrollment because of
scarcity of patients), global coordination of early develop-
ment and late development programs across multiple agents
in the same class is necessary. The objective is to drive timely
pediatric development through scientific, data-driven ap-
proaches that maximize the potential to address unmet
medical needs, generate robust clinical evidence, and elu-
cidate a biomarker hypothesis. Class, product and combi-
nation prioritization are needed to ensure that patients
enrolling in trials have the best chance of benefiting from
investigational treatment. A framework to support inte-
grated development strategies of new products like the ATRi
across sponsors would be very beneficial.
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