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Abstract 

Computational image enhancement for microscopy facilitates cutting-edge biological 

discovery. While promising, the commonly used deep learning methods are 

computationally expensive owing to the use of general-purpose architectures, which are 

inefficient for microscopy data. Here, we propose a sparsity-efficient neural network for 

image enhancement as a deep representation learning solution to inverse problems in 

imaging. To maximize accessibility, we developed a framework named DeBCR, 

consisting of a modular Python library and a user-friendly point-and-click DeBCR plugin 

for Napari – a popular bioimage analysis tool. We provide a detailed protocol for using 

the DeBCR as a library and a plugin, including data preparation, training, and inference. 

We compare the image restoration performance of DeBCR to ten current state-of-the-art 

models over four publicly available datasets spanning crucial modalities in advanced light 

microscopy. DeBCR demonstrates more robust performance in denoising and 

deconvolution tasks across all assessed microscopy modalities while requiring notably 

fewer parameters than existing models. 

 

Introduction 

All imaging systems are subject to noise and imperfections owing to their nature. 

Computational enhancement of images has been an exciting avenue from the very onset 

of digital cameras, as the correction could finally be decoupled from the light path1. 

Conventional approaches involve physical modelling of the light path2,3. Data-driven 

computational enhancement of microscopy images takes an alternative approach. 

Instead of formulating the model explicitly, data-driven models aim to learn an optimal 

way to reconstruct the image from a large training set4–13. 

Light microscopy (LM) plays a fundamental role in visualizing cellular and tissue 

structures due to the simplicity of sample preparation, accessibility, and compatibility with 

live tissue. Fluorescence microscopy14 is essential for examining biological specimens, 

enabling high specificity through targeted labeling of biomolecules. However, the limited 

photon budget in LM8 presents inherent challenges, necessitating a delicate balance 

between spatial and temporal resolution and imaging duration. Insufficient photon counts 

can lead to noisy images, artifacts, and compromised resolution. Photon budget may be 

limited in efforts to minimize phototoxicity during live imaging or maximize frame rate.  

Advanced microscopy techniques such as super-resolution15 (SR) fluorescence 

microscopy have substantially advanced the resolution capabilities of LM by surpassing 

the diffraction limit. Light-sheet microscopy16, Structured Illumination Microscopy17,18 

(SIM), STimulated Emission Depletion Microscopy19 (STED), and stochastic optical 

reconstruction microscopy20 improved spatial resolution, providing unprecedented 
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insights into subcellular structure and dynamics. Despite these advancements, achieving 

high-quality, high-fidelity images often comes at the cost of relatively expensive hardware, 

more complex system configurations, and the need for higher skilled personnel compared 

to the conventional techniques like widefield microscopy. This gap can potentially be 

narrowed through software-based solutions.  

To address this, leveraging advances in Computer Vision, many studies have embraced 

data-driven deep learning (DL) to enhance microscopy images21,22 in tasks such as 

deconvolution7 – to recover a sharp, more detailed representation of the original signal – 

and denoising13 – to restore a clean, noise-free version of the original signal. Addressing 

these tasks in a data-driven way requires not only the input data to be restored, but also 

the respective ground truth (GT) examples. For the experimental input data, the high-

exposure or high-resolution images (for example, obtained using SR methods) can serve 

as a GT. Thus, the inversion of the imaging process of interest can be approximated by 

a DL model, trained on such paired input/GT data to recover the original noise-free 

unblurred signal. 

The Content-Aware Image Restoration8 (CARE) model is an example of a DL solution for 

image enhancement. Based on U-Net4, CARE can be trained on pairs of images, 

featuring low and high signal-to-noise ratio (SNR), and performs exceptionally well in 

denoising, super-resolution, and 3D isotropic restoration. Another approach – DnCNN5 

utilizes a residual structure to effectively remove Gaussian noise. RCAN7 combines deep 

residual structures with the channel attention mechanism, prioritizing useful image 

features, which improves the effectiveness of very deep SR networks. MPRNet23 employs 

multi-stage learning strategies for progressive restoration to recover finer high-resolution 

details. For generative models, ESRGAN9 improves perceptual image quality by adapting 

the generative adversarial model for more realistic enhanced image output, closer to the 

natural-image manifold. DDPM10,24 improves image quality by generating new signals 

from learned data distribution. When GT images are unavailable, the Noise2Noise6 (N2N) 

model offers a denoising solution by learning the original signal from the paired noisy 

images. 

Embracing the trend for so-called foundation models25, UniFMIR13 introduced large pre-

trained models that can be fine-tuned for various tasks on microscopy images. 

Furthermore, to achieve better performance when applying deep neural networks (DNN) 

to image restoration tasks, researchers often increase model size. For instance, from 

CARE to ESRGAN, the number of trainable parameters increases 150 times, leading to 

higher computational demands, longer training times, and greater challenges in output 

regularization. Moreover, during image restoration, larger models might produce various 

hallucinations – non-existing or false signal patterns, compared to what is observed in 

GT. 
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From the data standpoint, LM images contain a lower amount of useful information, 

compared to the set of natural scene images from ImageNet26, often used as the target 

data to develop the DL models for the general-purpose image restoration. Thus, this 

sparsity property of the signal in the light microscopy images offers an attractive 

opportunity to be explored for building more efficient DL models for image restoration in 

this data domain. 

To account for the highlighted nature of the LM data and address the described technical 

and performance limitations of the existing DL solutions, we recently proposed m-rBCR27 

– a lightweight DNN model, which approximates a sparsity-effective data representation 

to solve the joint denoising-and-deconvolution task for light microscopy image 

enhancement. 

The Beylkin-Coifman-Rokhlin28 (BCR) theory of the compact wavelet-like decomposition 

and its computationally efficient implementation as a convolutional DL model29 allowed 

us to build m-rBCR as a multi-stage residual convolutional DNN. Thus, the m-rBCR 

architecture employs the down- and upsampling mechanism, similar to U-Net, to grasp 

the information details at various resolution levels. However, unlike U-Net, the m-rBCR 

implements a unique internal architecture, resembling the traditional solution of the 

deconvolution-and-denoising task (see Supplementary Methods). A more detailed 

description of the m-rBCR model is provided in Methods, including its high-level 

architecture, loss function (Eq. (1)-(3)) and parameters configuration. 

In this work, we showcase the applicability of our core architecture, m-rBCR, to several 

LM image restoration problems, provide the model benchmarking analysis, and introduce 

the DeBCR framework – a set of packages featuring various user interfaces for the 

accessible m-rBCR architecture usage. The DeBCR framework includes an application 

programming interface (API) as a Python library and a visual graphical user interface 

(GUI) in Napari30. Additionally, we provide detailed step-by-step protocols covering the 

DeBCR installation and image restoration steps, from dataset preparation to the use of 

pre-trained weights, for both API and GUI. As application use-cases, we compared 

DeBCR across multiple LM modalities and demonstrated that DeBCR achieves better or 

comparable performance with notably fewer parameters and computational resources 

consumption compared to several state-of-the-art (SOTA) models. 

Results 

Overview of the DeBCR framework 

The application of the core model of DeBCR for image restoration is performed in the 

three steps (Fig. 1a): 1. Raw data pre-processing; 2. Deep learning model training; 3. 

Input data restoration via (a) trained model application, and (b) restored data post-

processing. For the usage accessibility of DeBCR, we implemented two packages, 
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providing complementary user interfaces (Fig. 1b): An application programming interface, 

DeBCR, and a graphical user interface implemented in Napari, Napari-DeBCR. The GUI 

tool Napari-DeBCR is implemented as a multi-tab plugin (Fig. 2a) for Napari30, a multi-

dimensional bioimage viewer. We selected Napari as the basis for interactive work and 

the GUI because it simplifies plugin development with a straightforward framework; 

natively supports Python and a wide range of scientific libraries such as NumPy31 and 

Scikit-Image32; and is a free, open-source platform with extensive documentation and an 

active user community (available at: https://napari.org/stable/). 

The Napari-DeBCR plugin includes three tabs (Fig. 2a): TransformData, TrainModel, and 

UseModel. The TransformData tab offers a graphical interface for pre-processing raw 

inputs and post-processing model outputs. The TrainModel tab enables users to initiate 

new training sessions or extend the training of existing deblurring models using pre-

processed datasets. The UseModel tab assists users in applying trained models to 

process/restore new input data. A Log Window reports progress updates and warnings 

during plugin operation. Additionally, the Napari panel for data layers – a standard Napari 

component – displays loaded data objects and manages the data within the Napari-

DeBCR plugin. 

 

https://napari.org/stable/
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Figure 1. Image restoration steps and available DeBCR packages. a. The steps to 

perform image restoration using the neural network implemented in DeBCR. b. The 

DeBCR packages for various user interfaces: a programmatic (DeBCR) and a graphical 

(Napari-DeBCR). 

The DeBCR, a modular Python-based library exposing a flexible API (Fig. 2b) – a 

scriptable interface for executing outlined image restoration steps. Users can easily 

import the library and run it interactively within web-based environments of the Jupyter 

tools (https://jupyter.org/). We developed this scripting interface for DeBCR to: (1) enable 

users with coding experience to integrate DeBCR into custom data processing pipelines; 

(2) allow advanced users to embed DeBCR within broader image processing libraries; 

and (3) encourage users with minimal coding skills to engage with programmable, 

interactive workflows for light microscopy data restoration. The API of DeBCR consists of 

three key modules (Fig. 2b): ‘model’, ‘config’, and ‘data’. The ‘DeBCR.model’ module 

provides API functions to configure, train, and apply the deep learning model of DeBCR 

for image restoration. The ‘DeBCR.config’ module contains APIs for loading and saving 

the training configurations. The ‘DeBCR.data’ module, the largest component, offers APIs 

for data access (loading and writing), data transformations (pre- and post-processing), 

and visualization. 

Both DeBCR and Napari-DeBCR are distributed as Python packages via the Python 

Package Index (PyPI) repository to enable accessible installation via pip 

(https://pypi.org/project/pip/). We provide detailed, step-by-step installation protocols for 

each of the DeBCR packages (Supplementary Note 1, Procedure 1), along with some 

troubleshooting advice (Supplementary Note 1, Box 1 and Supplementary Table 1) and 

a comprehensive description of the required hardware and software dependencies 

(Methods). 

 

https://jupyter.org/
https://pypi.org/project/pip/
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Figure 2. DeBCR user interfaces to restore image data. a. The overview of the GUI of 

DeBCR, Napari-DeBCR - a multi-tab plugin for the Napari viewer. b. The overview of the 

API of DeBCR, DeBCR - a modular Python library. 

A workflow of image restoration using DeBCR 

The image restoration using DeBCR starts by importing and standardising the incoming 

microscopy stacks (Supplementary Note 1, Procedure 2). In the TransformData stage, 

users normalise intensities, clip outliers, and partition the volume into partially overlapping 

square patches that are saved together with metadata (Supplementary Fig. S1). This 

prepares matched input/ground-truth tiles for subsequent learning while preserving the 

metadata required to reassemble the full field of view (for various strategies comparison 

see Supplementary Fig. S2). A dedicated TransformData tab (Supplementary Fig. S1b) 

in the Napari-DeBCR plugin exposes these operations through point-and-click controls, 

streamlining the entire pre-processing pipeline for researchers without coding experience. 

At the same time, the DeBCR.data module of the API offers scripting access to raw and 

patched data I/O and the described pre-processing utilities.   

Pre-processed patches are then fed into the multi-stage residual BCR network during the 

TrainModel step (Supplementary Note 1, Procedure 3; Supplementary Fig. S3a) in the 

corresponding tab (Supplementary Fig. S3b). The GUI allows a new model to be compiled 

or an earlier checkpoint to be resumed, while advanced users can invoke identical 

functionality programmatically through the DeBCR.model API, which exposes functions 

for model initialization, configuration loading/saving, and GPU-accelerated training. 

Typical parameters, such as input (patch) size, batch size, and learning rate, are defined 

in a *.YAML configuration file; training proceeds with on-the-fly validation and automatic 

checkpointing until convergence. Additionally, in the Supplementary Note 1 (at the end of 

the Procedure 3) we describe some typical errors (Supplementary Table 2) during model 

training and provide the respective troubleshooting advice (Supplementary Table 3). 

After convergence, the learned weights are applied in the UseModel phase in the GUI 

(Supplementary Note 1, Procedure 4; Supplementary Fig. S4a,b), where the same patch 

grid is streamed through the network in prediction mode, while the DeBCR.model API 

enables this functionality programmatically. Both GUI and API interfaces allow for GPU-

accelerated model prediction. 

Finally, the post-processing stage is executed in the already introduced TransformData 

tab of the GUI (Supplementary Note 1, Procedure 4; Supplementary Fig. S4c) or via the 

DeBCR.data module of the API. Here, the tiles are blended (e.g., cosine or Hann window) 

and stitched back into a volume (for various strategies comparison see Supplementary 

Fig. S5). Optional contrast enhancement can be performed before the restored data are 

written to disk or transferred to downstream quantification tools. Additionally, we also 
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provide some troubleshooting advice for the model prediction and post-processing stage 

(Supplementary Note 1, Procedure 4, Supplementary Table 4). 

Owing to the Python-native architecture of both the Napari viewer and the API, DeBCR 

allows users to design hybrid API/GUI workflows inside Napari or Jupyter. Thus, users 

with Napari experience can directly manipulate loaded data using DeBCR’s API through 

Napari’s embedded command-line interface, providing seamless access to a flexible and 

well-supported API. Moreover, the Napari viewer can be invoked from an interactive 

Jupyter session, enabling data transformation and manipulation via the API while 

simultaneously visualizing results through the Napari GUI. 

Taken together, the combination of intuitive GUI and flexible API provided by DeBCR 

offers an accessible DL-based image restoration tool. A detailed setup procedure 

(Supplementary Note 1, Procedure 1) documents the installation of both DeBCR 

packages, executable on the available CPU and GPU hardware. Step-by-step usage 

tutorials (Supplementary Note 1, Procedures 2-4), example datasets and trained model 

weights (Data Availability Statement) allow the first-time users to reproduce the entire 

restoration protocol from normalisation to seamless patch stitching, without writing code, 

while users with scripting skills may embed the same functions in custom Jupyter 

notebooks (Code Availability Statement) or larger pipelines. Because both interfaces call 

the same core functions, the workflow scales unchanged from a desktop computer to 

GPU-equipped workstations or even HPC clusters, ensuring fast, reproducible 

restorations directly from raw data across diverse LM modalities. 

Resource usage in DeBCR 

Resource usage in DeBCR varies by image restoration step, parameters, input size, and 

hardware. During data pre- and post-processing, both runtime and memory usage 

increase with input size and patch overlap (Supplementary Table 5). These steps run on 

CPUs and are fast (seconds), compared to the model prediction (minutes) and model 

training (under an hour). However, the memory usage during pre-/post-processing can 

rise notably (Supplementary Table 5) – for example, from ~1 GB to ~9 GB as overlap 

increases from 25% to 75% for 95 input images of size (1024,1024).  

For model training and prediction, batch size (amount of data used in a single 

training/prediction step) is the key parameter: smaller batches use less memory but take 

longer to run (Supplementary Table 6,7). While all the image restoration steps using 

DeBCR can run on CPUs, model training and prediction benefit greatly from using GPU 

resources (Supplementary Table 6,7). 

Overall, the entire image restoration process using DeBCR – from raw stacks to restored 

images – can be completed on a standard GPU workstation in well under two hours, 

including user interaction (Table 1). 
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Table 1. Overview of the typical user runtime per restoration step by DeBCR. 

Workflow stage Typical* runtime 

1. Input data pre-processing (normalise and patch) 10–15 min 

2. Model training (≈103 steps with early stop) 35–60 min 

3. Model prediction; output data post-processing (stitch) 15–30 min 

*The example hardware configuration is CPU Intel(R) Core(TM) i7 @ 2.90GHz with 12 GB RAM and 1x 

GPU NVIDIA Tesla T4 with 15 GB VRAM. The runtime includes user interaction. 

Overview of benchmarked applications 

We applied DeBCR to four datasets, representing crucial LM modalities (confocal 

fluorescence8,12,33,34, widefield fluorescence35,36, SIM35,36, STED12,34), and evaluated 

performance of DeBCR compared to ten SOTA models (CARE8, TAGAN12, RCAN7, 

DnCNN5, DDPM10, ESRGAN9, N2N6, U-Net4, MPRNet11, and UniFMIR13) in image 

restoration tasks such as denoising and deconvolution. To quantify signal restoration 

performance, we computed the following metrics for the models (Eq. (4)-(7) in Methods): 

Structural Similarity Index Measure37 (SSIM), Peak Signal-to-Noise Ratio37 (PSNR), and 

Normalized Root Mean Square Error38 (NRMSE). We also evaluated the restoration 

performance of DeBCR across spatial resolution scales using Fourier Ring Correlation39 

(FRC). These experiments are described in detail in the following subsections. 

Additionally, we calculated the number of trainable parameters and measured the 

inference runtime for the evaluated model architectures (Supplementary Table 8).  We 

demonstrate that DeBCR uses from ~1.4 times (CARE) to ~210 times (ESRGAN) fewer 

trainable parameters and runs from ~1.7 times (CARE) to ~480 times (DDPM) faster 

during inference, compared to other models. In general, larger models impose higher 

requirements on both training and testing, demanding more powerful and expensive 

hardware, which can hinder their wide applicability. 

Denoising of confocal fluorescence LM data 

Confocal microscopy enables optical sectioning of the sample40, allowing 3D imaging to 

be performed along the axial direction and potentially for live-cell imaging. Yet, it is 

challenging to optimally balance the light exposure (dose), imaging speed and imaging 

depth to enable the highest possible SNR and a sufficient amount of the recorded data 

without surpassing the specimen exposure limit8. However, improving the SNR of the 

acquired data using denoising models allows to sacrifice exposure dose in favour of other 

imaging parameters, thus extending the effective photon budget of the sample8. 

To evaluate the denoising performance of DeBCR compared to the SOTA denoising 

models, we used two previously published datasets33, originating from the CARE report8. 

Image stacks in these datasets were acquired via confocal fluorescence microscopy of 
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the flatworm Schmidtea mediterranea and embryos of the red flour beetle Tribolium 

castaneum. Both datasets contain images from 3 laser power levels (C1 - medium, C2 - 

weak, C3 - extremely weak) and the GT, acquired at the higher laser power and longer 

exposure time. As the laser power decreases, noise becomes increasingly dominant. The 

denoising task here is thus to restore the high-SNR equivalents from the low-SNR input 

data, recorded at the low laser power conditions. The results of denoising and its 

evaluation for the S. mediterranea dataset are described below, with more examples at 

various noise levels C1-C3 provided in the Supplementary Note 2 (Supplementary Fig. 

S6), along with results for the T. castaneum (Supplementary Fig. S7). 

In the case of the S. mediterranea, the extreme sensitivity of these organisms to the high 

illumination levels might induce flinching of the samples even at normal laser intensity, 

reducing the quality of the acquired images. Despite that, on this dataset DeBCR 

demonstrates the highest qualitative (Fig. 3a) and quantitative (Fig. 3b) performance 

compared to other SOTA models with the PSNR↑/SSIM↑ values of 29.94 dB/0.92. The U-

Net (28.91 dB/0.92) and the DnCNN (28.45 dB/0.91) rank second with a noticeable gap 

to the DeBCR. Although all models demonstrated satisfactory visual performance (Fig. 

3a) by restoring signals from the noisy inputs for C1 and C2 conditions, the restoration 

performance for the C3 condition (extremely weak laser power) varies across the models. 

Here, RCAN and N2N failed to restore overall cell morphology and for some cells – the 

high-SNR signal. In the region of interest (ROI), ESRGAN generated an inaccurate signal 

pattern as two cells, while there is only one cell observed in the GT. The restoration by 

DDPM contains strong salt-pepper-like artifacts. DeBCR did not exhibit any of the 

described issues, eliminating the present noise and restoring the high-SNR signal, while 

maintaining the high similarity to the GT.  

Next, we assessed how robust are the image reconstructions by DeBCR based on the 

signal sparsity in the data. For that we calculated entropy (Eq. (8) in Methods) as the 

sparsity measure for each image in the S. mediterranea dataset, followed by splitting data 

to two subsets (Fig. 3c): sparse (entropy < 5, top row) and dense (entropy ≥ 5, bottom 

row). The quantitative evaluation of DeBCR performance on these subsets (Fig. 3d) 

shows sparse reconstructions (see example on Fig. 3c, top row) achieve higher PSNR 

and SSIM values, while dense reconstructions (see example on Fig. 3c, bottom row) yield 

higher RMSE, both on average across subsets (Fig. 3d) and on a per-image basis (Fig. 

3e). 
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Figure 3. Denoising of confocal fluorescence LM data of the flatworm S. 

mediterranea. a. Comparison of denoising performance for the eight SOTA denoising 

models on 3 noise levels of data, according to the illumination level (C1 - medium, C2 - 

weak, C3 - extremely weak). The shown GT was obtained by longer exposure time and 

higher laser intensity than used in all other conditions. C3 shows ROI zoom-in (green 

frame, bottom right) to compare restorations in detail. b. Evaluation by SSIM↑/PSNR↑ on 

the test images. The highest ranking is marked in bold font. c. Denoising performance 

examples according to the data sparsity as measured by the entropy: (top) sparse data 
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(entropy = 1.62); (bottom) dense data (entropy = 6.49). d. Quantitative evaluation of 

reconstruction quality across sparse (entropy < 5, green bar) and non-sparse, or dense, 

(entropy ≥ 5, orange bar) subsets of the dataset.  e. Correlation between entropy and 

various reconstruction performance metrics, including PSNR (blue), SSIM (green) and 

RMSE (orange). 

Resolution enhancement of widefield fluorescence LM data 

In advanced SR microscopy15, careful photon budget management is also challenging, 

but crucial to achieve the highest possible spatial and temporal resolution. Similar to the 

denoising case, this can be addressed by employing computational SR methods, 

including the data-driven deconvolution models. These deconvolution models enhance 

the initially low resolution of the input data, acquired via technically simpler and faster 

imaging modalities such as widefield or confocal microscopy, decreasing acquisition 

costs and increasing throughput. 

To evaluate DeBCR’s performance as a computational SR-deconvolution method, we 

utilized a microscopy dataset36 featuring Staphylococcus aureus from the DeepBacs35 

publication, also evaluated in TAGAN12 work. This dataset includes blurry widefield 

images to be restored and the respective SIM17,18 images to serve as GT for assessment. 

After training the SOTA models on this dataset, we compared their restoration results 

against DeBCR (Fig. 4a). While other models successfully restore most of the SR details, 

they exhibit varying levels of artifacts. Upon closer ROI inspection, RCAN, TAGAN, 

DDPM, ESRGAN, and U-Net introduce false patterns during resolution enhancement. 

MPRNet does not exhibit hallucinations, but shows inferior resolution restoration. Only 

DnCNN and DeBCR demonstrate comparable performance with high-resolution detail 

restoration. For the quantitative evaluation, we used PSNR↑ and RMSE↓ instead of SSIM, 

which fails here due to the sample drift and resulting image misalignment. DeBCR ranks 

at the top with PSNR↑/RMSE↓ of 29.94 dB/0.04, while U-Net and DnCNN performed 

slightly worse (Fig. 4b). 
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Figure 4. Resolution enhancement of the widefield fluorescence LM images for S. 

aureus. The dataset comprises pairs of images captured using widefield microscopy and 

SIM. The SIM images serve as pseudo-ground truth (GT) for SR deconvolution. We 

compared our results to TAGAN as a baseline. a. Visualization of selected restoration 

results. The ROI zoom-in (green frame, bottom right) is shown to compare restorations in 

detail. b. The evaluation metrics PSNR↑/RMSE↓ for the test results. 

Resolution enhancement of confocal fluorescence LM data 

STED19 – another SR modality – reaches even farther beyond the diffraction limit. 

Therefore, we further evaluated DeBCR and SOTA deconvolution models in the data-

driven resolution enhancement of the easier-to-acquire confocal microscopy data, based 

on the paired STED images serving as GT. For this, we used the respective F-Actin 

dataset34 from the TAGAN12 work, adopting the TAGAN model as a baseline here as well. 

In this benchmark, most of the tested models achieved comparable visual performance 

(Fig. 5a). However, the tested generative models, DDPM, and TAGAN, hallucinated by 

restoring false patterns that do not exist in the GT. We quantitatively assessed the model 

performance using PSNR↑/RMSE↓, with DeBCR achieving the best evaluation metrics 

performance at 27.01 dB/0.05 (Fig. 5b). ESRGAN, although performing well in 

deconvolution, shows worse denoising performance, resulting in a bit worse metrics 

values than DeBCR. Compared to others, DeBCR effectively enhances resolution without 

hallucinations. 
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Figure 5. Resolution enhancement of the confocal fluorescence LM images for F-

actin. This dataset contains paired images from confocal and STED images for F-actin 

samples. The STED serves as the pseudo-GT. a. Visualization of the restoration results. 

Some of the sample signals, observed in GT, are annotated in ROI zoom-ins (green 

frame, bottom right) for detailed restorations comparison: three high-signal spots are 

indicated by arrows; a filamentous signal pattern is annotated with dotted lines. b. 

Quantitative evaluation with PSNR↑/RMSE↓. 

Comparison to the foundation model for generalized restoration UniFMIR  

We additionally compared the DeBCR to the benchmark dataset for the foundation 

microscopy restoration model UniFMIR13. The model was pre-trained on a large 

database, making it challenging to re-train UniFMIR from scratch for comparison 

purposes. Therefore, we used the already available UniFMIR model weights, fine-tuned 

on two datasets used for DeBCR evaluation. These include the flatworm Schmidtea 

mediterranea for the confocal microscopy denoising and the F-Actin dataset for confocal 

microscopy SR-deconvolution. 

Under medium/weak signal-to-noise ratio (SNR) conditions (C1, C2), both DeBCR and 

UniFMIR effectively restored the GT information from noisy inputs (Fig.6a). However, as 

the SNR decreases to the extremely weak condition (C3), DeBCR restores images closer 

to the GT compared to UniFMIR as indicated by the green arrow. In the little-to-no input 

signal case (the last C3 column, Fig.6a), UniFMIR even generates false patterns, while 

DeBCR outputs are unstructured, indicating the noisy input origin. The inferior capacity 

to suppress hallucinations results in poorer evaluation scores (PSNR↑/SSIM↑) for 

UniFMIR (24.36/0.72) compared to DeBCR (29.04/0.92). 
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In the SR task on the dataset of confocal and the stimulated emission depletion 

microscopy (STED) of F-Actin (Fig.6b), both models demonstrate strength in restoring 

high-resolution details from low-resolution inputs. However, DeBCR exhibits higher 

artifact robustness and restores images closer to the ground truth (GT). Evaluation 

metrics PSNR↑/SSIM↑ further validate performance of DeBCR with 27.01/0.84, 

surpassing UniFMIR's scores of 25.74/0.77.  

 

Figure 6. Denoising and deconvolution performance of DeBCR compared to the 

universal fluorescence microscopy-based image restoration model (UniFMIR). a. 

Denoising results on the flatworm Schmidtea mediterranea dataset from CARE. The 

columns represent various noise levels of data, according to the illumination level (C1 - 

medium, C2 - weak, C3 - extremely weak) with the last (C3) column representing no-

signal, noise-only input case. b. The super-resolution deconvolution results on the dataset 

confocal and the stimulated emission depletion microscopy (STED) for F-Actin. Some of 

the sample signals, observed in GT, are annotated with arrows for detailed comparison. 

Evaluation of performance across spatial resolution bands and modalities 

Lastly, to identify the applicability domain of our approach and its limits, we assessed 

DeBCR for its spectral restoration performance across all three evaluated above 

datasets, featuring various fluorescence microscopy modalities (Fig. 7): confocal 

high/low-exposure (for simplicity, high/low confocal; S. mediterranea), widefield/SIM (S. 

aureus), confocal/STED (F-actin) – as the respective input/GT data. For that, we 

computed FRC (Eq. (9) in Methods) for prediction/GT and input/GT pairs to assess the 

relative restoration performance using DeBCR – both the absolute, across spatial 

resolution bands in each dataset, and the relative, across the datasets. As a baseline 
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model, we also included U-Net, which in our evaluations performed better across all tasks 

and datasets, compared to the other tested state-of-the-art models. 

In all three data cases for both models, the largest FRC improvement within each dataset 

occurred within the respective mid-resolution band. However, the width of the FRC 

improvement band, its maximum value and location – varied. Thus, for both DeBCR and 

U-Net, on the widefield/SIM data (Fig. 7a) the maximal FRC improvement was 

considerably larger, compared to high/low-exposure confocal data (Fig. 7b) with a data 

sampling of ~78 nm/pix, similar to 80 nm/pix in widefield/SIM data. Moreover, on the 

widefield/SIM data (Fig. 7a) the improvement width was slightly wider with the slightly 

earlier up the spectrum peak position, as on confocal high/low-exposure data (Fig. 7b). 

Furthermore, for both models, on the confocal/STED data (Fig. 7c) the maximum FRC 

improvement value was lower, but positioned relatively further down the spectrum, 

compared to the other two datasets. This indicates overall reduced restoration gain for 

confocal/STED data, compared to widefield/SIM data, again – for both DeBCR and U-

Net. In general, the observed decrease and flattening of the FRC improvement peak on 

the higher-resolution input/GT data points out the approaching limit of the restoration 

abilities of DeBCR and U-Net, likely due to the inherent limitations of CNN41–44 – the 

common architectural basis of DeBCR, U-Net, and the other evaluated in this work 

models. 

 
Figure 7. Spectral performance of DeBCR and U-Net across various modalities. 

FRC curves for DeBCR and U-Net restorations, compared to input data, evaluated 

against GT for three high-resolution GT imaging modalities: a. SIM (S. aureus dataset, 

input: widefield fluorescence, n=601 test images); b. High-exposure confocal 

fluorescence (S. mediterranea dataset, input: low-exposure confocal fluorescence, n=615 

test images); c. STED (F-actin dataset, input: confocal fluorescence, n=84 test images). 

Each shown FRC is the average across the respective full test set (mean: bold solid line, 

standard deviation: pale band). Additionally, the restoration-to-input difference FRC is 

plotted in each case to demonstrate the spectral band of improvement, gained using 

DeBCR (mean: pale dashed line, standard deviation: pale band). 

Finally, to ultimately probe the restoration limits of our model, we also tested DeBCR and, 

for comparison, CARE on the single-molecule localisation microscopy (SMLM) data, 
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using the publicly available DL-SMLM dataset (see Supplementary Note 3). In contrast to 

CARE, DeBCR has shown notable improvement in the structural clarity of the restored 

data compared to input (Supplementary Fig. S8, Supplementary Note 3) with better 

quantitative performance (Supplementary Table 9, Supplementary Note 3) and also 

gained minor FRC improvements within narrow spectral bands (Supplementary Fig. S9, 

Supplementary Note 3). However, neither DeBCR, nor CARE achieved the single-

molecule level of precision, with DeBCR reaching its expressivity capacity and CARE – 

already collapsing on SMLM data, marking the scope of their applicability domain. As 

noted earlier, this is likely due to convolutional architectures of DeBCR and CARE (and, 

in fact, all other evaluated here models), exhibiting their representation power limits41–44. 

Discussion 

In this study, we have proposed DeBCR, a flexible and accessible framework for a deep-

learning-based image restoration, and showcased the advantages of its application on 

fluorescence light microscopy data of diverse modalities. 

The DeBCR employs a convolutional DNN model, inspired by wavelet decomposition, to 

provide sparsity-efficient data representation. This allows minimizing the appearance of 

artifacts during the reconstruction process, while utilizing fewer trainable parameters, and 

results in enhanced image restoration performance. Uniquely, the DeBCR approach is 

directly applicable to the diverse fluorescence LM data for various image restoration 

tasks. In particular, our computational experiments demonstrated that DeBCR 

outperforms 10 SOTA models (from U-Net to DDPM) in denoising and deconvolution 

tasks across several crucial fluorescence LM modalities (from widefield to SR data), 

assessed both visually (true/false patterns identification) and quantitatively (evaluation by 

metrics such as PSNR↑, SSIM↑, and RMSE↓). While not explored in this work, one could 

imagine a DeBCR application to live-cell imaging. For this, a paired dataset consisting of 

high-exposure/laser-power images paired with low-exposure/low-power images could be 

obtained. The model could then learn the transformation between the pairs. This 

transformation could later be applied to a time-lapse microscopy image acquired at low-

exposure/low-power, which lowers photo-toxicity. 

However, the spectral analysis of the DeBCR-based restorations (using FRC as a metric) 

has shown that the signal improvement across spatial scales depends on the modality of 

the input and training data, with the performance optimum at the high-resolution 

modalities, while facing its applicability limit on the super-resolution data (such as 

produced by single-molecule localisation microscopy). These limitations are likely due to 

DeBCR and the other evaluated in our work models being CNNs, while some (namely, 

encoder-decoder) CNN-based architectures have been previously shown to lead to blurry 

reconstructions41–44. To address that, incorporating DeBCR as a warm-up step for 

generative models (diffusion-based models, variational autoencoders, generative 
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adversarial networks, etc.) may improve its high-frequency restoration abilities and 

enhance its applicability to super-resolution modalities. Additionally, for better 

performance on SMLM data, the SMLM-reconstructed images may not be the best 

possible input format of localisation data for data-driven representation learning, and 

alternative approaches like point clouds should be considered. 

Moreover, DeBCR may not be an optimal solution for other image restoration tasks such 

as surface projection8 or isotropic reconstruction13 due to the anticipated increased 

number of trainable parameters. Besides, the high-level DL architecture of the DeBCR 

mimics the structure of the solution (Supplementary Eq. (S6) and Supplementary Fig. 

S10,S11 in Supplementary Methods) for a particular task of joint deconvolution and 

denoising, potentially limiting its further applications. Further adaptation of the DeBCR 

structure to encompass a broader spectrum of microscopy image restoration tasks is 

anticipated in future research. 

To make the usage of the DeBCR framework both flexible and approachable, we 

implemented two complementary, Python-native interfaces. The Napari-DeBCR GUI is 

delivered as a multi-tab plugin for the Napari viewer, giving point-and-click access to data 

transformation, model training and batch restoration. The live-log window and the 

standard Napari layer panel keep users informed of progress and data context. For 

programmatic control, the DeBCR Python library exposes three main modules – model, 

config and data – that can be imported in Jupyter or embedded in larger pipelines, 

allowing advanced users to script every step from configuration to inference. Both tools 

are distributed via GitHub following an accessible installation procedure. They run on 

standard CPUs and take advantage of the available GPUs. Thanks to their pure-Python 

design, users can also fluidly mix API and GUI operations within the same Napari or 

Jupyter session. Comprehensive, step-by-step protocols, example datasets and pre-

trained weights further lower the entry barrier, enabling researchers with little or no coding 

background to restore microscopy data on typical lab workstations. More advanced HPC 

users can scale the same code on GPU-equipped clusters if desired. Together, this 

implementation strategy balances reproducibility, flexibility and accessible usage, making 

state-of-the-art image restoration broadly accessible to the microscopy community. 

In summary, our experiments demonstrated the strength of employing the sparsity-

efficient data representation in a DNN model for microscopy image restoration, enhancing 

the model's efficiency and reliability. Moreover, architecturally reflecting the solution 

structure of the target problem extends the model applicability to versatile data modalities 

and restoration tasks. Being such a model, DeBCR holds promise for diverse downstream 

applications in microscopy, enabling usage of the less destructive, faster and cheaper 

imaging methods, while providing decent contrast and resolution levels. 
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Methods 

Datasets 

Based on the original data publications, we prepared (see Training data preparation for 

benchmarks) four datasets spanning across various crucial fluorescence light microscopy 

modalities: confocal fluorescence data under various exposures from CARE8,33; paired 

widefield fluorescence and SIM data from DeepBacs35,36; paired confocal fluorescence 

and STED data from TAGAN12. The physical acquisition setup and parameters for each 

dataset are briefly summarized in the subsections below, whereas the pre-processing and 

data split are described in the section Training data preparation for benchmarks. 

Exposure-series confocal datasets of Planaria and Tribolium 

The publicly available datasets of the flatworm Schmidtea mediterranea33 and embryos 

of the red flour beetle Tribolium castaneum33 from the CARE work8 were used to train 

DeBCR for the denoising task. 

The Schmidtea mediterranea dataset consists of exposure series of the confocal 

fluorescence microscopy measurements, originally acquired8 on a spinning disk confocal 

microscope using magnification 30x, 1.05-NA silicon oil-immersion objective and 

excitation wavelength of 640 nm at four combinations of camera exposure times and laser 

powers (GT: 30 ms, 2.31 mW; C1: 20 ms, 0.12 mW, C2: 10 ms, 0.12 mW, C3: 10 ms, 

0.05 mW), featuring varying signal-to-noise characteristics. 

Similarly, the Tribolium castaneum dataset consists of exposure series of the confocal 

fluorescence microscopy measurements, originally acquired8 on a Zeiss 710 multiphoton 

laser-scanning confocal microscope using magnification 25x with a multi-immersion 

objective for four laser-power conditions (GT: 20 mW; C1: 0.1 mW, C2: 0.2 mW, C3: 0.5 

mW), thus also featuring varying signal-to-noise characteristics. 

Paired widefield/SIM dataset of Staphylococcus 

The publicly available dataset of Staphylococcus aureus36 from the DeepBacs work35 was 

used to train DeBCR for the resolution enhancement task. The data were originally 

acquired35 by structured illumination microscopy or widefield microscopy at the same 

sample positions with magnification 60x, 1.42-NA Olympus oil immersion objective (oil 

refractive index 1.522) and 561-nm excitation laser (100 mW) at 11-18 W cm-2 with 

exposure times of 10-30 ms. 

Paired confocal/STED dataset of F-actin 

The publicly available dataset of F-actin in living neurons34 from the TAGAN work12 was 

used to train DeBCR for the resolution enhancement task. The data were originally 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

 

acquired12 on a four-colour STED microscope (Abberior Instruments) with a pixel size of 

20 nm using a 640 nm pulsed (40 MHz) excitation laser, an ET685/70 (Chroma) 

fluorescence filter and a 775 nm pulsed (40 MHz) depletion laser. 

DeBCR network and implementation 

Deep learning architecture of DeBCR 

The DeBCR framework implements our recently proposed DNN architecture m-rBCR27 

as its core image restoration approach. The central idea of this DNN architecture is to 

efficiently approximate the inverse of the Point Spread Function45, modeling a blur effect 

in the registered image from the microscope optical imaging system, while compensating 

for the noise, present due to the limited precision of the microscope hardware. The Point 

Spread Function effect is usually modeled via the integral convolution operator46, which 

is challenging to invert directly in a stable manner, considering the noise contribution (see 

Supplementary Methods). However, the noise-aware regularized form of the pseudo-

inverse operator to invert the Point Spread Function (see Supplementary Methods) as a 

pseudo-differential operator can be approximated via the Beylkin-Coifman-Rokhlin (BCR) 

decomposition28, implemented as a set of equivalent convolutional DNN blocks, as 

proposed in the BCR-Net29. In this work, we call this DNN structure the BCR 

decomposition unit. 

In our architecture27, we employed a more stable residual structure of the BCR 

decomposition unit instead of the originally proposed29 (Supplementary Fig. S10, 

Supplementary Methods). Building upon this residual BCR unit, we followed the structure 

of the traditional regularized pseudo-inverse solution (see Supplementary Eq. (S6) in 

Supplementary Methods) to assemble a DNN architecture for image enhancement called 

s-rBCR27 – a fundamental element of our proposed model m-rBCR (Supplementary Fig. 

S11a, Supplementary Methods). Next, we incorporated this DNN-based restoration 

element multiple times to enable a multi-scale image input, i.e. original and downsampled, 

resulting in the respective restored image at each scale level. Furthermore, the feature 

maps from the neighbouring scale levels are integrated, further stabilizing the learning 

process (Supplementary Fig. S11b, Supplementary Methods). Such a multi-resolution 

convolutional DNN structure offers the sparse-efficient data-driven representation 

learning of the operator, inverting the imaging process, for various image restoration tasks 

and diverse imaging modalities. 

Software implementation 

The core DL architecture training and inference code of DeBCR is implemented in Python 

using TensorFlow library as a deep learning backend. The software for the core model 

usage consists of the API library and a graphical plugin for Napari viewer. Both tools are 
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prepared as PyPI packages DeBCR (available at: https://pypi.org/project/debcr/) and 

Napari-DeBCR (available at: https://pypi.org/project/napari-debcr/) to be easily installable 

via pip and are primarily intended to be used in Linux operating systems (OS). We 

developed and tested DeBCR with Python v3.9 under OS Ubuntu 20.04/22.04 and OS 

Red Hat Enterprise Linux 9. 

Computational requirements 

Both DeBCR packages, DeBCR and Napari-DeBCR, can in principle be executed on 

CPU-only systems with at least 8-12 GB RAM, though GPU acceleration is recommended 

to substantially reduce training and prediction time. A GPU with at least 8-12 GB of video 

RAM is thus advised. Actual memory usage depends on data size, image restoration step 

and its parameters (e.g. batch size), hardware type (CPU/GPU), model, and available 

memory (Supplementary Table 5-7). For optimal performance, users may utilize high-

performance computing (HPC) clusters with advanced GPU resources, though additional 

technical setup may be required. 

The GPU usage also requires two additional components: the CUDA Toolkit and the 

cuDNN library, both of which must be compatible with the GPU model, CUDA driver, and 

TensorFlow version. The recommended configuration is CUDA 11.7, cuDNN v8.4.0, and 

TensorFlow-GPU v2.11. While CUDA and cuDNN must be manually installed, 

TensorFlow will be automatically installed along with other necessary dependencies 

during the respective DeBCR package installation. A step-by-step description for the 

installation and setup procedure is provided (see Supplementary Note 1). 

For the DeBCR graphical plugin, Napari-DeBCR, the Napari software is required. 

Additionally, to use DeBCR as an API interactively, while following the provided tutorials 

(Supplementary Note 1) or its electronic version (see Code Availability Statement), one 

of the Jupyter tools (https://jupyter.org/), Jupyter Notebook or JupyterLab, may be used. 

Benchmarks configuration 

Training data preparation for benchmarks 

The raw data for all datasets was obtained in the TIF format from the original depositions. 

For pre-processing, both input data and GT were min-max normalized and patched into 

image stacks with XY size of (128, 128). The pre-processed data for each dataset was 

split into the training/validation data subsets for model training and a testing data subset 

for model prediction. The training/validation/testing data split ratio was 0.8/0.1/0.1. Finally, 

the pre-processed training/validation/testing data subsets, each including input data and 

GT, were saved in the NPZ file format for further distribution. 

 

https://pypi.org/project/napari-debcr/
https://jupyter.org/
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These datasets were used for the described application and resource usage benchmarks 

and are released with the respective trained model weights (see Data Availability 

Statement). 

Model training configuration for benchmarks 

In both the application benchmarks (see Results) and resource usage benchmarks (see 

Supplementary Table 6,7), we used a common model training setup described here. 

 

We used Adam optimizer from TensorFlow with a learning rate of 0.001. We settled the 

number of training epochs as 2∙103 and a batch size of 32. In resource usage 

benchmarks, we also tested various values of batch size (Supplementary Table 6,7). Due 

to the use of an early stop strategy to avoid overfitting, the training process generally 

converged before the 2∙103 epochs, depending on the task types. 

 

The loss function we utilized during training DeBCR 𝐿DeBCR, shown in Eq. (1), combines 

Mean Squared Error (MSE) loss 𝐿MSE from Eq. (2), and 𝐿FT loss, based on Fourier 

Transform (FT), from Eq. (3). The MSE loss 𝐿MSE in Eq. (2) is measured between the 

restored 𝑌Pred,𝑛 and ground truth (GT) 𝑌GT,𝑛 images, while the Fourier-based loss 𝐿FT in 

Eq. (3) is calculated from their respective Fourier transforms ℑ{𝑌Pred,𝑛} and ℑ{𝑌GT,𝑛}. 

𝐿DeBCR  = 1.0 ∙  𝐿MSE + 0.5 ∙  𝐿FT  (1) 

𝐿MSE =
1

𝑁
∑|𝑌Pred,𝑛 − 𝑌GT,𝑛|

2
𝑁

𝑛=1

 
(2) 

𝐿FT =
1

𝑁
∑| ℑ{𝑌Pred,𝑛} − ℑ{𝑌GT,𝑛} |

𝑁

𝑛=1

 
(3) 

Setup for resource usage benchmarks 

In contrast to the application benchmarks, all executed on the NVIDIA Tesla V100 GPU, 

for resource usage benchmarks we tested various CPU and GPU models, listed in the 

Tables S1-S3. All GPU-based benchmarks there were done under CUDA-11.7 and 

cuDNN-8.4. 

 

The confocal fluorescence dataset of S.mediterranea from CARE8 work was used to 

conduct the various shown resource usage benchmarks. We used the raw original full-

size data (95, 1024, 1024) as input for pre-processing and the model-restored, pre-
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processed data for post-processing, both with the fixed patch size of (128, 128) and 

varying crop overlaps (Supplementary Table 5). A training subset (Data Availability 

Statement) of size (2211, 128, 128) was used for model training (Supplementary Table 

6), while a larger dataset of size (21375, 128, 128), derived from the raw original data, 

was used for prediction (Supplementary Table 3). 

Evaluation metrics 

To evaluate the performance of the learning process and compare various restoration 

models, we utilized the following three metrics: PSNR37, SSIM37, and NRMSE38. The 

respective equations defining the metrics are listed below in Eq. (4)-(6): 

 

PSNR = 10 ∙ log
10

(
MAX2

MSE
) 

(4) 

where MSE is the Mean Squared Error, calculated as in Eq. (2), and MAX is the maximum 

possible pixel value (equal to 1.0 according to data normalisation); 

 

SSIM =
(2𝜇GT𝜇Pred + 𝐶1)(2𝜎GT𝜎Pred + 𝐶2)

(𝜇GT
2 + 𝜇Pred

2 + 𝐶1)(𝜎GT
2 + 𝜎Pred

2 + 𝐶2)
 

(5) 

where 𝜇GT and 𝜇Pred are mean intensities of the GT and restored output; 𝜎GT and 𝜎Pred 

are variances of the GT and restored output; 𝐶1 and 𝐶2 are small constants to stabilize 

division near zero. 

NRMSErange =
RMSE

max(𝑌GT) − min (𝑌GT)
 

(6) 

where max(𝑌GT) and min(𝑌GT) are maximum and minimum values of the GT images, 

respectively, and RMSE is the Root Mean Square Error, defined in Eq. (7) below: 

 

RMSE = √
1

𝑁
∑(𝑌Pred,𝑛 − 𝑌GT,𝑛)2

𝑁

𝑛=1

 

(7) 

where 𝑌GT,𝑛 and 𝑌Pred,𝑛 are GT and restored output images, respectively. 

To evaluate DeBCR performance at various signal sparsity levels, we calculated image 

entropy as a sparsity measure, defined as in the Eq. (8) below: 
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𝐸 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑛−1

𝑖=0

 (8) 

where 𝑛 is the contrast depth of the image (for calculation images were converted to 8-

bit, resulting in the contrast depth of 256) and 𝑝𝑖 is the relative amount of pixels having 

contrast value 𝑖. 

Additionally, we assessed spectral restoration performance of DeBCR quantifying FRC39 

as in the Eq. (9) below: 

FRC(𝑟) =
∑ 𝐼GT(𝒌) ∙ 𝐼Pred

∗ (𝒌)𝒌∈𝐾𝑟

√∑ ‖𝐼GT(𝒌)‖
2

𝒌∈𝐾𝑟
∙ ∑ ‖𝐼Pred

∗ (𝒌)‖
2

𝒌∈𝐾𝑟

 
(9) 

where 𝐼GT and 𝐼Pred are Fourier transforms (frequency spectra) of the ground truth and 

prediction images, respectively, with 𝐼Pred
∗  being complex conjugate of  𝐼Pred, and 𝒌 is the 

spatial frequency vector in the radial frequency shell 𝐾𝑟. 

Data Availability Statement 

The example pre-processed training, validation and test subsets for all evaluated 

datasets, including both the input data and the ground truth, and the respective pre-

trained weights of the DeBCR core model are available in the Zenodo47 repository (doi: 

10.5281/zenodo.12626121). 

Code Availability Statement 

The DeBCR packages are both accessible for installation from the PyPI repository, each 

with the source code available in the respective open-source GitHub repository: DeBCR, 

including DL model and Python API (PyPI: https://pypi.org/project/debcr; GitHub: 

https://github.com/DeBCR/DeBCR), and Napari-DeBCR, including Napari plugin GUI 

(PyPI: https://pypi.org/project/napari-debcr; GitHub: https://github.com/DeBCR/napari-

DeBCR). The package source codes of the versions, associated with the data in this 

paper, are available in the Zenodo repository: DeBCR-v0.1.048 (doi: 

10.5281/zenodo.17673860) and Napari-DeBCR-v0.1.049 (doi: 

10.5281/zenodo.17674107). 

The tutorial notebooks on API library usage are also available along the source code on 

the DeBCR GitHub webpage (at path “DeBCR/notebooks”). The code, re-implementing 

some of SOTA models, where it was necessary, which was used to run described 

application benchmarks is deposited at the separate repository 

(https://github.com/DeBCR/DeBCR-benchmarks). 

https://doi.org/10.5281/zenodo.12626121
https://pypi.org/project/debcr
https://github.com/DeBCR/DeBCR
https://pypi.org/project/napari-debcr
https://github.com/DeBCR/napari-DeBCR
https://github.com/DeBCR/napari-DeBCR
https://doi.org/10.5281/zenodo.17673860
https://doi.org/10.5281/zenodo.17674107
https://github.com/DeBCR/DeBCR-benchmarks
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Figure 1. Image restoration steps and available DeBCR packages. a. The steps to 

perform image restoration using the neural network implemented in DeBCR. b. The 

DeBCR packages for various user interfaces: a programmatic (DeBCR) and a graphical 

(Napari-DeBCR). 

Figure 2. DeBCR user interfaces to restore image data. a. The overview of the GUI of 

DeBCR, Napari-DeBCR - a multi-tab plugin for the Napari viewer. b. The overview of the 

API of DeBCR, DeBCR - a modular Python library. 

Figure 3. Denoising of confocal fluorescence LM data of the flatworm S. 

mediterranea. a. Comparison of denoising performance for the eight SOTA denoising 

models on 3 noise levels of data, according to the illumination level (C1 - medium, C2 - 

weak, C3 - extremely weak). The shown GT was obtained by longer exposure time and 

higher laser intensity than used in all other conditions. C3 shows ROI zoom-in (green 

frame, bottom right) to compare restorations in detail. b. Evaluation by SSIM↑/PSNR↑ on 

the test images. The highest ranking is marked in bold font. c. Denoising performance 

examples according to the data sparsity as measured by the entropy: (top) sparse data 

(entropy = 1.62); (bottom) dense data (entropy = 6.49). d. Quantitative evaluation of 

reconstruction quality across sparse (entropy < 5, green bar) and non-sparse, or dense, 

(entropy ≥ 5, orange bar) subsets of the dataset.  e. Correlation between entropy and 

various reconstruction performance metrics, including PSNR (blue), SSIM (green) and 

RMSE (orange). 

Figure 4. Resolution enhancement of the widefield fluorescence LM images for S. 

aureus. The dataset comprises pairs of images captured using widefield microscopy and 

SIM. The SIM images serve as pseudo-ground truth (GT) for SR deconvolution. We 

compared our results to TAGAN as a baseline. a. Visualization of selected restoration 

results. The ROI zoom-in (green frame, bottom right) is shown to compare restorations in 

detail. b. The evaluation metrics PSNR↑/RMSE↓ for the test results. 

Figure 5. Resolution enhancement of the confocal fluorescence LM images for F-

actin. This dataset contains paired images from confocal and STED images for F-actin 

samples. The STED serves as the pseudo-GT. a. Visualization of the restoration results. 

Some of the sample signals, observed in GT, are annotated in ROI zoom-ins (green 

frame, bottom right) for detailed restorations comparison: three high-signal spots are 

indicated by arrows; a filamentous signal pattern is annotated with dotted lines. b. 

Quantitative evaluation with PSNR↑/RMSE↓. 

Figure 6. Denoising and deconvolution performance of DeBCR compared to the 

universal fluorescence microscopy-based image restoration model (UniFMIR). a. 

Denoising results on the flatworm Schmidtea mediterranea dataset from CARE. The 

columns represent various noise levels of data, according to the illumination level (C1 - 

medium, C2 - weak, C3 - extremely weak) with the last (C3) column representing no-
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signal, noise-only input case. b. The super-resolution deconvolution results on the dataset 

confocal and the stimulated emission depletion microscopy (STED) for F-Actin. Some of 

the sample signals, observed in GT, are annotated with arrows for detailed comparison. 

Figure 7. Spectral performance of DeBCR and U-Net across various modalities. 

FRC curves for DeBCR and U-Net restorations, compared to input data, evaluated 

against GT for three high-resolution GT imaging modalities: a. SIM (S. aureus dataset, 

input: widefield fluorescence, n=601 test images); b. High-exposure confocal 

fluorescence (S. mediterranea dataset, input: low-exposure confocal fluorescence, n=615 

test images); c. STED (F-actin dataset, input: confocal fluorescence, n=84 test images). 

Each shown FRC is the average across the respective full test set (mean: bold solid line, 

standard deviation: pale band). Additionally, the restoration-to-input difference FRC is 

plotted in each case to demonstrate the spectral band of improvement, gained using 

DeBCR (mean: pale dashed line, standard deviation: pale band).  
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Table 1. Overview of the typical user runtime per restoration step by DeBCR. 

Workflow stage Typical* runtime 

1. Input data pre-processing (normalise and patch) 10–15 min 

2. Model training (≈103 steps with early stop) 35–60 min 

3. Model prediction; output data post-processing (stitch) 15–30 min 

*The example hardware configuration is CPU Intel(R) Core(TM) i7 @ 2.90GHz with 12 GB RAM and 1x 

GPU NVIDIA Tesla T4 with 15 GB VRAM. The runtime includes user interaction. 

 

 

 

 

 

 

 

Editor's Summary: 

Rui Li and colleagues propose a deep learning solution to inverse problems in imaging. 

Their sparsity-efficient network and software improve image restoration across advanced 

light microscopy modalities with fewer parameters than existing models. 
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