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Abstract

Computational image enhancement for microscopy facilitates cutting-edge biological
discovery. While promising, the commonly used deep learning methods are
computationally expensive owing to the use of general-purpose architectures, which are
inefficient for microscopy data. Here, we propose a sparsity-efficient neural network for
image enhancement as a deep representation learning solution to inverse problems in
imaging. To maximize accessibility, we developed a framework named DeBCR,
consisting of a modular Python library and a user-friendly point-and-click DeBCR plugin
for Napari — a popular bioimage analysis tool. We provide a detailed protocol for using
the DeBCR as a library and a plugin, including data preparation, training, and inference.
We compare the image restoration performance of DeBCR to ten current state-of-the-art
models over four publicly available datasets spanning crucial modalities in advanced light
microscopy. DeBCR demonstrates more robust performance in denoising and
deconvolution tasks across all assessed microscopy modalities while requiring notably
fewer parameters than existing models.

Introduction

All imaging systems are subject to noise and imperfections owing to their nature.
Computational enhancement of images has been an exciting avenue from the very onset
of digital cameras, as the correction could finally be decoupled from the light path?.
Conventional approaches involve physical modelling of the light path?3. Data-driven
computational enhancement of microscopy images takes an alternative approach.
Instead of formulating the model explicitly, data-driven models aim to learn an optimal
way to reconstruct the image from a large training set*3,

Light microscopy (LM) plays a fundamental role in visualizing cellular and tissue
structures due to the simplicity of sample preparation, accessibility, and compatibility with
live tissue. Fluorescence microscopy!4 is essential for examining biological specimens,
enabling high specificity through targeted labeling of biomolecules. However, the limited
photon budget in LM® presents inherent challenges, necessitating a delicate balance
between spatial and temporal resolution and imaging duration. Insufficient photon counts
can lead to noisy images, artifacts, and compromised resolution. Photon budget may be
limited in efforts to minimize phototoxicity during live imaging or maximize frame rate.

Advanced microscopy techniques such as super-resolution®® (SR) fluorescence
microscopy have substantially advanced the resolution capabilities of LM by surpassing
the diffraction limit. Light-sheet microscopy'®, Structured Illumination Microscopy!’*8
(SIM), STimulated Emission Depletion Microscopy!® (STED), and stochastic optical
reconstruction microscopy?® improved spatial resolution, providing unprecedented



insights into subcellular structure and dynamics. Despite these advancements, achieving
high-quality, high-fidelity images often comes at the cost of relatively expensive hardware,
more complex system configurations, and the need for higher skilled personnel compared
to the conventional techniques like widefield microscopy. This gap can potentially be
narrowed through software-based solutions.

To address this, leveraging advances in Computer Vision, many studies have embraced
data-driven deep learning (DL) to enhance microscopy images?:?? in tasks such as
deconvolution” — to recover a sharp, more detailed representation of the original signal —
and denoising®® — to restore a clean, noise-free version of the original signal. Addressing
these tasks in a data-driven way requires not only the input data to be restored, but also
the respective ground truth (GT) examples. For the experimental input data, the high-
exposure or high-resolution images (for example, obtained using SR methods) can serve
as a GT. Thus, the inversion of the imaging process of interest can be approximated by
a DL model, trained on such paired input/GT data to recover the original noise-free
unblurred signal.

The Content-Aware Image Restoration® (CARE) model is an example of a DL solution for
image enhancement. Based on U-Net*, CARE can be trained on pairs of images,
featuring low and high signal-to-noise ratio (SNR), and performs exceptionally well in
denoising, super-resolution, and 3D isotropic restoration. Another approach — DnCNN?®
utilizes a residual structure to effectively remove Gaussian noise. RCAN’ combines deep
residual structures with the channel attention mechanism, prioritizing useful image
features, which improves the effectiveness of very deep SR networks. MPRNet?3 employs
multi-stage learning strategies for progressive restoration to recover finer high-resolution
details. For generative models, ESRGAN?® improves perceptual image quality by adapting
the generative adversarial model for more realistic enhanced image output, closer to the
natural-image manifold. DDPM%24 improves image quality by generating new signals
from learned data distribution. When GT images are unavailable, the Noise2Noise® (N2N)
model offers a denoising solution by learning the original signal from the paired noisy
images.

Embracing the trend for so-called foundation models?®, UniFMIR?? introduced large pre-
trained models that can be fine-tuned for various tasks on microscopy images.
Furthermore, to achieve better performance when applying deep neural networks (DNN)
to image restoration tasks, researchers often increase model size. For instance, from
CARE to ESRGAN, the number of trainable parameters increases 150 times, leading to
higher computational demands, longer training times, and greater challenges in output
regularization. Moreover, during image restoration, larger models might produce various
hallucinations — non-existing or false signal patterns, compared to what is observed in
GT.



From the data standpoint, LM images contain a lower amount of useful information,
compared to the set of natural scene images from ImageNet?, often used as the target
data to develop the DL models for the general-purpose image restoration. Thus, this
sparsity property of the signal in the light microscopy images offers an attractive
opportunity to be explored for building more efficient DL models for image restoration in
this data domain.

To account for the highlighted nature of the LM data and address the described technical
and performance limitations of the existing DL solutions, we recently proposed m-rBCR?’
— a lightweight DNN model, which approximates a sparsity-effective data representation
to solve the joint denoising-and-deconvolution task for light microscopy image
enhancement.

The Beylkin-Coifman-Rokhlin?® (BCR) theory of the compact wavelet-like decomposition
and its computationally efficient implementation as a convolutional DL model®® allowed
us to build m-rBCR as a multi-stage residual convolutional DNN. Thus, the m-rBCR
architecture employs the down- and upsampling mechanism, similar to U-Net, to grasp
the information details at various resolution levels. However, unlike U-Net, the m-rBCR
implements a unique internal architecture, resembling the traditional solution of the
deconvolution-and-denoising task (see Supplementary Methods). A more detailed
description of the m-rBCR model is provided in Methods, including its high-level
architecture, loss function (Eqg. (1)-(3)) and parameters configuration.

In this work, we showcase the applicability of our core architecture, m-rBCR, to several
LM image restoration problems, provide the model benchmarking analysis, and introduce
the DeBCR framework — a set of packages featuring various user interfaces for the
accessible m-rBCR architecture usage. The DeBCR framework includes an application
programming interface (API) as a Python library and a visual graphical user interface
(GUI) in Napari®. Additionally, we provide detailed step-by-step protocols covering the
DeBCR installation and image restoration steps, from dataset preparation to the use of
pre-trained weights, for both APl and GUI. As application use-cases, we compared
DeBCR across multiple LM modalities and demonstrated that DeBCR achieves better or
comparable performance with notably fewer parameters and computational resources
consumption compared to several state-of-the-art (SOTA) models.

Results

Overview of the DeBCR framework

The application of the core model of DeBCR for image restoration is performed in the
three steps (Fig. 1a): 1. Raw data pre-processing; 2. Deep learning model training; 3.
Input data restoration via (a) trained model application, and (b) restored data post-
processing. For the usage accessibility of DeBCR, we implemented two packages,



providing complementary user interfaces (Fig. 1b): An application programming interface,
DeBCR, and a graphical user interface implemented in Napari, Napari-DeBCR. The GUI
tool Napari-DeBCR is implemented as a multi-tab plugin (Fig. 2a) for Napari®®, a multi-
dimensional bioimage viewer. We selected Napari as the basis for interactive work and
the GUI because it simplifies plugin development with a straightforward framework;
natively supports Python and a wide range of scientific libraries such as NumPy3! and
Scikit-lmage?®?; and is a free, open-source platform with extensive documentation and an
active user community (available at: https://napari.org/stable/).

The Napari-DeBCR plugin includes three tabs (Fig. 2a): TransformData, TrainModel, and
UseModel. The TransformData tab offers a graphical interface for pre-processing raw
inputs and post-processing model outputs. The TrainModel tab enables users to initiate
new training sessions or extend the training of existing deblurring models using pre-
processed datasets. The UseModel tab assists users in applying trained models to
process/restore new input data. A Log Window reports progress updates and warnings
during plugin operation. Additionally, the Napari panel for data layers — a standard Napari
component — displays loaded data objects and manages the data within the Napari-
DeBCR plugin.

a.

-

T PYOCeR rawicata , 3a. Use trained model

_’%_’!@

Test data Trained model Predicted data

L

Raw data

Training data  Model to train Full-size predicted data
, = ) e |

(-

= 5

2. Train deblurring model

N

3b. Post-process predicted data

bl
@ _ debcr (Python package) - $ napari-debcr
% Il (Python package)
1 ! requires | provides use DeBCR
: : €===-- ‘ in Napari
) core code API 1 napari @S @ graphical plugin
1 (internal) (public) : p o
% ’ provides 7~ .\ use DeBCR
"""""""""" - ——>»Jupyter in Jupyter

>

=" 4

as a scripting library


https://napari.org/stable/

Figure 1. Image restoration steps and available DeBCR packages. a. The steps to
perform image restoration using the neural network implemented in DeBCR. b. The
DeBCR packages for various user interfaces: a programmatic (DeBCR) and a graphical
(Napari-DeBCR).

The DeBCR, a modular Python-based library exposing a flexible API (Fig. 2b) — a
scriptable interface for executing outlined image restoration steps. Users can easily
import the library and run it interactively within web-based environments of the Jupyter
tools (https://jupyter.org/). We developed this scripting interface for DeBCR to: (1) enable
users with coding experience to integrate DeBCR into custom data processing pipelines;
(2) allow advanced users to embed DeBCR within broader image processing libraries;
and (3) encourage users with minimal coding skills to engage with programmable,
interactive workflows for light microscopy data restoration. The API of DeBCR consists of
three key modules (Fig. 2b): ‘model’, ‘config’, and ‘data’. The ‘DeBCR.model’ module
provides API functions to configure, train, and apply the deep learning model of DeBCR
for image restoration. The ‘DeBCR.config’ module contains APIs for loading and saving
the training configurations. The ‘DeBCR.data’ module, the largest component, offers APIs
for data access (loading and writing), data transformations (pre- and post-processing),
and visualization.

Both DeBCR and Napari-DeBCR are distributed as Python packages via the Python
Package Index (PyPl) repository to enable accessible installation via pip
(https://pypi.org/project/pip/). We provide detailed, step-by-step installation protocols for
each of the DeBCR packages (Supplementary Note 1, Procedure 1), along with some
troubleshooting advice (Supplementary Note 1, Box 1 and Supplementary Table 1) and
a comprehensive description of the required hardware and software dependencies
(Methods).
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Figure 2. DeBCR user interfaces to restore image data. a. The overview of the GUI of
DeBCR, Napari-DeBCR - a multi-tab plugin for the Napari viewer. b. The overview of the
API of DeBCR, DeBCR - a modular Python library.

A workflow of image restoration using DeBCR

The image restoration using DeBCR starts by importing and standardising the incoming
microscopy stacks (Supplementary Note 1, Procedure 2). In the TransformData stage,
users normalise intensities, clip outliers, and partition the volume into partially overlapping
square patches that are saved together with metadata (Supplementary Fig. S1). This
prepares matched input/ground-truth tiles for subsequent learning while preserving the
metadata required to reassemble the full field of view (for various strategies comparison
see Supplementary Fig. S2). A dedicated TransformData tab (Supplementary Fig. S1b)
in the Napari-DeBCR plugin exposes these operations through point-and-click controls,
streamlining the entire pre-processing pipeline for researchers without coding experience.
At the same time, the DeBCR.data module of the API offers scripting access to raw and
patched data 1/0O and the described pre-processing utilities.

Pre-processed patches are then fed into the multi-stage residual BCR network during the
TrainModel step (Supplementary Note 1, Procedure 3; Supplementary Fig. S3a) in the
corresponding tab (Supplementary Fig. S3b). The GUI allows a new model to be compiled
or an earlier checkpoint to be resumed, while advanced users can invoke identical
functionality programmatically through the DeBCR.model API, which exposes functions
for model initialization, configuration loading/saving, and GPU-accelerated training.
Typical parameters, such as input (patch) size, batch size, and learning rate, are defined
in a *YAML configuration file; training proceeds with on-the-fly validation and automatic
checkpointing until convergence. Additionally, in the Supplementary Note 1 (at the end of
the Procedure 3) we describe some typical errors (Supplementary Table 2) during model
training and provide the respective troubleshooting advice (Supplementary Table 3).

After convergence, the learned weights are applied in the UseModel phase in the GUI
(Supplementary Note 1, Procedure 4; Supplementary Fig. S4a,b), where the same patch
grid is streamed through the network in prediction mode, while the DeBCR.model API
enables this functionality programmatically. Both GUI and API interfaces allow for GPU-
accelerated model prediction.

Finally, the post-processing stage is executed in the already introduced TransformData
tab of the GUI (Supplementary Note 1, Procedure 4; Supplementary Fig. S4c) or via the
DeBCR.data module of the API. Here, the tiles are blended (e.g., cosine or Hann window)
and stitched back into a volume (for various strategies comparison see Supplementary
Fig. S5). Optional contrast enhancement can be performed before the restored data are
written to disk or transferred to downstream quantification tools. Additionally, we also



provide some troubleshooting advice for the model prediction and post-processing stage
(Supplementary Note 1, Procedure 4, Supplementary Table 4).

Owing to the Python-native architecture of both the Napari viewer and the API, DeBCR
allows users to design hybrid API/GUI workflows inside Napari or Jupyter. Thus, users
with Napari experience can directly manipulate loaded data using DeBCR’s API through
Napari’s embedded command-line interface, providing seamless access to a flexible and
well-supported API. Moreover, the Napari viewer can be invoked from an interactive
Jupyter session, enabling data transformation and manipulation via the API while
simultaneously visualizing results through the Napari GUI.

Taken together, the combination of intuitive GUI and flexible API provided by DeBCR
offers an accessible DL-based image restoration tool. A detailed setup procedure
(Supplementary Note 1, Procedure 1) documents the installation of both DeBCR
packages, executable on the available CPU and GPU hardware. Step-by-step usage
tutorials (Supplementary Note 1, Procedures 2-4), example datasets and trained model
weights (Data Availability Statement) allow the first-time users to reproduce the entire
restoration protocol from normalisation to seamless patch stitching, without writing code,
while users with scripting skills may embed the same functions in custom Jupyter
notebooks (Code Availability Statement) or larger pipelines. Because both interfaces call
the same core functions, the workflow scales unchanged from a desktop computer to
GPU-equipped workstations or even HPC clusters, ensuring fast, reproducible
restorations directly from raw data across diverse LM modalities.

Resource usage in DeBCR

Resource usage in DeBCR varies by image restoration step, parameters, input size, and
hardware. During data pre- and post-processing, both runtime and memory usage
increase with input size and patch overlap (Supplementary Table 5). These steps run on
CPUs and are fast (seconds), compared to the model prediction (minutes) and model
training (under an hour). However, the memory usage during pre-/post-processing can
rise notably (Supplementary Table 5) — for example, from ~1 GB to ~9 GB as overlap
increases from 25% to 75% for 95 input images of size (1024,1024).

For model training and prediction, batch size (amount of data used in a single
training/prediction step) is the key parameter: smaller batches use less memory but take
longer to run (Supplementary Table 6,7). While all the image restoration steps using
DeBCR can run on CPUs, model training and prediction benefit greatly from using GPU
resources (Supplementary Table 6,7).

Overall, the entire image restoration process using DeBCR — from raw stacks to restored
images — can be completed on a standard GPU workstation in well under two hours,
including user interaction (Table 1).



Table 1. Overview of the typical user runtime per restoration step by DeBCR.

Workflow stage Typical* runtime
1. Input data pre-processing (normalise and patch) 10-15 min
2. Model training (=102 steps with early stop) 35-60 min
3. Model prediction; output data post-processing (stitch) 15-30 min

*The example hardware configuration is CPU Intel(R) Core(TM) i7 @ 2.90GHz with 12 GB RAM and 1x
GPU NVIDIA Tesla T4 with 15 GB VRAM. The runtime includes user interaction.

Overview of benchmarked applications

We applied DeBCR to four datasets, representing crucial LM modalities (confocal
fluorescence®12:3334  widefield fluorescence®>36, SIM3>36 STED!234), and evaluated
performance of DeBCR compared to ten SOTA models (CARE®, TAGAN'?, RCAN/’,
DNCNN®, DDPM°, ESRGAN®, N2N¢, U-Net*, MPRNet!, and UniFMIR®) in image
restoration tasks such as denoising and deconvolution. To quantify signal restoration
performance, we computed the following metrics for the models (Eq. (4)-(7) in Methods):
Structural Similarity Index Measure®” (SSIM), Peak Signal-to-Noise Ratio®’ (PSNR), and
Normalized Root Mean Square Error® (NRMSE). We also evaluated the restoration
performance of DeBCR across spatial resolution scales using Fourier Ring Correlation3?
(FRC). These experiments are described in detail in the following subsections.

Additionally, we calculated the number of trainable parameters and measured the
inference runtime for the evaluated model architectures (Supplementary Table 8). We
demonstrate that DeBCR uses from ~1.4 times (CARE) to ~210 times (ESRGAN) fewer
trainable parameters and runs from ~1.7 times (CARE) to ~480 times (DDPM) faster
during inference, compared to other models. In general, larger models impose higher
requirements on both training and testing, demanding more powerful and expensive
hardware, which can hinder their wide applicability.

Denoising of confocal fluorescence LM data

Confocal microscopy enables optical sectioning of the sample“?, allowing 3D imaging to
be performed along the axial direction and potentially for live-cell imaging. Yet, it is
challenging to optimally balance the light exposure (dose), imaging speed and imaging
depth to enable the highest possible SNR and a sufficient amount of the recorded data
without surpassing the specimen exposure limit®. However, improving the SNR of the
acquired data using denoising models allows to sacrifice exposure dose in favour of other
imaging parameters, thus extending the effective photon budget of the sample?.

To evaluate the denoising performance of DeBCR compared to the SOTA denoising
models, we used two previously published datasets®3, originating from the CARE report®.
Image stacks in these datasets were acquired via confocal fluorescence microscopy of



the flatworm Schmidtea mediterranea and embryos of the red flour beetle Tribolium
castaneum. Both datasets contain images from 3 laser power levels (C1 - medium, C2 -
weak, C3 - extremely weak) and the GT, acquired at the higher laser power and longer
exposure time. As the laser power decreases, noise becomes increasingly dominant. The
denoising task here is thus to restore the high-SNR equivalents from the low-SNR input
data, recorded at the low laser power conditions. The results of denoising and its
evaluation for the S. mediterranea dataset are described below, with more examples at
various noise levels C1-C3 provided in the Supplementary Note 2 (Supplementary Fig.
S6), along with results for the T. castaneum (Supplementary Fig. S7).

In the case of the S. mediterranea, the extreme sensitivity of these organisms to the high
illumination levels might induce flinching of the samples even at normal laser intensity,
reducing the quality of the acquired images. Despite that, on this dataset DeBCR
demonstrates the highest qualitative (Fig. 3a) and quantitative (Fig. 3b) performance
compared to other SOTA models with the PSNRT/SSIMT values of 29.94 dB/0.92. The U-
Net (28.91 dB/0.92) and the DnCNN (28.45 dB/0.91) rank second with a noticeable gap
to the DeBCR. Although all models demonstrated satisfactory visual performance (Fig.
3a) by restoring signals from the noisy inputs for C1 and C2 conditions, the restoration
performance for the C3 condition (extremely weak laser power) varies across the models.
Here, RCAN and N2N failed to restore overall cell morphology and for some cells — the
high-SNR signal. In the region of interest (ROI), ESRGAN generated an inaccurate signal
pattern as two cells, while there is only one cell observed in the GT. The restoration by
DDPM contains strong salt-pepper-like artifacts. DeBCR did not exhibit any of the
described issues, eliminating the present noise and restoring the high-SNR signal, while
maintaining the high similarity to the GT.

Next, we assessed how robust are the image reconstructions by DeBCR based on the
signal sparsity in the data. For that we calculated entropy (Eqg. (8) in Methods) as the
sparsity measure for each image in the S. mediterranea dataset, followed by splitting data
to two subsets (Fig. 3c): sparse (entropy < 5, top row) and dense (entropy = 5, bottom
row). The guantitative evaluation of DeBCR performance on these subsets (Fig. 3d)
shows sparse reconstructions (see example on Fig. 3c, top row) achieve higher PSNR
and SSIM values, while dense reconstructions (see example on Fig. 3c, bottom row) yield
higher RMSE, both on average across subsets (Fig. 3d) and on a per-image basis (Fig.
3e).
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Figure 3. Denoising of confocal fluorescence LM data
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mediterranea. a. Comparison of denoising performance for the eight SOTA denoising
models on 3 noise levels of data, according to the illumination level (C1 - medium, C2 -
weak, C3 - extremely weak). The shown GT was obtained by longer exposure time and
higher laser intensity than used in all other conditions. C3 shows ROI zoom-in (green
frame, bottom right) to compare restorations in detail. b. Evaluation by SSIMT/PSNRT on
the test images. The highest ranking is marked in bold font. ¢c. Denoising performance
examples according to the data sparsity as measured by the entropy: (top) sparse data



(entropy = 1.62); (bottom) dense data (entropy = 6.49). d. Quantitative evaluation of
reconstruction quality across sparse (entropy < 5, green bar) and non-sparse, or dense,
(entropy = 5, orange bar) subsets of the dataset. e. Correlation between entropy and
various reconstruction performance metrics, including PSNR (blue), SSIM (green) and
RMSE (orange).

Resolution enhancement of widefield fluorescence LM data

In advanced SR microscopy?'®, careful photon budget management is also challenging,
but crucial to achieve the highest possible spatial and temporal resolution. Similar to the
denoising case, this can be addressed by employing computational SR methods,
including the data-driven deconvolution models. These deconvolution models enhance
the initially low resolution of the input data, acquired via technically simpler and faster
imaging modalities such as widefield or confocal microscopy, decreasing acquisition
costs and increasing throughput.

To evaluate DeBCR’s performance as a computational SR-deconvolution method, we
utilized a microscopy dataset®® featuring Staphylococcus aureus from the DeepBacs®®
publication, also evaluated in TAGAN?? work. This dataset includes blurry widefield
images to be restored and the respective SIM"'8 images to serve as GT for assessment.
After training the SOTA models on this dataset, we compared their restoration results
against DeBCR (Fig. 4a). While other models successfully restore most of the SR details,
they exhibit varying levels of artifacts. Upon closer ROI inspection, RCAN, TAGAN,
DDPM, ESRGAN, and U-Net introduce false patterns during resolution enhancement.
MPRNet does not exhibit hallucinations, but shows inferior resolution restoration. Only
DnCNN and DeBCR demonstrate comparable performance with high-resolution detail
restoration. For the quantitative evaluation, we used PSNRT and RMSE! instead of SSIM,
which fails here due to the sample drift and resulting image misalignment. DeBCR ranks
at the top with PSNRT/RMSE! of 29.94 dB/0.04, while U-Net and DnCNN performed
slightly worse (Fig. 4b).
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STED?'® — another SR modality — reaches even farther beyond the diffraction limit.
Therefore, we further evaluated DeBCR and SOTA deconvolution models in the data-
driven resolution enhancement of the easier-to-acquire confocal microscopy data, based
on the paired STED images serving as GT. For this, we used the respective F-Actin
dataset®* from the TAGAN?2 work, adopting the TAGAN model as a baseline here as well.
In this benchmark, most of the tested models achieved comparable visual performance
(Fig. 5a). However, the tested generative models, DDPM, and TAGAN, hallucinated by
restoring false patterns that do not exist in the GT. We quantitatively assessed the model
performance using PSNRT/RMSE!, with DeBCR achieving the best evaluation metrics
performance at 27.01 dB/0.05 (Fig. 5b). ESRGAN, although performing well in
deconvolution, shows worse denoising performance, resulting in a bit worse metrics
values than DeBCR. Compared to others, DeBCR effectively enhances resolution without
hallucinations.
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Figure 5. Resolution enhancement of the confocal fluorescence LM images for F-
actin. This dataset contains paired images from confocal and STED images for F-actin
samples. The STED serves as the pseudo-GT. a. Visualization of the restoration results.
Some of the sample signals, observed in GT, are annotated in ROl zoom-ins (green
frame, bottom right) for detailed restorations comparison: three high-signal spots are
indicated by arrows; a filamentous signal pattern is annotated with dotted lines. b.
Quantitative evaluation with PSNRT/RMSEJ.

Comparison to the foundation model for generalized restoration UniFMIR

We additionally compared the DeBCR to the benchmark dataset for the foundation
microscopy restoration model UniFMIR®3, The model was pre-trained on a large
database, making it challenging to re-train UniFMIR from scratch for comparison
purposes. Therefore, we used the already available UniFMIR model weights, fine-tuned
on two datasets used for DeBCR evaluation. These include the flatworm Schmidtea
mediterranea for the confocal microscopy denoising and the F-Actin dataset for confocal
microscopy SR-deconvolution.

Under medium/weak signal-to-noise ratio (SNR) conditions (C1, C2), both DeBCR and
UniFMIR effectively restored the GT information from noisy inputs (Fig.6a). However, as
the SNR decreases to the extremely weak condition (C3), DeBCR restores images closer
to the GT compared to UniFMIR as indicated by the green arrow. In the little-to-no input
signal case (the last C3 column, Fig.6a), UniFMIR even generates false patterns, while
DeBCR outputs are unstructured, indicating the noisy input origin. The inferior capacity
to suppress hallucinations results in poorer evaluation scores (PSNRT/SSIMT) for
UniFMIR (24.36/0.72) compared to DeBCR (29.04/0.92).



In the SR task on the dataset of confocal and the stimulated emission depletion
microscopy (STED) of F-Actin (Fig.6b), both models demonstrate strength in restoring
high-resolution details from low-resolution inputs. However, DeBCR exhibits higher
artifact robustness and restores images closer to the ground truth (GT). Evaluation
metrics PSNRT/SSIMT further validate performance of DeBCR with 27.01/0.84,
surpassing UniFMIR's scores of 25.74/0.77.
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Figure 6. Denoising and deconvolution performance of DeBCR compared to the
universal fluorescence microscopy-based image restoration model (UniFMIR). a.
Denoising results on the flatworm Schmidtea mediterranea dataset from CARE. The
columns represent various noise levels of data, according to the illumination level (C1 -
medium, C2 - weak, C3 - extremely weak) with the last (C3) column representing no-
signal, noise-only input case. b. The super-resolution deconvolution results on the dataset
confocal and the stimulated emission depletion microscopy (STED) for F-Actin. Some of
the sample signals, observed in GT, are annotated with arrows for detailed comparison.

Evaluation of performance across spatial resolution bands and modalities

Lastly, to identify the applicability domain of our approach and its limits, we assessed
DeBCR for its spectral restoration performance across all three evaluated above
datasets, featuring various fluorescence microscopy modalities (Fig. 7): confocal
high/low-exposure (for simplicity, high/low confocal; S. mediterranea), widefield/SIM (S.
aureus), confocal/STED (F-actin) — as the respective input/GT data. For that, we
computed FRC (Eg. (9) in Methods) for prediction/GT and input/GT pairs to assess the
relative restoration performance using DeBCR — both the absolute, across spatial
resolution bands in each dataset, and the relative, across the datasets. As a baseline



model, we also included U-Net, which in our evaluations performed better across all tasks
and datasets, compared to the other tested state-of-the-art models.

In all three data cases for both models, the largest FRC improvement within each dataset
occurred within the respective mid-resolution band. However, the width of the FRC
improvement band, its maximum value and location — varied. Thus, for both DeBCR and
U-Net, on the widefield/SIM data (Fig. 7a) the maximal FRC improvement was
considerably larger, compared to high/low-exposure confocal data (Fig. 7b) with a data
sampling of ~78 nm/pix, similar to 80 nm/pix in widefield/SIM data. Moreover, on the
widefield/SIM data (Fig. 7a) the improvement width was slightly wider with the slightly
earlier up the spectrum peak position, as on confocal high/low-exposure data (Fig. 7b).
Furthermore, for both models, on the confocal/STED data (Fig. 7c) the maximum FRC
improvement value was lower, but positioned relatively further down the spectrum,
compared to the other two datasets. This indicates overall reduced restoration gain for
confocal/STED data, compared to widefield/SIM data, again — for both DeBCR and U-
Net. In general, the observed decrease and flattening of the FRC improvement peak on
the higher-resolution input/GT data points out the approaching limit of the restoration
abilities of DeBCR and U-Net, likely due to the inherent limitations of CNN4-44 — the
common architectural basis of DeBCR, U-Net, and the other evaluated in this work
models.
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Figure 7. Spectral performance of DeBCR and U-Net across various modalities.
FRC curves for DeBCR and U-Net restorations, compared to input data, evaluated
against GT for three high-resolution GT imaging modalities: a. SIM (S. aureus dataset,
input: widefield fluorescence, n=601 test images); b. High-exposure confocal
fluorescence (S. mediterranea dataset, input: low-exposure confocal fluorescence, n=615
test images); c. STED (F-actin dataset, input: confocal fluorescence, n=84 test images).
Each shown FRC is the average across the respective full test set (mean: bold solid line,
standard deviation: pale band). Additionally, the restoration-to-input difference FRC is
plotted in each case to demonstrate the spectral band of improvement, gained using
DeBCR (mean: pale dashed line, standard deviation: pale band).

Finally, to ultimately probe the restoration limits of our model, we also tested DeBCR and,
for comparison, CARE on the single-molecule localisation microscopy (SMLM) data,



using the publicly available DL-SMLM dataset (see Supplementary Note 3). In contrast to
CARE, DeBCR has shown notable improvement in the structural clarity of the restored
data compared to input (Supplementary Fig. S8, Supplementary Note 3) with better
guantitative performance (Supplementary Table 9, Supplementary Note 3) and also
gained minor FRC improvements within narrow spectral bands (Supplementary Fig. S9,
Supplementary Note 3). However, neither DeBCR, nor CARE achieved the single-
molecule level of precision, with DeBCR reaching its expressivity capacity and CARE —
already collapsing on SMLM data, marking the scope of their applicability domain. As
noted earlier, this is likely due to convolutional architectures of DeBCR and CARE (and,
in fact, all other evaluated here models), exhibiting their representation power limits#1-44,

Discussion

In this study, we have proposed DeBCR, a flexible and accessible framework for a deep-
learning-based image restoration, and showcased the advantages of its application on
fluorescence light microscopy data of diverse modalities.

The DeBCR employs a convolutional DNN model, inspired by wavelet decomposition, to
provide sparsity-efficient data representation. This allows minimizing the appearance of
artifacts during the reconstruction process, while utilizing fewer trainable parameters, and
results in enhanced image restoration performance. Uniquely, the DeBCR approach is
directly applicable to the diverse fluorescence LM data for various image restoration
tasks. In particular, our computational experiments demonstrated that DeBCR
outperforms 10 SOTA models (from U-Net to DDPM) in denoising and deconvolution
tasks across several crucial fluorescence LM modalities (from widefield to SR data),
assessed both visually (true/false patterns identification) and quantitatively (evaluation by
metrics such as PSNRT, SSIMT, and RMSEL!). While not explored in this work, one could
imagine a DeBCR application to live-cell imaging. For this, a paired dataset consisting of
high-exposure/laser-power images paired with low-exposure/low-power images could be
obtained. The model could then learn the transformation between the pairs. This
transformation could later be applied to a time-lapse microscopy image acquired at low-
exposure/low-power, which lowers photo-toxicity.

However, the spectral analysis of the DeBCR-based restorations (using FRC as a metric)
has shown that the signal improvement across spatial scales depends on the modality of
the input and training data, with the performance optimum at the high-resolution
modalities, while facing its applicability limit on the super-resolution data (such as
produced by single-molecule localisation microscopy). These limitations are likely due to
DeBCR and the other evaluated in our work models being CNNs, while some (namely,
encoder-decoder) CNN-based architectures have been previously shown to lead to blurry
reconstructions*-#4. To address that, incorporating DeBCR as a warm-up step for
generative models (diffusion-based models, variational autoencoders, generative



adversarial networks, etc.) may improve its high-frequency restoration abilities and
enhance its applicability to super-resolution modalities. Additionally, for better
performance on SMLM data, the SMLM-reconstructed images may not be the best
possible input format of localisation data for data-driven representation learning, and
alternative approaches like point clouds should be considered.

Moreover, DeBCR may not be an optimal solution for other image restoration tasks such
as surface projection® or isotropic reconstruction'® due to the anticipated increased
number of trainable parameters. Besides, the high-level DL architecture of the DeBCR
mimics the structure of the solution (Supplementary Eqg. (S6) and Supplementary Fig.
S10,S11 in Supplementary Methods) for a particular task of joint deconvolution and
denoising, potentially limiting its further applications. Further adaptation of the DeBCR
structure to encompass a broader spectrum of microscopy image restoration tasks is
anticipated in future research.

To make the usage of the DeBCR framework both flexible and approachable, we
implemented two complementary, Python-native interfaces. The Napari-DeBCR GUI is
delivered as a multi-tab plugin for the Napari viewer, giving point-and-click access to data
transformation, model training and batch restoration. The live-log window and the
standard Napari layer panel keep users informed of progress and data context. For
programmatic control, the DeBCR Python library exposes three main modules — model,
config and data — that can be imported in Jupyter or embedded in larger pipelines,
allowing advanced users to script every step from configuration to inference. Both tools
are distributed via GitHub following an accessible installation procedure. They run on
standard CPUs and take advantage of the available GPUs. Thanks to their pure-Python
design, users can also fluidly mix API and GUI operations within the same Napari or
Jupyter session. Comprehensive, step-by-step protocols, example datasets and pre-
trained weights further lower the entry barrier, enabling researchers with little or no coding
background to restore microscopy data on typical lab workstations. More advanced HPC
users can scale the same code on GPU-equipped clusters if desired. Together, this
implementation strategy balances reproducibility, flexibility and accessible usage, making
state-of-the-art image restoration broadly accessible to the microscopy community.

In summary, our experiments demonstrated the strength of employing the sparsity-
efficient data representation in a DNN model for microscopy image restoration, enhancing
the model's efficiency and reliability. Moreover, architecturally reflecting the solution
structure of the target problem extends the model applicability to versatile data modalities
and restoration tasks. Being such a model, DeBCR holds promise for diverse downstream
applications in microscopy, enabling usage of the less destructive, faster and cheaper
imaging methods, while providing decent contrast and resolution levels.



Methods

Datasets

Based on the original data publications, we prepared (see Training data preparation for
benchmarks) four datasets spanning across various crucial fluorescence light microscopy
modalities: confocal fluorescence data under various exposures from CARE®33; paired
widefield fluorescence and SIM data from DeepBacs?®®3; paired confocal fluorescence
and STED data from TAGAN, The physical acquisition setup and parameters for each
dataset are briefly summarized in the subsections below, whereas the pre-processing and
data split are described in the section Training data preparation for benchmarks.

Exposure-series confocal datasets of Planaria and Tribolium

The publicly available datasets of the flatworm Schmidtea mediterranea®® and embryos
of the red flour beetle Tribolium castaneum®? from the CARE work® were used to train
DeBCR for the denoising task.

The Schmidtea mediterranea dataset consists of exposure series of the confocal
fluorescence microscopy measurements, originally acquired® on a spinning disk confocal
microscope using magnification 30x, 1.05-NA silicon oil-immersion objective and
excitation wavelength of 640 nm at four combinations of camera exposure times and laser
powers (GT: 30 ms, 2.31 mW; C1: 20 ms, 0.12 mW, C2: 10 ms, 0.12 mW, C3: 10 ms,
0.05 mW), featuring varying signal-to-noise characteristics.

Similarly, the Tribolium castaneum dataset consists of exposure series of the confocal
fluorescence microscopy measurements, originally acquired® on a Zeiss 710 multiphoton
laser-scanning confocal microscope using magnification 25x with a multi-immersion
objective for four laser-power conditions (GT: 20 mW; C1: 0.1 mW, C2: 0.2 mW, C3: 0.5
mW), thus also featuring varying signal-to-noise characteristics.

Paired widefield/SIM dataset of Staphylococcus

The publicly available dataset of Staphylococcus aureus3® from the DeepBacs work®® was
used to train DeBCR for the resolution enhancement task. The data were originally
acquired® by structured illumination microscopy or widefield microscopy at the same
sample positions with magnification 60x, 1.42-NA Olympus oil immersion objective (oll
refractive index 1.522) and 561-nm excitation laser (100 mW) at 11-18 W cm with
exposure times of 10-30 ms.

Paired confocal/STED dataset of F-actin

The publicly available dataset of F-actin in living neurons®* from the TAGAN work!? was
used to train DeBCR for the resolution enhancement task. The data were originally



acquired*? on a four-colour STED microscope (Abberior Instruments) with a pixel size of
20 nm using a 640 nm pulsed (40 MHz) excitation laser, an ET685/70 (Chroma)
fluorescence filter and a 775 nm pulsed (40 MHz) depletion laser.

DeBCR network and implementation

Deep learning architecture of DeBCR

The DeBCR framework implements our recently proposed DNN architecture m-rBCR?’
as its core image restoration approach. The central idea of this DNN architecture is to
efficiently approximate the inverse of the Point Spread Function*®, modeling a blur effect
in the registered image from the microscope optical imaging system, while compensating
for the noise, present due to the limited precision of the microscope hardware. The Point
Spread Function effect is usually modeled via the integral convolution operator*®, which
is challenging to invert directly in a stable manner, considering the noise contribution (see
Supplementary Methods). However, the noise-aware regularized form of the pseudo-
inverse operator to invert the Point Spread Function (see Supplementary Methods) as a
pseudo-differential operator can be approximated via the Beylkin-Coifman-Rokhlin (BCR)
decomposition?®, implemented as a set of equivalent convolutional DNN blocks, as
proposed in the BCR-Net?. In this work, we call this DNN structure the BCR
decomposition unit.

In our architecture?’”, we employed a more stable residual structure of the BCR
decomposition unit instead of the originally proposed?® (Supplementary Fig. S10,
Supplementary Methods). Building upon this residual BCR unit, we followed the structure
of the traditional regularized pseudo-inverse solution (see Supplementary Eq. (S6) in
Supplementary Methods) to assemble a DNN architecture for image enhancement called
s-rBCR?’ — a fundamental element of our proposed model m-rBCR (Supplementary Fig.
Sl1la, Supplementary Methods). Next, we incorporated this DNN-based restoration
element multiple times to enable a multi-scale image input, i.e. original and downsampled,
resulting in the respective restored image at each scale level. Furthermore, the feature
maps from the neighbouring scale levels are integrated, further stabilizing the learning
process (Supplementary Fig. S11b, Supplementary Methods). Such a multi-resolution
convolutional DNN structure offers the sparse-efficient data-driven representation
learning of the operator, inverting the imaging process, for various image restoration tasks
and diverse imaging modalities.

Software implementation

The core DL architecture training and inference code of DeBCR is implemented in Python
using TensorFlow library as a deep learning backend. The software for the core model
usage consists of the API library and a graphical plugin for Napari viewer. Both tools are



prepared as PyPl packages DeBCR (available at: https://pypi.org/project/debcr/) and
Napari-DeBCR (available at: https://pypi.org/project/napari-debctr/) to be easily installable
via pip and are primarily intended to be used in Linux operating systems (OS). We
developed and tested DeBCR with Python v3.9 under OS Ubuntu 20.04/22.04 and OS
Red Hat Enterprise Linux 9.

Computational requirements

Both DeBCR packages, DeBCR and Napari-DeBCR, can in principle be executed on
CPU-only systems with at least 8-12 GB RAM, though GPU acceleration is recommended
to substantially reduce training and prediction time. A GPU with at least 8-12 GB of video
RAM is thus advised. Actual memory usage depends on data size, image restoration step
and its parameters (e.g. batch size), hardware type (CPU/GPU), model, and available
memory (Supplementary Table 5-7). For optimal performance, users may utilize high-
performance computing (HPC) clusters with advanced GPU resources, though additional
technical setup may be required.

The GPU usage also requires two additional components: the CUDA Toolkit and the
cuDNN library, both of which must be compatible with the GPU model, CUDA driver, and
TensorFlow version. The recommended configuration is CUDA 11.7, cuDNN v8.4.0, and
TensorFlow-GPU v2.11. While CUDA and cuDNN must be manually installed,
TensorFlow will be automatically installed along with other necessary dependencies
during the respective DeBCR package installation. A step-by-step description for the
installation and setup procedure is provided (see Supplementary Note 1).

For the DeBCR graphical plugin, Napari-DeBCR, the Napari software is required.
Additionally, to use DeBCR as an API interactively, while following the provided tutorials
(Supplementary Note 1) or its electronic version (see Code Availability Statement), one
of the Jupyter tools (https://jupyter.org/), Jupyter Notebook or JupyterLab, may be used.

Benchmarks configuration

Training data preparation for benchmarks

The raw data for all datasets was obtained in the TIF format from the original depositions.
For pre-processing, both input data and GT were min-max normalized and patched into
image stacks with XY size of (128, 128). The pre-processed data for each dataset was
split into the training/validation data subsets for model training and a testing data subset
for model prediction. The training/validation/testing data split ratio was 0.8/0.1/0.1. Finally,
the pre-processed training/validation/testing data subsets, each including input data and
GT, were saved in the NPZ file format for further distribution.


https://pypi.org/project/napari-debcr/
https://jupyter.org/

These datasets were used for the described application and resource usage benchmarks
and are released with the respective trained model weights (see Data Availability
Statement).

Model training configuration for benchmarks

In both the application benchmarks (see Results) and resource usage benchmarks (see
Supplementary Table 6,7), we used a common model training setup described here.

We used Adam optimizer from TensorFlow with a learning rate of 0.001. We settled the
number of training epochs as 2¢10% and a batch size of 32. In resource usage
benchmarks, we also tested various values of batch size (Supplementary Table 6,7). Due
to the use of an early stop strategy to avoid overfitting, the training process generally

converged before the 2¢102 epochs, depending on the task types.

The loss function we utilized during training DeBCR Lpgcr, Shown in Eq. (1), combines
Mean Squared Error (MSE) loss Lysg from Eq. (2), and Lgr loss, based on Fourier
Transform (FT), from Eq. (3). The MSE loss Lysg in EQ. (2) is measured between the
restored Ypr.q, and ground truth (GT) Ysr,, images, while the Fourier-based loss Lgy in
Eq. (3) is calculated from their respective Fourier transforms 3{Ypreqn} and I{Ysr,}-

Lpegcr = 1.0 * Lysg + 0.5 * Lgr (1)
1% 2 2)
Lysg = N Z |YPred,n - YGT,n|
n=1
(3

N
1
Lgr = NZ| S{YPred,n} - S{YGT,n} |
n=1

Setup for resource usage benchmarks

In contrast to the application benchmarks, all executed on the NVIDIA Tesla V100 GPU,
for resource usage benchmarks we tested various CPU and GPU models, listed in the
Tables S1-S3. All GPU-based benchmarks there were done under CUDA-11.7 and
CuDNN-8.4.

The confocal fluorescence dataset of S.mediterranea from CARE® work was used to
conduct the various shown resource usage benchmarks. We used the raw original full-
size data (95, 1024, 1024) as input for pre-processing and the model-restored, pre-



processed data for post-processing, both with the fixed patch size of (128, 128) and
varying crop overlaps (Supplementary Table 5). A training subset (Data Availability
Statement) of size (2211, 128, 128) was used for model training (Supplementary Table
6), while a larger dataset of size (21375, 128, 128), derived from the raw original data,
was used for prediction (Supplementary Table 3).

Evaluation metrics

To evaluate the performance of the learning process and compare various restoration
models, we utilized the following three metrics: PSNR?’, SSIM®’, and NRMSE?8. The
respective equations defining the metrics are listed below in Eq. (4)-(6):
PSNR = 101 MAX® “)
= 7%\ MsE

where MSE is the Mean Squared Error, calculated as in Eq. (2), and MAX is the maximum
possible pixel value (equal to 1.0 according to data normalisation);

(2ugtHered T C1)(20610preq + C2) (5)
(:uéT + nu12>red + Cl)(o_éT + O_lzred + CZ)
where ucr and up.q are mean intensities of the GT and restored output; oct and opreq

are variances of the GT and restored output; C; and C, are small constants to stabilize
division near zero.

SSIM =

RMSE ©6)
max(Ygr) — min(Ygr)

NRMSEange =

where max(Y;r) and min(Ygr) are maximum and minimum values of the GT images,
respectively, and RMSE is the Root Mean Square Error, defined in Eq. (7) below:

T (7
RMSE = NZ(YPred,n — Yg1.0)?
n=1

where Ygr,, and Ypq, are GT and restored output images, respectively.

To evaluate DeBCR performance at various signal sparsity levels, we calculated image
entropy as a sparsity measure, defined as in the Eq. (8) below:



n-—1
E=- Z p;log, p; (8)
i=0

where n is the contrast depth of the image (for calculation images were converted to 8-
bit, resulting in the contrast depth of 256) and p; is the relative amount of pixels having
contrast value i.

Additionally, we assessed spectral restoration performance of DeBCR quantifying FRC3®
as in the Eq. (9) below:

ZkeKr iGT (k) ’ i;red (k)

Jzk%llfm(k)llz e rea NI

where [ and Ipeq are Fourier transforms (frequency spectra) of the ground truth and
prediction images, respectively, with ;.4 being complex conjugate of Ip..q, and k is the
spatial frequency vector in the radial frequency shell K,..

FRC(r) =

9)

Data Availability Statement

The example pre-processed training, validation and test subsets for all evaluated
datasets, including both the input data and the ground truth, and the respective pre-
trained weights of the DeBCR core model are available in the Zenodo*’ repository (doi:
10.5281/zen0do.12626121).

Code Availability Statement

The DeBCR packages are both accessible for installation from the PyPI repository, each
with the source code available in the respective open-source GitHub repository: DeBCR,
including DL model and Python API (PyPl: https://pypi.org/project/debcr; GitHub:
https://github.com/DeBCR/DeBCR), and Napari-DeBCR, including Napari plugin GUI
(PyPI: https://pypi.org/project/napari-debcr; GitHub: https://github.com/DeBCR/napari-
DeBCR). The package source codes of the versions, associated with the data in this
paper, are available in the Zenodo repository: DeBCR-v0.1.0*® (doi:
10.5281/zen0do.17673860) and Napari-DeBCR-v0.1.0%° (doi:
10.5281/zeno0do.17674107).

The tutorial notebooks on API library usage are also available along the source code on
the DeBCR GitHub webpage (at path “DeBCR/notebooks”). The code, re-implementing
some of SOTA models, where it was necessary, which was used to run described
application benchmarks is deposited at the separate repository
(https://github.com/DeBCR/DeBCR-benchmarks).



https://doi.org/10.5281/zenodo.12626121
https://pypi.org/project/debcr
https://github.com/DeBCR/DeBCR
https://pypi.org/project/napari-debcr
https://github.com/DeBCR/napari-DeBCR
https://github.com/DeBCR/napari-DeBCR
https://doi.org/10.5281/zenodo.17673860
https://doi.org/10.5281/zenodo.17674107
https://github.com/DeBCR/DeBCR-benchmarks

References

1. Agard, D. A. & Sedat, J. W. Three-dimensional architecture of a polytene nucleus.
Nature 302, 676—-681 (1983).

2. Richardson, W. H. Bayesian-Based Iterative Method of Image Restoration*. JOSA 62,
55-59 (1972).

3. Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron.
J. 79, 745 (1974).

4. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. in Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015 (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A.
F.) vol. 9351 234-241 (Springer International Publishing, Cham, 2015).

5. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process.
26, 3142-3155 (2017).

6. Lehtinen, J. et al. Noise2Noise: Learning Image Restoration without Clean Data.
(2018).

7. Zhang, Y. et al. Image Super-Resolution Using Very Deep Residual Channel Attention
Networks. in Computer Vision — ECCV 2018 (eds Ferrari, V., Hebert, M.,
Sminchisescu, C. & Weiss, Y.) 294-310 (Springer International Publishing, Cham,
2018). doi:10.1007/978-3-030-01234-2_18.

8. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence

microscopy. Nat. Methods 15, 1090-1097 (2018).



10.

11.

12.

13.

14.

15.

16.

17.

Wang, X. et al. ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks. in Computer Vision — ECCV 2018 Workshops (eds Leal-Taixé, L. & Roth,
S.) 63-79 (Springer International Publishing, Cham, 2019). doi:10.1007/978-3-030-
11021-5_5.

Ho, J., Jain, A. & Abbeel, P. Denoising Diffusion Probabilistic Models. (2020).

Zamir, S. W. et al. Multi-Stage Progressive Image Restoration. in 14821-14831
(2021).

Bouchard, C. et al. Resolution enhancement with a task-assisted GAN to guide optical
nanoscopy image analysis and acquisition. Nat. Mach. Intell. 5, 830-844 (2023).

Ma, C., Tan, W., He, R. & Yan, B. Pretraining a foundation model for generalizable
fluorescence microscopy-based image restoration. Nat. Methods 1-10 (2024)
doi:10.1038/s41592-024-02244-3.

Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910—
919 (2005).

Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72—
84 (2019).

Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of
entire developing embryos with simultaneous multiview light-sheet microscopy. Nat.
Methods 9, 755-763 (2012).

Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using
structured illumination microscopy: SHORT COMMUNICATION. J. Microsc. 198, 82—

87 (2000).



18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Demmerle, J. et al. Strategic and practical guidelines for successful structured
illumination microscopy. Nat. Protoc. 12, 988-1010 (2017).

Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated
emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780—
782 (1994).

Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM). Nat. Methods 3, 793-796 (2006).

Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017).

Xing, F., Xie, Y., Su, H., Liu, F. & Yang, L. Deep Learning in Microscopy Image
Analysis: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 29, 4550-4568 (2018).
Sofka, M. et al. Multi-stage Learning for Robust Lung Segmentation in Challenging
CT Volumes. in Medical Image Computing and Computer-Assisted Intervention —
MICCAI 2011 (eds Fichtinger, G., Martel, A. & Peters, T.) vol. 6893 667—674 (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011).

Li, R. et al. Microscopy image reconstruction with physics-informed denoising
diffusion probabilistic model. Commun. Eng. 3, 186 (2024).

Bommasani, R. et al. On the Opportunities and Risks of Foundation Models. Preprint
at https://doi.org/10.48550/arXiv.2108.07258 (2022).

Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE
Conference on Computer Vision and Pattern Recognition 248-255 (2009).
doi:10.1109/CVPR.2009.5206848.

Li, R., Kudryashev, M. & Yakimovich, A. Solving the Inverse Problem of Microscopy

Deconvolution with a Residual Beylkin-Coifman-Rokhlin Neural Network. in Computer



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Vision — ECCV 2024 (eds Leonardis, A. et al.) 378-395 (Springer Nature Switzerland,
Cham, 2025). doi:10.1007/978-3-031-73226-3_22.

Beylkin, G., Coifman, R. & Rokhlin, V. Fast wavelet transforms and numerical
algorithms I. Commun. Pure Appl. Math. 44, 141-183 (1991).

Fan, Y., Orozco Bohorquez, C. & Ying, L. BCR-Net: A neural network based on the
nonstandard wavelet form. J. Comput. Phys. 384, 1-15 (2019).

Sofroniew, N. et al. napari: a multi-dimensional image viewer for Python. (2025)
doi:10.5281/zen0do.15465370.

Harris, C. R. et al. Array programming with NumPy. Nature 585, 357-362 (2020).
van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
Weigert, M. et al. Content Aware Image Restoration: Pushing the Limits of
Fluorescence Microscopy data. Edmond https://doi.org/10.17617/3.FDFZOF (2025).
Bouchard, C., Gagné, C. & Lavoie-Cardinal, F. Confocal and STED Live F-actin
dataset. Zenodo https://doi.org/10.5281/ZENODQO.7908913 (2023).

Spahn, C. et al. DeepBacs for multi-task bacterial image analysis using open-source
deep learning approaches. Commun. Biol. 5, 1-18 (2022).

Pereira, P. M. & Pinho, M. DeepBacs - Staphylococcus aureus widefield
segmentation dataset. Zenodo https://doi.org/10.5281/ZENODO.5550932 (2021).
Sara, U., Akter, M. & Uddin, M. S. Image Quality Assessment through FSIM, SSIM,
MSE and PSNR—A Comparative Study. J. Comput. Commun. 07, 8-18 (2019).
Boursalie, O., Samavi, R. & Doyle, T. E. Evaluation Metrics for Deep Learning
Imputation Models. in Al for Disease Surveillance and Pandemic Intelligence:

Intelligent Disease Detection in Action (eds Shaban-Nejad, A., Michalowski, M. &



39.

40.

41.

42.

43.

44,

45.

46.

Bianco, S.) 309-322 (Springer International Publishing, Cham, 2022).
doi:10.1007/978-3-030-93080-6_22.
Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged

bacterial cell envelope protein. J. Microsc. 127, 127-138 (1982).

Pawley, J. B. Handbook of Biological Confocal Microscopy. (Springer, New York,
2006).
Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing

robust features with denoising autoencoders. in Proceedings of the 25th international
conference on Machine learning 1096-1103 (Association for Computing Machinery,

New York, NY, USA, 2008). doi:10.1145/1390156.1390294.

Goodfellow, I. et al. Generative adversarial networks. Commun ACM 63, 139-144
(2020).
Theis, L., Oord, A. van den & Bethge, M. A note on the evaluation of generative

models. Preprint at https://doi.org/10.48550/arXiv.1511.01844 (2016).

Dosovitskiy, A. & Brox, T. Generating images with perceptual similarity metrics based
on deep networks. in Proceedings of the 30th International Conference on Neural
Information Processing Systems 658—-666 (Curran Associates Inc., Red Hook, NY,
USA, 2016).

Shaw, P. J. & Rawlins, D. J. The point-spread function of a confocal microscope: its
measurement and use in deconvolution of 3-D data. J. Microsc. 163, 151-165 (1991).
Sarder, P. & Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy

images. IEEE Signal Process. Mag. 23, 32—-45 (2006).



47.Li, R., Yushkevich, A., Chu, X., Kudryashev, M. & Yakimovich, A. DeBCR: trained
model weights for fluorescence microscopy image enhancement. Zenodo
https://doi.org/10.5281/ZENODO.12626121 (2025).

48. Yushkevich, A., Li, R., Chu, X., Kudryashev, M. & Yakimovich, A. DeBCR: A deep
learning framework for microscopy image enhancement (Python API). Zenodo
https://doi.org/10.5281/ZENODO.17673860 (2025).

49. Yushkevich, A., Li, R., Chu, X., Kudryashev, M. & Yakimovich, A. DeBCR: a deep
learning framework for microscopy image enhancement (Napari GUI). Zenodo

https://doi.org/10.5281/ZENODO.17674107 (2025).

Acknowledgements

This work was partially funded by the Center for Advanced Systems Understanding
(CASUS) which is financed by Germany’s Federal Ministry of Research, Technology and
Space (BMFTR) and by the Saxon Ministry for Science, Culture, and Tourism (SMWK)
with tax funds based on the budget approved by the Saxon State Parliament. The work
was supported by the Helmholtz Imaging IVF grant CryoFocal. MK is supported by the
Heisenberg award from the DFG (KU 3222/2-1), and funding from the Helmholtz
Association. AY is supported by the Helmholtz Association Initiative and Networking Fund
in the frame of Helmholtz Al as well as by the Helmholtz Foundation Model Initiative within
the project “PROFOUND”. The authors thank HelmholtzAl (grant tomoCAT). The authors
thank Viacheslav Kralin for useful discussions.

Author information
These authors contributed equally: Rui Li, Artsemi Yushkevich.

Authors and affiliations

Center for Advanced Systems Understanding (CASUS), Gorlitz, Germany
Rui Li & Artur Yakimovich

Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
Rui Li & Artur Yakimovich



Faculty of Computer Science, Technische Universitat Dresden, Dresden, Germany
Rui Li

In situ Structural Biology, Max Delbriick Center for Molecular Medicine in the
Helmholtz Association, Berlin, Germany
Rui Li, Artsemi Yushkevich, Xiaofeng Chu & Mikhail Kudryashev

Department of Physics, Humboldt University of Berlin, Berlin, Germany
Artsemi Yushkevich

Institute of Medical Physics and Biophysics, Charite-Universitatsmedizin, Berlin,
Germany
Xiaofeng Chu & Mikhail Kudryashev

Institute of Computer Science, University of Wroctaw, Wroctaw, Poland
Artur Yakimovich

Contributions

RL, AYu, XC, MK, and AY conceived the project, planned the computational experiments.
RL designed and developed the deep learning model. RL and AYu benchmarked the
model, conducted computational experiments and analyzed them. AYu developed the
API and GUI interfaces and the respective usage procedures; XC tested the interfaces
and validated the procedures. RL, AYu, XC, MK, and AY wrote the manuscript.

Corresponding authors

Correspondence to Artur Yakimovich or Mikhail Kudryashev.

Ethics declarations

Competing interests

RL, AYu, XC, MK declare no competing interests. AY declares the following competing
interest: role as an Editorial Board Member and Guest Editor in Scientific Data.


mailto:a.yakimovich@hzdr.de
mailto:mikhail.kudryashev@mdc-berlin.de

Figure 1. Image restoration steps and available DeBCR packages. a. The steps to
perform image restoration using the neural network implemented in DeBCR. b. The
DeBCR packages for various user interfaces: a programmatic (DeBCR) and a graphical
(Napari-DeBCR).

Figure 2. DeBCR user interfaces to restore image data. a. The overview of the GUI of
DeBCR, Napari-DeBCR - a multi-tab plugin for the Napari viewer. b. The overview of the
API of DeBCR, DeBCR - a modular Python library.

Figure 3. Denoising of confocal fluorescence LM data of the flatworm S.
mediterranea. a. Comparison of denoising performance for the eight SOTA denoising
models on 3 noise levels of data, according to the illumination level (C1 - medium, C2 -
weak, C3 - extremely weak). The shown GT was obtained by longer exposure time and
higher laser intensity than used in all other conditions. C3 shows ROl zoom-in (green
frame, bottom right) to compare restorations in detail. b. Evaluation by SSIMT/PSNRT on
the test images. The highest ranking is marked in bold font. ¢c. Denoising performance
examples according to the data sparsity as measured by the entropy: (top) sparse data
(entropy = 1.62); (bottom) dense data (entropy = 6.49). d. Quantitative evaluation of
reconstruction quality across sparse (entropy < 5, green bar) and non-sparse, or dense,
(entropy = 5, orange bar) subsets of the dataset. e. Correlation between entropy and
various reconstruction performance metrics, including PSNR (blue), SSIM (green) and
RMSE (orange).

Figure 4. Resolution enhancement of the widefield fluorescence LM images for S.
aureus. The dataset comprises pairs of images captured using widefield microscopy and
SIM. The SIM images serve as pseudo-ground truth (GT) for SR deconvolution. We
compared our results to TAGAN as a baseline. a. Visualization of selected restoration
results. The ROl zoome-in (green frame, bottom right) is shown to compare restorations in
detail. b. The evaluation metrics PSNRT/RMSE. for the test results.

Figure 5. Resolution enhancement of the confocal fluorescence LM images for F-
actin. This dataset contains paired images from confocal and STED images for F-actin
samples. The STED serves as the pseudo-GT. a. Visualization of the restoration results.
Some of the sample signals, observed in GT, are annotated in ROl zoom-ins (green
frame, bottom right) for detailed restorations comparison: three high-signal spots are
indicated by arrows; a filamentous signal pattern is annotated with dotted lines. b.
Quantitative evaluation with PSNRT/RMSEJ.

Figure 6. Denoising and deconvolution performance of DeBCR compared to the
universal fluorescence microscopy-based image restoration model (UniFMIR). a.
Denoising results on the flatworm Schmidtea mediterranea dataset from CARE. The
columns represent various noise levels of data, according to the illumination level (C1 -
medium, C2 - weak, C3 - extremely weak) with the last (C3) column representing no-



signal, noise-only input case. b. The super-resolution deconvolution results on the dataset
confocal and the stimulated emission depletion microscopy (STED) for F-Actin. Some of
the sample signals, observed in GT, are annotated with arrows for detailed comparison.

Figure 7. Spectral performance of DeBCR and U-Net across various modalities.
FRC curves for DeBCR and U-Net restorations, compared to input data, evaluated
against GT for three high-resolution GT imaging modalities: a. SIM (S. aureus dataset,
input: widefield fluorescence, n=601 test images); b. High-exposure confocal
fluorescence (S. mediterranea dataset, input: low-exposure confocal fluorescence, n=615
test images); c. STED (F-actin dataset, input: confocal fluorescence, n=84 test images).
Each shown FRC is the average across the respective full test set (mean: bold solid line,
standard deviation: pale band). Additionally, the restoration-to-input difference FRC is
plotted in each case to demonstrate the spectral band of improvement, gained using
DeBCR (mean: pale dashed line, standard deviation: pale band).



Table 1. Overview of the typical user runtime per restoration step by DeBCR.

Workflow stage Typical* runtime
1. Input data pre-processing (normalise and patch) 10-15 min
2. Model training (=102 steps with early stop) 35-60 min
3. Model prediction; output data post-processing (stitch) 15-30 min

*The example hardware configuration is CPU Intel(R) Core(TM) i7 @ 2.90GHz with 12 GB RAM and 1x
GPU NVIDIA Tesla T4 with 15 GB VRAM. The runtime includes user interaction.

Editor's Summary:
Rui Li and colleagues propose a deep learning solution to inverse problems in imaging.
Their sparsity-efficient network and software improve image restoration across advanced
light microscopy modalities with fewer parameters than existing models.
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