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Abstract

Diaphragmatic dysfunction results from a variety of diseases or post-surgical conditions, leading to impaired

lung function and high morbidity and mortality. Current repair materials are limited by poor biocompatibility,
functional incompatibility and immune reactions. Tissue engineering via decellularization offers a promising
approach by preserving the extracellular matrix while reducing host immune response. However, most studies have
focused on rodent models. This study evaluates three decellularization protocols using porcine tissues to increase
clinical relevance and optimize diaphragm repair strategies. We compared detergent-enzymatic treatment (DET)
adapted from murine diaphragm developed by Andreas et al. (P1) and two decellularization protocols for larger
mammalian diaphragm tissues published by Barbon et al. (P2) for human diaphragm and Deeken et al. (P3) for
porcine tendinous diaphragm. Decellularized samples were analyzed using histological analysis, SEM, DNA and GAG
quantification and proteomic analysis. DNA content was reduced in decellularized tissues significantly between
native and decellularized tissues (native: 990.30 ng/mg (IQR=556.20); P1: 31.92 ng/mg (IQR=40.38), P2: 32.38 ng/
mg (IQR=20.83), P3: 106.40 ng/mg (IQR=811.32). Proteomics revealed 4,640 conserved proteins (5.41% classified

as matrisomal proteins). The protocols showed a 55.4% concordance of the preserved matrisomal fraction (n=139).
The highest protein preservation was achieved by P3, followed by P2 and P1. The P1 and P2 protocols are effective
in preserving the extracellular matrix while removing cellular components, with no clear preference. Within our
laboratory setting, P3 showed decellularization, but did not reach current decellularization standards. This study
advances the preparation for clinical translation of a decellularized porcine diaphragm.
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Background

Diaphragmatic dysfunction, caused by congenital or
acquired defects and various pulmonary and muscle-
degenerative diseases, is a serious condition with lim-
ited treatment options [1]. As the diaphragm is crucial
for breathing and other vital functions, its impairment
can cause complications such as herniation, reflux, and
pulmonary hypertension [2]. Muscular dystrophies, dia-
phragm weakness and atrophy, often exacerbated by
mechanical ventilation, are major causes of morbidity
and reduced quality of life, while lacking effective treat-
ments to preserve diaphragm function [2-11].

Diaphragmatic repair materials must be tailored to the
size of the defects or can be sutured on directly, while
larger defects require complex repair strategies. Tradi-
tional meshes often fail due to poor compatibility, func-
tional incompatibility and immune reactions, resulting
in recurrence of diaphragmatic hernia [12-18]. An ideal
graft would integrate smoothly, mimic native muscle
function, and reduce adhesion to prevent complications
[1, 19].

Tissue engineering (TE) focuses on creating bio scaf-
folds that restore or regenerate impaired tissues by mim-
icking native structures [20—23]. Decellularization, which
retains the extracellular matrix (ECM) while removing
immunogenic components (e.g. alpha-Gal epitope and
nuclear components), supports regeneration and reduces
the need for long-term immunosuppression [15, 24—27].

A recent review by Boehm et al. highlighted the latest
advances in diaphragmatic tissue engineering [11]. Most
of the reviewed studies employed rodent models due to
ethical and practical reasons, with only a few focusing on
decellularization of samples of larger animals [28-32].
To enhance clinical relevance, research should explore
decellularization techniques for diaphragm tissue from
larger animals, such as porcine, as a basis for developing
medical devices to repair or augment diaphragm defects
in humans.

This paper compares three existing protocols for por-
cine diaphragmatic decellularization: Barbon et al., which
used human diaphragm from cadaveric donors; Deeken
et al. had used a protocol based on Cartmell et al. for
the tendinous section of the porcine diaphragm; and a
protocol previously established by our group for decel-
lularization of rat diaphragms, adapted for porcine tis-
sue [28, 31-34]. These protocols are compared to outline
the advantages and disadvantages of different decellu-
larization strategies regarding their impact on structural
integrity, while we systematically evaluate their effects
on decellularization efficacy and the retained matrisome

profile and glycosaminoglycan (GAG) content, aim-
ing to optimize and standardize diaphragmatic tissue
engineering approaches. Additionally, we compare the
decellularization process of different tissue components
— muscle, tendon, and myotendinous junction — which,
to our knowledge, has not been thoroughly investigated
in porcine diaphragmatic tissue before. The diaphrag-
matic tissue-specific composite after decellularization
could affect their future usage. This comparison provides
a foundation for refining protocols to achieve effective
yet gentle decellularization that preserves the tissue’s
unique regenerative properties [19, 35, 36].

Methods

Animals

With approval by the State Office of Health and Local
Affairs (Landesamt fir Gesundheit und Soziales, Ber-
lin, Germany; Reg. No. L0243/11), all animal work was
performed in accordance with local law and university
guidelines. Procurement of the porcine diaphragms was
performed on 6 male piglets (H.G.E. Service GmbH
Langerwisch, Michendorf, Germany) in an age range
from 4 — 6 weeks, weighing between 22 — 25kg.

Porcine diaphragm procurement and patch acquisition

In accordance with the 3R principles in the context of
animal testing, we performed the removal of the dia-
phragm following surgery (6—8h) as part of a surgical
skills course for physicians (“Laparoscopy for Beginners
and Advanced Surgeons”; Aesculap Academy® Berlin,
Germany). Animals were kept #il per os 12h before the
procedure. After inducing deep anesthesia by injection
of ketamine, fentanyl and dehydrobenzperidol, animals
were euthanized with T61 (200mg Embutramide, 50 mg
Mebezonium and 5mg Tetracaine). The diaphragms were
stored at —20 °C until further use.

Six porcine diaphragms were thawed in 37 °C water
bath and then washed in phosphate-buffered saline
(PBS). The pars lumbalis was then removed. Approxi-
mately 2.5x2.5cm large patches were prepared from
the diaphragms. The patches were either muscle (mus),
tendon (tend), or the myotendinous junction (mt). The
patches were stored at —-20 °C in PBS until decellular-
ization or directly processed as native controls. Patches
were equally allocated to 9 subgroups. We prepared 6
diaphragmatic patches for each of the subgroups, plus 6
patches per tissue type retrieved from the diaphragm as a
native control group. Following experimental groups and
tissue subgroups were created:
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— Andpreas et al. modified (protocol 1, P1): muscle,
tendon, myotendinous junction

— Barbon et al. (protocol 2, P2): muscle, tendon,
myotendinous junction

— Deeken et al. (protocol 3, P3): muscle, tendon,
myotendinous junction

— Native: muscle, tendon, myotendinous junction

Porcine diaphragm decellularization

Due to the greater thickness of porcine diaphragm com-
pared to rat tissue, the protocol by Andreas et al. was
adapted and will be referred to as protocol 1 (P1) [34].
The SDS step was prolonged to 30h with one change of
the SDS solution after 15h. Furthermore, the concentra-
tion of the DNase-I in the second step was doubled to
120 units/mL. Finally, we added penicillin/streptomycin,
as an antibacterial measure, during the final washing step
with PBS. The protocol of Barbon et al., further protocol
2 (P2), was performed with an adjustment of the DNase-
I concentration (120 Units/mL), due to missing infor-
mation in the protocol description [32]. The protocol of
Deeken et al. was followed as originally described and is
further referred to as protocol 3 (P3) [28, 31].

For P1 sodium dodecyl sulfate (SDS, Carl Roth, Karl-
sruhe, Germany), DNase-I (Roche, Basel, Switzerland) in
Hanks’ Balanced Salt Solution (HBSS, Bio&Sell, Feucht,
Germany), Triton® X-100 (Carl Roth, Karlsruhe, Ger-
many), penicillin/streptomycin (Gibco, Thermo Scien-
tific, Waltham, USA) and PBS was used. For P2 we used
distilled water as aqua dest., DNase-I (Roche, Basel, Swit-
zerland) in NaCl buffer (Carl Roth, Karlsruhe, Germany),
0.05%  trypsin+0.02%  ethylenediaminetetraacetate
(EDTA) in PBS (PAN BIOTech, Aidenbach, Germany),
ammonia solution (Otto Fischar, Saarbriicken, Germany),
SDS (Carl Roth, Karlsruhe, Germany), Tergitol™ (Sigma-
Aldrich, St. Louis, USA) and PBS was used. In P3 we

Table 1 Decellularization protocols
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used tri-n-butyl phosphate (TnbP) (Merck, Darmstadt,
Germany) in Tris-buffered saline (TBS) and 70% etha-
nol (EtOH) (Carl Roth, Karlsruhe, Germany) for decel-
lularization. Orbital shaking (OS) was performed on an
orbital shaking plate (Unimax 2010, Heidolph, Schwa-
bach, Germany). The different detergent-enzymatic treat-
ment (DET) steps and concentrations are described in
further detail in Table 1.

After decellularization, the patches were divided for
analysis and were either directly processed or homog-
enized and frozen at —-80 °C. Frozen samples were later
lyophilized.

Samples were used for either a) proteomic analysis,
deoxyribonucleic acid (DNA) quantification, GAG quan-
tification (each, n=6), or b) histological preparation
(n=6). One sample was processed for scanning electron
microscopy (SEM). Native controls were processed in the
same manner.

Histological evaluation

Immediately after decellularization, the samples were
fixed in 4% formaldehyde (SAV Liquid Production, Flints-
bach am Inn, Germany) for 18 - 24hours. Dehydration
was achieved through automatic rinsing in an ascend-
ing alcohol series, followed by embedding the samples
in paraffin. For histological analysis, the specimens were
cut into 3 um thin slices and fixed onto Superfrost® object
slides (Epredia, Breda, The Netherlands) at 60 °C for
30 minutes.

Histological characterization of the decellularized
extracellular matrix (dECM) composites and micro-
scopic validation were performed with hematoxylin and
eosin (H.E., AppliChem, Darmstadt, Germany), as well
as Elastica-Van-Gieson, Masson’s Trichrome, Sirius Red,
and Alcian Blue staining (all from Morphisto, Offenbach,

protocol 1 protocol 2 protocol 3
Andreas et al. modified Barbon et al. Deeken et al.
1. 0.19% SDS in Aqua dest. Aqua dest. Aqua dest.
(15h, RT, OS 200 rpm) (24h,4°C) (RT, washing)
2. 0.1% SDS in Aqua dest. DNase-lin 1M NaCl 1% TnbP in TBS
(15h, RT, OS 200 rpm) 120 Units/mL (24 h, RT, OS 200 rpm)
(3h,RT)
3. DNase-l in HBSS 0.05% Trypsin+0.02% EDTA in PBS 1% TnbP in TBS
120 Units/mL (1h,37°0) (24 h, RT, OS 200 rpm)
(1h, RT, OS 200 rpm)
4. 19% Triton X-100 in Aqua dest. 0.5% SDS +0.8% NH40H in PBS Aqua dest.
(1h, RT, OS 200 rpm) (48h, 4°C) (24 h, RT, OS 200 rpm)
5. 100 Units/ml Penicillin + 100 ug/mL Streptomycin in PBS 0.5% Tergitol™+0.8% NH4OH in PBS 70% EtOH
(20h, RT, OS 200 rpm) (24h, 4°C) (24 h, RT, OS 200 rpm)
6. Aqua dest.
(48h, 4°C)

The different protocols used in this study are visualized [31, 32, 34]. Before decellularization patches were stored at—20 °C in PBS and thawed at 37 °C. After
decellularization the patches were either directly processed for histology and SEM or frozen at—80 °C to later analyze DNA, glycosaminoglycans and proteomics
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Germany). The specimens were then permanently
mounted with Eukitt (AppliChem, Darmstadt, Germany).

Fluorescence staining was performed with 4/,6-diamid-
ino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis,
USA; Art.-Nr. D9542; 1:500) and mounted with fluores-
cence mounting medium (DAKO, Agilent Technologies
Company, Santa Clara, USA).

For immunohistological staining, antigen retrieval was
performed with heated 0.01 M citrate buffer pH 6.0 (Carl
Roth, Karlsruhe, Germany), followed by a peroxidase
block with 2% H,0, in methanol (VWR, Radnor, USA;
Carl Roth, Karlsruhe, Germany). A serum-free protein
block (DAKO, Agilent Technologies Company, Santa
Clara, USA) was performed. As primary antibodies,
those listed in Supplementary file 1 were used.

Subsequently, the indirect method using goat anti-
rabbit IgG H&L (HRP) (abcam, Cambridge, UK; Art.-Nr.
ab6721) as a secondary antibody was used for desmin,
collagen IV, fibronectin and laminin.

For elastin and collagen I stain, the LASB® method
(DAKO, Agilent Technologies Company, Santa Clara,
USA) was used, according to the manufacturer’s instruc-
tions. A DAB detection kit (DAKO, Agilent Technologies
Company, Santa Clara, USA) was used for detection and
prepared according to the manufacturer’s instructions.
All sections were counterstained with Mayer’s hematoxy-
lin (AppliChem, Darmstadt, Germany) and permanently
mounted with Eukitt (AppliChem, Darmstadt, Germany).

Negative controls for the immunohistochemical stain-
ings were prepared in the same manner as described
above, without the application of the primary antibodies
(data not shown).

Native controls were processed in the same way as
decellularized samples. Detailed protocols of all applied
staining methods are available in the Supplementary files
2-3.

Microscopic images of the stained slices were obtained
with a Keyence BZ-X810 (Keyence, Osaka, Japan) micro-
scope. Representative images of the slides were taken.

DNA quantification

Approximately 10mg of the sample was used for DNA
quantification. The DNA was isolated using the DNeasy®
Blood&Tissue-Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. DNA quantification
was conducted using the NanoDrop 2000c spectropho-
tometer (Thermo Scientific, Waltham 02451, USA) and
normalized to dry weight.

Glycosaminoglycan quantification
The GAG content was measured using a method
described by Farndale et al. and used for decellularized
tissue by Napierala et al. [37, 38].
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400puL of a papain buffer (AppliChem, Darmstadt,
Germany), as a blank, and a standardized concentration
row (0-100 pg/mL), using chondroitin sulfate (Carl Roth,
Karlsruhe 76231, Germany), were mixed with 400puL
dimethylmethylene blue (DMMB; AppliChem, Darm-
stadt 64,291, Germany). 5mg of the lyophilized sample
was spiked with 1ml papain-puffer and incubated for
18h at 60 °C. The supernatant liquid (400uL) was then
mixed with 400yl DMMB. Blank, standard concentra-
tion, and the samples were incubated at room tempera-
ture for 30min after spiking with DMMB. All samples
were analyzed at 525nm with the NanoDrop 2000c
spectrophotometer (Thermo Scientific, Waltham, USA).
A linear standard curve (0 -100ug/mL) was generated,
and the results of the samples were calculated. The coef-
ficient of determination was greater than 95%. Finally, the
results were normalized to dry weight.

Scanning electron microscopy

Immediately after sampling, pieces approximately
1x1cm in size were cut from the patches. The samples
were then pinned to a cork plate and immersed in 2.5%
glutaraldehyde (Serva, Heidelberg, Germany) in 0.1M
sodium cacodylate buffer (Serva, Heidelberg, Germany)
for fixation. They were then incubated at room tempera-
ture for 30 min and stored in the fixative at 4 °C.

At the Charité Core Facility for Electron Microscopy
(CFEM, Charité — Universititsmedizin Berlin), samples
were washed with 0.1 M sodium cacodylate buffer and
post-fixed with 1% osmium tetroxide (Electron Micros-
copy Sciences, Hatfield, USA) for 2h. This was followed
by dehydration in increasing ethanol concentrations and
finally treatment with hexamethyldisilane (Merck Mil-
lipore, Darmstadt, Germany). Samples were subjected
to gold-palladium sputtering (Sputter coater MED 020,
Balzer, Bingen) and stored in vacuum prior to scan-
ning electron microscopy (GeminiSEM 300, Carl Zeiss,
Oberkochen, Germany).

Proteomic analysis

Approximately 10mg lyophilized tissue was taken and
ground before further processing for proteomics. For
the protein extraction, digestion and peptide desalting
were performed using the filter-aided sample preparation
(FASP) technique [39, 40]. Peptides were extracted into
20 uL of 0.1% trifluoroacetic acid (TFA) (Thermo Fisher
Scientific, USA) after incubation for 15 min at room tem-
perature. Four microliters of each peptide extract were
then separated using a 2-44% acetonitrile gradient in
0.1% formic acid (VWR, USA) on an analytical C18 col-
umn (Thermo Fisher Scientific, USA) and a trap column
(Thermo Fisher Scientific, USA) at a flow rate of 400 nL/
min over 60 minutes, followed by detection with a tim-
sTOF HT flex mass spectrometer (Bruker Daltonics,
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Billerica, USA) equipped with a CaptiveSpray nano-elec-
trospray ion source 2.

DIA-PASEF was performed with the following settings:
PASEF mode with 10 PASEF MS/MS scans. The capillary
voltage was set to 1600V and the spectral range of m/z
from 100 to 1700 with an ion-mobility range (1/K0) from
0.85 to 1.30 Vs/cm? The ramp and accumulation time
were set to 100ms and the duty cycle close to 100% with
a total cycle time of 0.95 s.

MS/MS parameters were set as follows: Collision
energy was ramped linearly from 59eV at 1/K0=1.6 Vs/
cm2 to 20eV at 1/K0=0.6 Vs/cm? Precursors with charge
state from O to 5 were selected with the target value of
20,000 and an intensity threshold of 2,500. All precursors
reaching the target value in arbitrary units were dynami-
cally excluded.

The diaPASEF raw data were processed using the
open-source tool DIA-NN [41, 42]. For the library-free
search in silico digest library (contains 22,875 proteins,
and 22,718 gene entries from UniProt database) deep
learning-based spectra, retention times, and ion mobil-
ity (IMs) prediction were performed. This library was
then used to reanalyze the DIA runs (matched between
runs; MBS). The parameters for library analysis were set
to: N-terminal methionine excision and carbamidometh-
ylation, peptide lengths ranging from 7 - 30, precursor
charges from 1 - 4, precursor m/z from 300 - 1800, and
fragment ion m/z from 200 — 1800 MS1 accuracy>10
ppm and protein p-value < 1% FDR.

The dataset was then annotated using the Matrisome
Analyzer provided by Petrov et al. [43]. The associated
genes were used for the annotation. The proteoforms
in the dataset, leading to the same gene in the UniProt
database, were then annotated manually with “” and “*”
[44]. After primary annotation, protein conservation was
considered positive if it was expressed in at least three
samples within a given subgroup and visualized using
RStudio 2024.12.0+467 (Posit Software, PBC, Boston,
USA)

Statistical analysis

For statistical analysis and visualization of DNA and GAG
values, GraphPad Prism 10.6.1 (GraphPad Software Inc.,
San Diego, USA) was used, and the data were expressed
as median (interquartile range (IQR) = Q3 - Q1).

The data were tested for normal distribution using the
Shapiro-Wilk test. If the data showed normal distribu-
tion, the unpaired t-test or ordinary one-way ANOVA
was performed, otherwise, the Mann-Whitney test or
Kruskal-Wallis test for nonparametric distribution was
used. Significance was considered at a p-value < 0.05.
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Results

Patch assessment

The median patch size was 6.30cm? (IQR=0.50) while
the median length was 2.50cm (IQR=0.20), and the
median width was 2.50cm (IQR=0.10). Native tissue,
muscle, tendon, and musculotendinous tissue are shown
in Figs. 1 and 2.

The median weight of the patches was 1.40g
(IQR=1.70). There was no significant difference
(p=0.996) in weight between the patches grouped for
the native control (1.35g (IQR=2.23)), P1 group (1.25¢g
(IQR=1.70)), P2 group (1.25g (IQR=1.63)) and P3 group
(1.60g (IQR=1.80)). The median weight of the muscle
patches was 2.70g (IQR=0.68), in the tendon patches
0.60g (IQR=0.30) and in the musculotendinous patches
1.40g (IQR=0.48). Again, there were no significant dif-
ferences between each of the decellularized and native
groups (mus: p=0.128; ten: p=0.511; mt: p=0.673). Fur-
ther details on the weight distribution are displayed in
Supplementary file 4.

Macroscopic evaluation
Macroscopically, all patches showed a color change after
decellularization. In the P1 group, the livid red color of
the native tissue changed to a lighter red-yellow and was
almost translucent in some patches. In the tendon sub-
group, all patches were white after decellularization. The
muscle patches appeared gelatinous. The patches after
decellularization with P2 appeared completely white and
were translucent in some parts of the tissue. Compared
with other subgroups, the muscle patches seemed to have
lost their shape and retained more liquid after decellu-
larization. In the P3 group, the muscle patches appeared
more yellow after decellularization, while the tendon
parts showed a white color. All patches in the P3 group
appeared to be denser and stiffer than those treated with
other decellularization methods.

Visualization of the macroscopic decellularization pro-
cess is illustrated in Fig. 2.

Microscopic evaluation
Histological evaluation
All samples showed a reduction in nuclei compared to
the native tissue visible in H.E.-stained samples. P1 group
showed no intact nuclei, while the matrix was mostly
intact. In muscle portions, the typical fiber structure of
skeletal muscle was still visible in most parts of the sam-
ples. Similarly, in the tendon parts, the typical structure
of tight parallel-fiber connective tissue appeared to be
intact.

The samples of the P2 group also showed no intact
nuclei. Here, the muscle tissue appeared to be loosened,
and in some parts, muscle fibers looked washed out. In
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Native Diaphragm

Preparation of 2.5 x 2.5 cm Patches

\/

Barbon et al.
2022

Andreas et al.
2023 modified

protocol 1 protocol 2

Deeken et al.
2011

protocol 3
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Preparation of native tissue

Decellularization

ajosnw
snoulpuajoAw
snouipuajoAw

snouipuajoAw

n=6 n=6 n=1

Preparation for qualitve

for histology ~ for DNA-quantification, for SEM . o
GAG-quantification and and semi-quantitative analyses
Proteomics
Assessment of histology, SEM,
Analysis

(in comparison to native sampel and between subgroups)

DNA- & GAG-quantification,
Proteomics

Fig. 1 Project workflow. The workflow from preparation of the native tissue, decellularization, processing to analysis is outlined. Before decellularization,
the patches were stored in PBS at— 20 °C until use. After decellularization, all patches showed a loss in color. In particular, the tendinous parts appeared

to be translucent

the tendinous parts of the samples, the structure of tight
parallel-fiber connective tissue appeared to be intact.

In the P3 group, some patches showed no nuclei, while
others showed destroyed and reduced intact nuclei.
Additionally, a smear of basophilic structure was visible
in most of the samples. The overall matrix of muscular

and tendinous parts appeared to be most intact in the P3
group, compared with other experimental groups.

DAPI staining revealed a reduction of stainable DNA
in all subgroups. The tendinous groups of the P1 and
P2 showed no positive responses, while the muscular
and combined subgroups showed minor residual DNA
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muscle

protocol 2 protocol 1 native

protocol 3

tendon
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myotendinous

Fig. 2 Macroscopic results. Macroscopic images of the native tissue (A-C) and after decellularization (D-L) are shown. In all groups, the color of the tissue
lightened and changed during the decellularization process. Especially the tendinous patches were white after decellularization

between the muscular syncytia, but no intact nuclei,
in some samples. In the P3 group, all patches showed a
reduced yet positive response to the DAPI staining. In
the muscular subgroup, some patches showed positive
residual only between the syncytia, while others showed
intact nuclei structure. Especially the tendinous sub-
group showed residual DNA and nuclei in all parts of the
patches. The combined subgroup showed residual DNA
in the muscular syncytia and residual DNA and nuclei in
the tendinous parts.

The ECM of the tendons and connective tissue
appeared to be intact after all decellularization proto-
cols. Regarding the muscle part, P1 and P3 also preserved
muscle-specific structures, like the parallel arranged

myofibers enclosed by endomysium. However, in samples
treated with P2, muscle fibers were reduced, with only
the connective tissue remaining.

In the immunohistochemical staining, ECM mark-
ers such as collagen I, collagen IV, elastin, and laminin
appeared to be preserved in most parts of the samples
across all subgroups.

The immunohistochemical staining of the skeletal
muscle-specific marker desmin showed no reduction in
samples treated with the P3 when compared to native tis-
sue, while the P1 showed a slight reduction of desmin. In
the P2 samples, this specific marker was clearly reduced
and almost undetectable in areas where the H.E.-staining
already indicated a reduction of skeletal muscle fibers.
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Fig. 3 Histology. Histological staining of native and decellularized matrices are shown. Overall, the matrix was best conserved in samples treated with
P3. However, P3 showed a positive response in DAPI staining, while the P1 and P2 showed no positive response. In the P1 samples, it appeared that most
parts of the matrix were intact, while the P2 samples showed a loosened structure, yet preserving the ECM. Magnification 10x. Scale bar represents 100 um

Collagen | Collagen IV Desmin Elastin  Fibronectin  Laminin

native
tendon muscle

myo-
tendinous

protocol 2
tendon muscle

myo-
tendinous

Collagen | Collagen IV Desmin Elastin  Fibronectin  Laminin

protocol 1
tendon muscle

myo-
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protocol 3
tendon muscle

myo-
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Fig. 4 Immunohistochemistry. Immunohistochemistry staining of native and decellularized matrices are shown. Markers of the extracellular matrix, such
as collagen | & IV, elastin, fibronectin, or laminin, appear to be preserved to some extent after all decellularization protocols. Muscle-specific markers,
like Desmin, were mainly preserved after using P1 and P3, while after P2, they appeared to be reduced. Magnification 10x. Scale bar represents 100 um

Representative images of all stainings are shown in
Figs. 3 and 4.

Scanning electron microscopy

Electron-microscopic analysis (Fig. 5) revealed that the
surface morphology remained intact in most regions of
all samples. The analysis showed longitudinal rods of col-
lagen fibers arranged in a wavy pattern, along with areas
displaying varying degrees of packing density, ranging
from looser to denser arrangements.

In the P1 group, both the tendon and myotendinous
junction patches showed a compact structure, whereas
the muscle patch exhibited visible fibers with disorga-
nized fibrils.

All subgroup patches exhibited a loosened fiber struc-
ture, with fibrils protruding in certain areas in the P2
group. The muscular, the tendon, and myotendinous
junction patches in the P3 group demonstrated an over-
all intact fiber structure with loosened fibrils in some
regions.
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Fig. 5 SEM. Exemplary samples from SEM are shown. The overall surface morphology appeared to be intact after decellularization compared to the
native samples. Samples from the P1 and P3 groups showed a compact or rather dense structure with some visible disorganized and loosened fibers.
After decellularization with P2, samples exhibited a loosened structure with protruding fibrils. Magnification 1,000x (left) and 5,000x (right). Red square
indicates the magnification from 1,000x to 5,000x. Figure 4 without marks can be found in Supplementary file 9. Scale bar represents 10 um (left) and

2 um (right)

DNA quantification

DNA quantification was performed with n=6 in each
tissue subgroup, totaling n=18 for each experimen-
tal group. In the P2 tendon subgroup one sample was
excluded due to invalid measurement, resulting in n=5
or rather n =17 for P2 group overall.

All groups showed a decrease in DNA con-
tent to varying degrees. The P1 group (31.92 ng/mg
(IQR=40.83); p<0.001) and the P2 group (32.38 ng/mg
(IQR=20.83); p<0.001) achieved a significant decrease
in DNA content compared to native samples (990.30
ng/mg(IQR=556.20)). In the P3 group (106.40 ng/mg
(IQR=811.32); p=0.360) no significant reduction was
observed compared to the native samples.

There was no significant difference between the P1 and
P2 groups (p>0.999), but a significance to the P3 group
(P1vs. P3: p<0.001; P2 vs. P3: p<0.001).

A closer look at the tissue subgroups showed that
P1 was able to reach a significant reduction in all tis-
sue groups (mus: 55.87 ng/mg (IQR=16.06) p=0.006;
tend: 12.98 ng/mg (IQR=7.31) p<0.001; mt: 31.92 ng/
mg (IQR=28.88) p<0.001). P2 reached a significant
reduction in the muscle and myotendinous group (mus:

51.44 ng/mg (IQR=49.78) p=0.003; mt: 33.31 ng/mg
(IQR=12.24) p<0.001). However, P2 did not achieve
a significance in the tendon group (tend: 29.09 ng/mg
(IQR=12.44) p=0.090). In the P3 groups only the myo-
tendinous group reached a significant reduction (mus:
89.46 ng/mg (IQR=51.70) p=0.250; tend: 1139 ng/mg
(IQR=429.10) p>0.999; mt: 99.35 ng/mg (IQR=60.03)
p<0.001). The P3 tendon samples exhibited high DNA
content and significant difference compared with the
muscle (89.46 ng/mg (IQR=51.70); p<0.001) and myo-
tendinous (99.35 ng/mg (IQR=60.03); p<0.001) sub-
group (Fig. 6).

Glycosaminoglycan quantification

GAG quantification was conducted with #=6 in each
subgroup, adding up to n=18 for each experimental
group.

In the P1 group (15.50 pg/mg (IQR=15.60)) the GAG-
content appeared to be stable compared to the native
samples (14.66 pg/mg (IQR=8.07)) and showed no sig-
nificant difference (p>0.999). The P2 (48.82ug/mg
(IQR=46.16)) and P3 groups (28.47 ug/mg (IQR =15.64))
showed higher GAG content compared to the native
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Fig. 6 DNA content. After decellularization, samples treated with P1 and
P2 showed a significant reduction in DNA. The P3 samples did not reach a
point of significant reduction. In the subgroups, the tendinous and com-
bined samples showed lower DNA content than muscle samples in the
P1 and P2 groups. In the tendinous group of the P3 samples, almost no
reduction of DNA content could be found

samples. The difference was significant for both groups
(native vs. P2 p=0.004; native vs. P3 p=0.010). Looking
at the tissue subgroups, the tendinous samples showed a
lower GAG-content in all groups compared to the mus-
cular and myotendinous subgroups after decellulariza-
tion (Fig. 7).

Proteomics

The proteome is a complex and heterogeneous mixture
of proteins that can be identified in tissue samples and
further categorized using a range of analytical tools. The
matrisome, as part of the proteome, is divided into two
categories: the core matrisome, which includes collagens,
ECM glycoproteins, and proteoglycans, and matrisome-
associated proteins, which encompass ECM regulatory
proteins, ECM-associated proteins, and secreted factors
[34, 45].
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Fig. 7 Gag content. Gag content appeared to be stable after decellu-
larization with P1 and higher after treatment with P2 and P3. Looking at
the subgroups, the tendinous subgroups appeared to have a lower gag
content than the muscular or combined subgroups. These findings were
consistent across all decellularization groups

Following decellularization according to P1, P2 and
P3, 4,640 unique proteins were identified. Of these, 139
showed proteoforms leading to the same gene in the Uni-
Prot database (raw dataset, dataset with applied rules and
proteoforms lists can be found in Supplementary files 6—
8) were found. In the dataset, 251 proteins (5.41%) could
be matched with MatrisomeDB, provided by Naba et al.
[45, 46]. Of these, 126 (50.19%) were identified to belong
to the core matrisome. Most of them were ECM glyco-
proteins (n=81; 32.27%), followed by collagens (n=26;
10.36%) and proteoglycans (n=19; 7.57%). Matrisome-
associated proteins consisted of ECM regulators (n=62;
24.70%), ECM-affiliated proteins (n=38; 15.14%), and
secreted factors (1 =25; 9.96%).

All protocols shared a 55.38% concordance in pre-
served matrisomal fraction (PMF, n=139 proteins),
among these, P3 exhibited the highest number of pro-
teins preserved (n=240). P2 and P1 groups exhibited
seven and three unique proteins, respectively. However,
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they shared 14 and 28, respectively, proteins with the P3
group.

Following P1 decellularization, 157 proteins were iden-
tified, with 47.77% (n="75) present in all three tissue
types. Tendon contained the highest number of PMF pro-
teins (n=127), followed by myotendinous tissue (n=126)
and muscles samples (n=101). After P2 decellulariza-
tion, 175 matrisome proteins were identified. Myotendi-
nous samples had the highest PMF (n=160), followed by
muscle (n=148) and tendon (n=95) samples. 164 shared
matrisome proteins were identified following P3 decellu-
larization. In this group, tendon had the highest number
unique proteins (n=33; 13.75%).

When comparing the tissue subgroups within each pro-
tocol group, it was revealed that the muscle subgroups
shared 97 matrisome proteins (49.24%), the tendon sub-
groups shared 85 (37.95%), and the myotendinous junc-
tion subgroups shared 109 (51.90%). The P3 subgroups
exhibited a higher number of uniquely conserved pro-
teins (mus: n =46, 23.35%; tend: n =87, 38.84%; mt: n =38,
18.10%), whereas the P1 and P2 protocols demonstrated a
lower number (n=0-9; 0 - 4.29%) of uniquely conserved
proteins (Fig. 8).

Regarding the composition of the matrisomes in the
samples, the core matrisome fraction was found to be
the most heterogeneous in the P3 tendon group, com-
prising 69 ECM glycoproteins and 15 proteoglycans. The
combined samples from the P2 protocol group had the
highest number of collagens, with 23 proteins identified
after decellularization. The least heterogeneous mixture
of the core matrisome fraction was observed in the P1
muscle samples (14 collagens, 30 ECM glycoproteins, 10
proteoglycans).

P3 subgroups showed the greatest heterogeneity in the
matrisome-associated protein fraction, with 51 ECM
regulator proteins (P3 tend), 34 ECM-affiliated proteins
(P3 tend; P3 mus), and 18 secreted factors (P3 mt; P3
tend). The P2 tendon subgroup had the lowest number
of matrisome-associated proteins, with a total of only
12 ECM regulators, 13 ECM-associated proteins, and 1
secreted factor (Fig. 9).

Collagen I (COL1), collagen III (COL3), and collagen
VI (COL6) are essential components of the extracellular
matrix, each contributing to the structural integrity, elas-
ticity, and functionality of the tissue [47-49]. After decel-
lularization COL1 and COL6 showed preserved content.
COL3 also showed preservation in all subgroups. actin
(ACTA1), actinin (ACTN2, ACTN3) and myosins
(MYH2, MYH3, MYH4, MYL1, MYBPC1, MYBPC2)
were preserved to some extent in muscle and combined
tissue samples. A specific search for biglycan (BGN),
decorin (DCN), and fibromodulin (FMOD) in the data-
set showed their presence in all tendon subgroups after
decellularization. The tissue-specific protein marker for
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the myotendinous junction collagen 22A1 (COL22A1)
was detected in the P1 and P2 mt samples. Prolargin
(PRELP) and periostin (POSTN) were preserved after
decellularization in all myotendinous samples.

Semi-quantitative analysis revealed that 61 matrisome
proteins were present in all subgroups. 70.49% of these
proteins could be classified as core matrisome, compris-
ing primarily collagens and ECM glycoproteins (colla-
gens: n=12, 19.67%; ECM glycoproteins: n =22, 36.06%;
proteoglycans: n=9, 14.75%). In the matrisome-asso-
ciated fraction, only the ECM regulator proteins (n=9,
14.75%) and ECM-affiliated proteins (n=7, 14.75%) were
found to be common to all subgroups. The 20 most abun-
dant proteins (by median) shared by all subgroups are
presented in a heatmap in Fig. 9.

Discussion

Crapo et al. defined the decellularization criteria as a) the
depletion of visible cellular components in H.E. or DAP],
b) < 50 ng DNA per mg ECM dry weight, and c¢) DNA
fragment length not exceeding 200 bp [50]. We used
the depletion of visible cellular components and a DNA
content of <50 ng DNA per mg ECM dry weight as an
assessment since these two are used by various groups as
a standard for consideration of effective matrix decellu-
larization [25, 28, 32, 34, 51]. We observed a significant
reduction in DNA content, below the proposed cutoff,
in the P1 and P2 treated samples compared to the native
samples but could not reach below the threshold in the
P3 group. No significant difference was found between
the P1 and P2 treated samples. Within subgroups, muscle
tissues in P1 and P2 samples had higher DNA content
compared to tendon or myotendinous tissues. However,
a recent study showed that the endotoxin rather than the
residual DNA determines the host response and regen-
eration behavior of acellular biologic scaffolds [52].

In the P3 group a decrease in DNA was visible, but did
not reach significant levels and the determined cutoff.
Especially the tendon subgroup had significantly higher
DNA content than the muscle and myotendinous sam-
ples, treated with the P3 protocol, and did not show DNA
reduction within our laboratory setting.

The lower DNA content in tendon and combined sam-
ples for P1 and P2 may result from their reduced weight
and thickness, potentially enhancing decellularization by
altering the sample-detergent relationship. Reyna et al.
suggested that tissue size and composition strongly influ-
ence decellularization, requiring careful analysis for dif-
ferent muscles [53]. Differences in weight, thickness, and
tissue type visibly impacted decellularization, supporting
the hypothesis that these factors affect the outcome.

Histopathological analyses revealed a reduction in
nuclei compared to native tissue in all samples, with
varying degrees of structural preservation among the
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Fig. 8 Proteomics I. A) number of matrisome proteins shared after decellularization with the three different protocols. Most proteins are shared by all
decellularization protocols, while P3 samples had the highest number of uniquely preserved proteins. (B) and (C) showed the distribution of matrisome
proteins in the subgroups. In (B) they are grouped by decellularization protocol, in (C) by tissue type. In general, the P3 samples showed the highest
number of preserved proteins and the largest number of uniquely preserved proteins. A list of matrisome proteins and the subgroups in which they were
preserved is shown in the Supplementary file 5. Collagens and ECM glycoproteins were similarly preserved in many subgroups, whereas matrisome-
associated proteins showed more diverse pattern of preservation after decellularization

different protocols. It is possible that the remaining cell
nuclei and DNA fragments, in the P3 group, are the result
of the prolonged ethanol washing step. While ethanol is
commonly applied for its antibacterial effect, its dehy-
drating properties may have a similar effect to formalin,

when applied over an extended period, which may have
impacted the decellularization efficacy [54]. P1 and P2
utilize PBS or distilled water as the final washing step,
which may have benefited the decellularization process.
SEM showed that the surface morphology appeared to be
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Fig.9 Proteomics II. The distribution of the core matrisome and matrisome-associated proteins of the 251 proteins in the PMF are shown (A), annotated
with individual protein names. More than 50% of the PMF can be grouped as core matrisome. The individual matrisome distribution is visualized for the
decellularization groups (B) and subgroups (C). the P1 and P2 groups showed a lower number of secreted factors than the P3 samples after decellulariza-
tion. The collagen fraction and ECM regulators fraction appeared to be mostly stable in all subgroups. In (D), the 20 most prevalent matrisome proteins
(by median) preserved in all subgroups are demonstrated in a heatmap, showing their median prevalence in each group. Especially COL6AT, COL6A2,
COLTA1 and COL1A2 were highly preserved after decellularization. (mus: muscular; tend: tendinous; combi: combined)

intact in most areas of all samples, indicating a structural
preservation of the tissue in all three protocols. Typically,
the GAG content is expected to be stable or lower after
decellularization compared to the native sample [32, 55—
58]. We observed a higher GAG content per dry weight
after treatment with P2 and P3. This could be an effect of
the method, as described by Napierala et al. as a possible
finding, probably due to a loss of cellular protein mass
compared to the native samples [38].

Recent studies have found 368 to 5390 proteins in
native porcine muscle or tendon tissue, with a focus on
muscle tissue [59-65]. A recent study analyzing ECM
hydrogels of the gastrocnemius muscle — Achilles tendon
junction was able to detect 2528 proteins in decellular-
ized ECM, with many proteins expressed in both tissue
types [66].

We identified a total of 4640 proteins in the decellu-
larized samples combined, of which 251 (5.41%) could
be categorized using MatrisomeDB. Decellularization
using different protocols resulted in different protein

compositions, with P3 preserving the most matrisome
proteins. This finding may be related to the residual cel-
lular components observed in DNA- and histological
results. Regarding the matrisome preservation in the tis-
sue subtypes, it seemed that protocols favored different
tissues. P1 and P3 preserved more matrisome proteins in
tendinous samples, while P2 performed better in myoten-
dinous samples. Overall, the combined samples showed
only a low number of unique matrisome proteins, indi-
cating that overlapping preservation of the muscle tissue
and tendon tissue is represented here.

Robinson et al. and Bi et al. showed that BGN, DCN and
FMOD are important for maintaining tendon homeosta-
sis in terms of collagen fibril structure, fiber realignment
and mechanical properties, while BGN and FMOD are
important components that organize a cellular niche for
tendon stem and progenitor cells [67, 68]. The presence
of these proteins after decellularization might provide
structural guidance for seeded progenitor cells in an in
vitro setting. The myotendinous junction is a specialized
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unique architectural structure, where the muscle sarco-
lemma connects to the tendon ECM. While COL22A1
is a marker for myotendinous junctions, PRELP and
POSTN are associated with tissue surrounding the junc-
tion [69, 70]. The preservation of these proteins in the P1
and P2 myotendinous groups and of PRELP and POSTN
in the P3 myotendinous group indicates conservation
after decellularization of the extracellular structure typi-
cal of the myotendinous junction.

Boso et al. showed that their decellularized samples
maintained 11% of the matrisome-categorized proteins
[47]. 91.82% of their proteins matched our findings in the
proteomic analysis. We also observed a highly preserved
content of COL1 and COL6 in the matrisome fraction,
along with a preservation of COL3 after decellularization.
A recent analysis of murine diaphragm, native and decel-
lularized, showed similar results with 1352 proteins and
a matrisome fraction of 7.10%, with isoforms of COLI,
COL3 and COL6 being the most prevalent in the matri-
somal fraction in decellularized tissue [34]. The preserved
presence of COL3 may be a supporting factor, and it may
provide an optimal regenerative niche for progenitor cells
[49]. Preservation of COL6 may also be a beneficial fac-
tor upon recellularization, as Urciuolo et al. showed that
COLS6 is a critical component in the satellite cell niche
required for preserving self-renewal and muscle regen-
eration [71]. Some researchers suggest that, in addition to
depletion of cell nuclei, the absence of actin and myosin
in decellularized muscle tissue indicates sufficient muscle
decellularization [1, 53, 58]. Others only use the deple-
tion of nuclei as the major marker for decellularization,
while the presence of structural features like the contrac-
tile parts are not considered [25, 34]. In the muscular and
combined samples actins and myosins were preserved to
some extent, while depletion of cell nuclei was achieved
in the P1 and P2 samples. The impact of the presence of
actin and myosin after decellularization should be inves-
tigated in different application settings of decellularized
muscle tissue.

While we studied the matrisome fraction of decellular-
ized porcine muscle and tendon tissue, the entire pro-
teomic dataset provides us with a baseline for further
analysis in native and decellularized porcine diaphrag-
matic tissue. The usage of databases, such as STRING
database or PANTHER database, to further characterize
this tissue-specific proteome should be part of further
investigation.

Our study has some limitations. First, we must note
that we used the human dataset for matching with Matri-
someDB due to the lack of datasets for porcine samples.
This may have resulted in some proteins not being prop-
erly matched. However, since the porcine proteome
shows a considerable degree of similarity to the human
proteome, we accepted this limitation for our analysis
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[63]. Second, in our proteomic analysis, we considered a
result positive only if three or more samples in at least
one subset retained the protein. While this serves as a
quality marker to avoid false positives in a highly sensi-
tive measurement, it may have led to an underrepresen-
tation of some proteins in our analysis. Third, although
we expect the matrix to be suitable for recellularization
based on proteomic results and previous experiments
with the P2 protocol on human tissue, we did not con-
duct an in vitro recellularization experiment at this stage
of our research [32].

Fourth, in the P2, the concentration of DNase could not
be determined. Therefore, we adjusted the concentration
to that used in another protocol in our study, which may
have affected the reproducibility of the results from the
original publication. Fifth, there is a considerable differ-
ence between the GAG content of our P2 samples and
that of the original publication [32]. We used a different
method for processing and analyzing the GAG content,
which may have influenced the results and led to these
differences.

Sixth, biomechanical testing (BMT) is a valid method
for assessing matrix elasticity and is widely used with
decellularized tissue. In this study, however, we did not
perform BMT. Dissecting the diaphragm into 2.5 x 2.5cm
patches limited the sample geometry for BMT and could
have impaired comparability within the groups. Further-
more, the focus of this study was on decellularization
efficiency and matrisome preservation, with proteomic
characterization, microscopic assessment, and DNA
and GAG quantification. However, we would expect that
decellularization with P1-3 would have a similar effect on
mechanical properties in porcine tissue as in other tis-
sues, since it was tested there [28, 32, 34].

While having some limitations, our experiment’s
strength lies in its thorough and systematic comparison
of decellularization protocols for different types of por-
cine diaphragm tissue. It also provides a detailed descrip-
tion of the methods used. Our study further indicates
strong evidence that porcine diaphragm-derived scaf-
folds are well suitable for tissue engineering. We dem-
onstrated that decellularization effectively preserves key
extracellular matrix and matrisomal components.

We have found that tendon and muscle samples have
unique characteristics after decellularization. They tend
to retain tissue-specific differences that were not affected
by the use of a specific decellularization method. The dif-
ferences found using different decellularization proto-
cols may affect the application of the generated matrices.
Also, the regenerative effect of the different decellular-
ized matrices may vary after implantation. This study
establishes a further foundation for the translational
development of a clinically relevant biomaterial. Poten-
tial applications include the repair and reconstruction of
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congenital diaphragmatic hernia and complex soft-tissue
defects. Further evaluation in porcine models is crucially
needed, as porcine tissue exhibits similarities to human
tissue, thereby providing a predictive platform for pre-
clinical testing.

The decellularized scaffolds also provide a foundation
for future recellularization approaches using defined cell
combinations, supporting functional tissue regeneration.
A systematic study of the behavior of muscle progeni-
tor cells on different matrices could prove instrumental
in identifying further cellular requirements provided by
decellularized matrices.

Standardization of fabrication, mechanical validation,
and preclinical implantation studies will be essential
for regulatory advancement. Furthermore, the acellular
matrices may have the potential to function as off-the-
shelf patches, providing a scalable and simple to apply
option for surgical reconstruction.

Conclusion

This work is dedicated to the field of diaphragm tissue
engineering. The study involves the review and transfer
of established detergent-enzymatic treatment protocols,
with the objective of optimize them for porcine tissue.
This includes a comprehensive examination of the dis-
tinct effects of decellularization on the proteomic com-
position of tissue types found in porcine diaphragms.
The P1 (Andreas et al., modified) and P2 (Barbon et al.)
protocols have demonstrated efficacy in removing cellu-
lar components in all diaphragmatic tissue types, while
maintaining a distinctive structural and compositional
ECM architecture. A comparison of these two protocols
suggests that they are equally effective in decellulariza-
tion. However, it is important to note that the tendon
tissue may be more susceptible to adequate decellulariza-
tion. P3 (Deeken et al.) showed decellularization but did
not reach current decellularization standards within our
laboratory setting. This refinement of protocols, in-depth
characterization of decellularized tissues, and disclo-
sure of their matrisomal composition establishes a basis
for further investigation into the regenerative potential,
due to preserved scaffold structure, and its performance
upon recellularization or implantation.
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EDTA Ethylenediaminetetraacetate
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FASP Filter-aided sample preparation
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mt Myotendinous junction
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PBS Phosphate-buffered saline
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SEM Scanning electron microscopy
TBS Tris-buffered saline

TE Tissue engineering
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