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Abstract
Background  Congenital heart defects (CHDs) are the most common malformation amongst newborns, with a prevalence 
of approximately 0.8–2%. The etiology of CHD is highly complex and can be linked to genetic and nongenetic factors. The 
molecular basis remains partially unclear, and only a minority of patients can be assigned to clear monogenic causes.

Methods  Here we analyzed a cohort of 3907 CHD cases and population-matched controls using exome sequencing. 
In addition, we employed epigenetic profiling on a subset of cases that harbored rare NOTCH1 variants.

Results  We identified 24 pathogenic or likely pathogenic single nucleotide variants (SNVs) in NOTCH1 in our exome 
cohort, as well as a further 15 variants of uncertain significance (VUS) likely to have a deleterious effect. Although the 
cardiac phenotypes showed some heterogeneity, non-syndromic Tetralogy of Fallot (ToF) and related malformations 
were the most frequent finding in 56% (22/39). In particular, missense variants altering cysteine residues involved 
in forming disulfide bridges were identified, specifically in TOF patients. Altogether, NOTCH1-haploinsufficiency 
represented the most common monogenic cause in our cohort and accounted for an estimated 1% of CHD cases. 
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Background
Congenital heart defects (CHD) are one of the most com-
mon birth abnormalities, affecting approximately 0.8–2% 
of live births worldwide [1–3]. It is widely accepted as 
having a multifactorial etiology with complex interac-
tions between genetic and environmental factors during 
fetal development [4]. 

NOTCH1-signalling is one of the most important 
mechanisms during embryogenesis [5]. NOTCH1 
encodes a large single-pass membrane receptor that is 
involved in cell fate determination, differentiation, and 
the development of the nervous and cardiovascular sys-
tems. The latter includes regulation of cardiac precursor 
development, angiogenesis, vasculogenesis, and epithe-
lial-mesenchymal transition during valve development 
[5, 6]. 

Initial reports of non-syndromic CHD in humans asso-
ciated with NOTCH1-variants focused on malforma-
tions of the left ventricular outflow tracts (MIM#109730). 
However, subsequent publications have significantly 
broadened associated phenotypes, suggesting that 
conotruncal malformations of the cardiac outflow tract 
are a prevailing outcome, with phenotypes such as Tetral-
ogy of Fallot (ToF), truncus arteriosus communis (TAC) 
and double outlet right ventricle (DORV) [7, 8]. Patients 
with NOTCH1-variants may have an elevated risk for 
aneurysms of the ascending aorta [9]. Somatic activating 
NOTCH1 variants have also been related to tumorigen-
esis [10, 11]. In addition, NOTCH1-variants are known 
to cause Adams-Oliver syndrome, a condition mainly 
characterized by terminal transverse limb defects, aplasia 
cutis congenita, and various forms of CHD [12]. 

Understanding the genetic basis of CHD is crucial for 
improving diagnosis, for outcome or recurrence risk pre-
diction, and for developing targeted therapies. Although 
next-generation sequencing (NGS) has been success-
ful in identifying genetic variants associated with CHD, 
the mechanisms by which these pathogenic variants lead 
to CHD remain largely unknown. In addition, genomic 

studies are complicated by genetic heterogeneity of 
CHD and by the abundance of variants of unknown sig-
nificance (VUS). Individual functional testing of VUSs to 
confirm or refute their contribution to CHD is complex 
and time-consuming, and typically not performed in a 
diagnostic context. Recently, the testing of episignatures 
(DNAm) has evolved as an easy method to screen such 
cases, as it uses readily available genomic DNA from 
peripheral blood samples.

Epigenetics involves the study of heritable changes in 
gene expression that occur without altering the under-
lying DNA sequence. Among these mechanisms, DNA 
methylation is the most thoroughly studied. Numerous 
rare genetic disorders have been linked to unique DNA 
methylation profiles, known as episignatures [13]. In 
recent years, episignatures have emerged as robust and 
reliable biomarkers, playing a crucial role in diagnosing 
congenital genetic disorders and reclassifying VUSs [14–
18]. Their application in clinical diagnostic laboratories 
has demonstrated significant utility in providing diagno-
ses for patients with suspected rare genetic conditions 
who previously lacked a clear genetic diagnosis [19]. 

Reports of de novo variants histone modifying genes as 
well as altered DNA methylation in the context of CHD 
suggest that these mechanisms might contribute to the 
etiology of this disease [20–22]. 

Given that our cohort revealed NOTCH1 as the most 
common monogenic cause, we aimed to explore whether 
effects of these variants might also manifest in the DNA-
methylation pattern. In light of the high abundance of 
variants in NOTCH1 in CHD patients, this episignature 
can have a considerable contribution to the diagnostic 
management of these patients.

Methods
Discovery cohort description
The work presented herein is primarily based on a 
cohort of 3907 exome-sequenced patients with CHD 
and 5157 population-matched controls [23, 24]. 1438 

Combined with additional cases assembled through collaborations, we present 67 individuals with ultrarare variants 
affecting NOTCH1.
This prominent role of NOTCH1 calls for an accurate and accessible evaluation of variants. To this end we explored 
DNA methylation testing and successfully established a NOTCH1-specific episignature. This signature also displays a 
robust specificity in relation to 99 other episignatures. Taken together, we found that truncating, splice-altering, as 
well as missense NOTCH1 variants, can generate a distinct DNAm episignature.

Conclusions  We identified that NOTCH1-haploinsufficiency variants represented the most common monogenic 
cause in our cohort and accounted for an estimated 1 % of CHD cases. Furthermore, we conclude that methylation 
profiling can contribute to (NOTCH1) variant interpretation and improve the diagnostic management of CHD 
patients. Lastly, we established a NOTCH1-specific episignature, which represents the first non-syndromic signature, 
significantly extending the scope of patients that can benefit from methylation analysis.

Keywords  Congenital heart defects, NOTCH1, Disulfide-bridges, DNA-methylation, Tetralogy of Fallot, Episignatures
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(37%) displayed extracardiac phenotypes (syndromic 
CHD, S-CHD), while 2469 (63%) non-syndromic heart 
defects (non-syndromic CHD, NS-CHD). 977 individu-
als presented with conotruncal defects, including 484 
cases with ToF. Cases with various subgroups of CHD 
were included as long as the patient required interven-
tion within the first year of life. Samples with known 
structural variations, such as 22q11 syndrome, or chro-
mosomal aneuploidies, such as trisomy 21, were excluded 
if such a diagnosis was reported. Patient recruitment was 
conducted through multiple centers across Germany as 
well as from international centres [23, 24]. 

Samples were subjected to exome sequencing on DNA 
from peripheral blood using different versions of the 
SureSelect Exome chips (Agilent). Enriched libraries 
were subjected to 75-base paired-end sequencing (Illu-
mina HiSeq). Data curation and quality filtering of the 
sequencing data were performed in accordance with pre-
vious work of our group [23, 24]. Samples were restricted 
to European ancestry.

Following the quality control steps outlined above, vari-
ants were functionally annotated using the Variant Effect 
Predictor tool (VEP v.104) [25], extended using the plug-
ins CADD (version 1.6) and dbNSFP (version 4.1a) and 
evaluated based on the canonical transcript as defined by 
Ensembl (https://www.ensembl.org).

Functional domains and sites of post-translational 
modification in NOTCH1 were retrieved from UniProt 
(Identifier: P46531) (Table S1). Variants were collapsed 
into protein truncating variants (PTV), protein-altering 
variants (PAV) and synonymous variants (SYN).

Analyzed variants were prefiltered to an ultrarare fre-
quency defined as a minor allele count (MAC) of ≤ 2 in 
gnomAD V4.1.0, in a set of internal unpublished control 
samples of German origin and the UK-BioBank (UKBB). 
Variant pathogenicity was assessed following the work-
flow presented by the American College of Medical 
Genetics (ACMG) [26, 27]. The severity of PAVs was 
assessed using in-silico prediction tools CADD, MPC, 
and REVEL [28–30]. Thresholds were used following the 
suggestions made by Pejaver et al. [31]

For the classification of splice site variants, SpliceAI 
was used with a cut-off of ≥ 0.5 [32]. Enrichment test-
ing was carried out using a two-sided Fisher´s exact test 
(FET) and false-discovery rate (FDR) adjustment for mul-
tiple testing (n = 17 tests).

For all cases that underwent methylation profiling, 
genes related to DNA- or histone-methylation processes 
were reviewed. Genes were selected based on GO-terms 
GO:0035514, GO:0009008, GO:0140188, GO:0140940, 
GO:0140938 and GO:0140939 and filtered for species 
homo sapiens (see https://geneontology.org/) (Table S2). 
Variants were screened for pathogenic or likely patho-
genic variants following the ACMG guidelines [26, 27]. 

Assembly of additional cases
The findings from the initial cohort were extended using 
a genome-sequencing-based dataset of 1044 probands 
with non-syndromic congenital heart disease (CHD), 
containing 218 cases with transposition of the great 
arteries (TGA) and 826 with ToF. These samples were 
provided as part of a joint cohort from the Heart Cen-
tre Biobank Registry at the Hospital for Sick Children 
(Ontario, Canada), the Kids Heart BioBank at the Heart 
Centre for Children, The Children’s Hospital at West-
mead (Sydney, Australia) and the CONCOR-project 
(Amsterdam Medical Center; Netherlands) [33, 34]. 

Sequencing was performed on DNA from blood or 
saliva of probands using the Illumina HiSeqX using 
the Illumina TruSeq DNA PCR-Free kit. The reads 
were trimmed and cleaned by trimmomatic v.0.32 
[35], then mapped to human reference genome hg38 
using bwa v.0.7.15 [36], followed by realignment and 
calibration(GATK v.4.1.2.0). HaplotypeCaller was used 
to generate genotype Variant Call Format (gVCF) files for 
each sample, combined and joint called (CombineGVCFs 
and GenotypeGVCFs tools). SNVs and indels were reca-
librated separately by variant quality score recalibration 
(VQSR) tools, and variants that passed VQSR truth sen-
sitivity level 99.5 for SNPs and level 99.0 for indels were 
retained. The VariantFiltration tool was used to mark 
out the low Genotype Quality (GQ) SNV and indel sites 
whose GQ values were lower than 20 and read depths 
were lower than 10.

Post processing of the data was performed using 
Bcftools view (v1.9) to subset the joint-called 
whole genome VCFs for the region of interest 
(chr9:136,484,054–136,580,643) [37], followed by decom-
position and normalisation using vt v0.5, and annotation 
using VEP (v104.1) and VCFanno v0.3.1 [25, 38, 39]. 

Filtering and estimation of the deleteriousness of 
the variant were carried out as described for the initial 
cohort.

In addition, further variants were retrieved through 
personal communication with different collaboration 
partners, as outlined in Table 2.

Review of published NOTCH1-variants
Variants in Clinvar and publications reporting NOTCH1-
related cases were collected from PubMed as of June 
2024. Search parameters were “NOTCH1 and CHD or 
congenital heart defects or AOS or Adams-Oliver syn-
drome”. Publications were manually revised. Variants that 
were explicitly cited from previous publications or with 
missing information regarding the position or patient’s 
phenotype were excluded, as were synonymous variants 
and variants that were considered benign by the authors 
(Table S3).

https://www.ensembl.org
https://geneontology.org/
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Study cohort - methylation
A total of 26 individuals (12 males and 14 females) with 
NOTCH1-variants for whom material was available were 
included in the analysis of DNA methylation. The indi-
viduals were divided into one group for the discovery 
of the episignature (n = 19, of which 3 were negative for 
the episignature and removed) and additional samples 
to independently validate (n = 3) and assess VUS variants 
(n = 4). We used the discovery cohort for probe selection 
and construction of the classification model for the epi-
signature. All of these individuals had confirmed deleteri-
ous variants in NOTCH1.

DNA methylation data
Bisulfite-converted genomic DNA, extracted from 
peripheral blood, underwent application to the Infin-
ium Methylation EPIC Bead Chip (Illumina, San Diego, 
CA) array following the manufacturer’s protocol. Subse-
quently, utilising the minfi R package (version 1.44.0) and 
the intensity data files (IDATS) containing methylated 
and unmethylated signal intensities produced post-EPIC 
array were preprocessed and imported into R (version 
4.2.3) [40]. Standard preprocessing methods for Illumina 
microarrays were employed, involving background cor-
rection and normalisation. Quality control procedures 
included examining density plots and verifying con-
cordance between recorded and predicted sex and age. 
Finally, probes were filtered by excluding probes over-
lapping with single-nucleotide variations, cross-reactive 
probes, probes specific to regions on the X or Y chro-
mosomes, and probes with a detection p-value >0.1. The 
resulting number of probes after this filtration process 
was 772,557.

DNA methylation analyses
DNA methylation analyses were conducted following 
our previously published methodology [13, 15]. Matched 
controls were chosen from the EpiSign Knowledge Data-
base (EKD) based on age, sex, batch, and array type using 
the R package MatchIt (version 4.5.2) [41]. Samples 
exhibiting batch effects and/or more than 5% probe fail-
ure in the EKD were excluded. The training cohort and 
matched case-control samples underwent examination 
for data structure and outliers through principal compo-
nent analyses (PCA). Subsequently, feature selection was 
performed using matched cases and controls. Differential 
methylation analysis was carried out utilizing the limma 
package (version 3.54.2) [42] with linear regression fit-
ting. Methylation beta values served as predictors, and 
labels were used as the response, adjusting the model for 
estimated blood cell counts as confounding variables. The 
empirical Bayes method was applied to control for false 
discoveries, and adjustments were made using the Ben-
jamini-Hochberg procedure to compute the moderated 

t-statistics and p-values. To ensure biological relevance, 
probes with a mean methylation difference below 5% (Δβ 
< 0.05) between cases and controls were excluded. Each 
remaining probe was ranked using a composite score that 
combined effect size (absolute Δβ) with statistical confi-
dence (–log10 FDR-adjusted p-value). From this ranking, 
the top 800–1000 probes were retained. These were fur-
ther refined by receiver operating characteristic (ROC) 
curve analysis (retaining probes with high AUC values) 
and by removing probes with high inter-probe correla-
tion based on Pearson’s correlation coefficient, yielding a 
final set of 160–500 informative [13]. 

Further exploration involved investigating the dis-
tinct clustering of cases and controls using heatmaps 
and multidimensional scaling (MDS) with ggplots2 (ver-
sion 3.1.3). The optimal clustering was selected based on 
parameter values. Leave-one-out cross-validation and 
unsupervised clustering results were employed to assess 
the reproducibility of the episignature (Figure S1).

Prediction model
The sensitivity and specificity of the NOTCH1-episigna-
ture cohort were assessed through a classifier employing 
all episignature probes. A support vector machine (SVM) 
model was trained using the R package e1071 (version 
1.7–13) with the selected features and matched controls 
and cases as training data. To enhance specificity, 75% of 
the samples in the EKD (comprising those with an epi-
signature, unaffected samples, and training controls) 
were included, while the remaining 25% were designated 
for testing. This process was iterated four times, ensur-
ing that each sample served as a testing sample once. 
The average SVM, also known as the methylation vari-
ant pathogenicity (MVP) score, was then employed for 
further analysis. Rare disease episignature classification 
typically involves a substantial proportion of unaffected 
or “normal” samples alongside affected cases. In this 
context, SVM’s provide a superior capacity compared to 
alternative machine learning models, as it allows more 
accurate discrimination between disease states and unaf-
fected backgrounds, as well as among different episigna-
ture-positive conditions.

Overlap of the NOTCH1 genome-wide dna methylation 
profile with other episignature positive rare disorders
Functional annotation and comparison of the EpiSign™ 
classifier v5 cohort were conducted based on previ-
ously published articles [43]. The assessment involved 
determining the percentage of differentially methylated 
positions (DMPs) shared between the NOTCH1-episig-
nature and the other 99 neurodevelopmental disorder 
episignatures on the EpiSign™ v5 clinical classifier. Heat-
maps were created using the R package pheatmap (ver-
sion 1.0.12), and circos plots were produced with the R 
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package circlize (version 0.4.15) [44]. To identify rela-
tionships across all cohorts with known episignatures, 
clustering analysis was performed. Utilising the R pack-
age TreeAndLeaf (version 1.6.1) [45], a tree and leaf plot 
was generated to visualise the distances and similarities 
between the cohorts. For an exploration of the genomic 
location of the selected DMPs, probes were annotated 
in relation to CpG islands (CGIs) and genes using the R 
package annotatr (version 1.20.0) [46] with Annotation-
Hub (version 3.2.2), as described previously by Levy et al. 
[43]. 

In-silico modelling of NOTCH1 variants
For each variant-related region, structural models were 
generated using AlphaFold3. The modelled structures 
were subsequently subjected to conformational sampling 
with PyRosetta [47, 48], using 20 independent FastRelax 
trajectories under the ref2015 scoring function [49, 50]. 
Both backbone and side-chain flexibility were allowed, 
with disulfide bonds constrained according to the Uni-
prot annotations and AlphaFold3 prediction. Among the 
resulting models, the structures within the lowest energy 
were selected for downstream analysis. Underlying mod-
els and resulting structures are outlined in Table S4 and 
Figures S5-S9.

Results
Enrichment of deleterious NOTCH1-variants in a large CHD 
case-control cohort
In the analyzed cohort of 3907 exome-sequenced patients 
with CHD and 5157 population-matched controls, del-
eterious NOTCH1-variants were the most frequent 
monogenic finding. Filtering regarding ultrarare variants 
affecting the coding region and canonical splice sites of 
NOTCH1 yielded 76 variants. Based on this initial vari-
ant set, enrichment testing was performed for truncating 
variants (PTVs), synonymous (SYN) and protein altering 
variants (PAVs), which were grouped based on in-silico 
predictions. Furthermore, distinct functional domains 
were tested for individual enrichment of PAVs. We inves-
tigated disulfide bridges, as these are frequent, especially 
in the extracellular EGF-like domains, and are essential 
for correct protein folding.

PTVs, as well as PAVs with strong in-silico pathoge-
nicity predictions, were enriched (padj = 1.09e-04, padj = 
0.047) (Table  1). Furthermore, ultrarare PAVs that dis-
rupted disulfide bridges were enriched (padj = 0.025) and 
were almost exclusively found amongst patients with 
ToF (9/10 cases). In total, this type of variant was pres-
ent in 1.85% (9/484) of ToF-cases. EGF-like repeats were 
also significantly more affected in CHD-cases. However, 

Table 1  Enrichment testing for ultrarare NOTCH1-variants. Testing results of ultrarare variants affecting NOTCH1 in 3907 CHD cases vs. 
5157 controls. Testing was performed using FET. P-values were adjusted using false-discovery rate (FDR) with n = 17 tests. Significance 
was defined as padj < 0.05. Significant scenarios are printed in bold. PTVs are defined as stop-gain, frameshift, and splice-site variants. 
PAVs are defined as missense and indels. PP3 corresponds to the severity of in-silico prediction tools evaluating REVEL, CADD and 
MPC-score as proposed by Pejaver et al. [31] ANK = Ankyrin domain, CI = confidence interval, EGF = Epidermal growth factor, FDR = 
false discovery rate, HD = heterodimerisation domain, LNR = Lin12/Notch repeats, OR = odds ratio, PAV = Protein altering variant, PEST 
= PEST domain, PP3 = ACMG criterion for deleterious in-silico predictor, PSEN = Interaction with presenelin 1, PTV = Protein truncating 
variant, RAM = RBP-Jκ-associated module, TAD = transcriptional activation domain, SYN = synonymous variant
Scenario Carrier cases Carrier controls p_raw p_FDR OR CI95%
PTVs 17 1 6.41e-06 1.09e-04 22.53 3.5–937.8

Disulfide bonds 10 1 1.47e-03 0.025 13.23 1.9–572.8

EGF-like repeats 17 5 1.82e-03 0.030 4.50 1.6–15.6

PAVs (PP3str) 7 0 2.76e-03 0.047 Inf 1.9 - Inf

PAVs (PP3mod) 10 3 0.021 0.364 4.41 1.1–24.9

Novel cysteine formation 4 0 0.034 0.586 Inf 0.9 – Inf

EGF-like repeats
(excl. Disulfide bonds)

8 4 0.143 1 2.64 0.7–12.0

RAM 1 0 0.431 1 Inf 0.03 - Inf

Ankyrin 2 1 0.581 1 2.64 0.1–155.7

PAVs (PP3sup) 3 2 0.658 1 1.98 0.2–23.7

SYN 6 6 0.772 1 1.32 0.4–4.9

TAD 3 3 1 1 1.32 0.2–9.9

LNR 2 2 1 1 1.32 0.1–18.2

PEST 2 2 1 1 1.32 0.1–18.2

PAVs (neutral or benign in-silico) 9 12 1 1 0.99 0.4–2.6

HD 0 1 1 1 0 0–51.4

PSEN 0 1 1 1 0 0–51.4
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this was attributed mainly to overlap with disulfide-
bond affecting variants (the exclusion of these vari-
ants results in a loss of significance (ratio 8 to 4, praw = 
0.143)). Amongst the individual EGF-like repeats, no 
individual repeat was significantly enriched (data not 
shown). Interestingly, no PAVs in the vicinity of the 
ligand binding site (residues 420–421, 448–452, 469 each 
± 5 residues) were observed. For none of the other tested 
functional domains, particular enrichment was observed. 
None of the discovered cases had pathogenic variants in 
established CHD genes or genes involved in DNA- or 
histone-methylation.

Review of published NOTCH1-variants
Through a review of publications that reported NOTCH1 
variants, we assembled a list of 204 unique variants 
reported in 304 cases (Table S3). Of these cases, 238 were 
reported in the context of CHD, 22 in the context of tho-
racic aortic aneurysms (TAAD) and 44 in Adams-Oliver 
syndrome (AOS).

Missense variants were distributed throughout the 
entire protein without overrepresentation of particular 
domains. NOTCH1 missense variants affecting disulfide 
bridges were reported in both CHD and AOS cases with 
a slight enrichment in AOS (14/238 CHD, 10/44 AOS, 
p = 0.001; OR 4.7, 95%-CI 1.71–12.4, two-sided FET). One 
disulfide-altering variant was also found in a TAAD-case. 
Interestingly, all 14 variants affecting disulfide bridges 
identified in CHD cases were reported to have ToF or 
related malformations. A comprehensive overview of all 
disulfide-impacting variants can be found in Table S5. 
In addition, PAVs in the vicinity of the ligand binding 
site were found in 8/44 AOS patients versus 2/238 CHD 
cases (p = 6.93e-06; OR 25.7, 95%-CI 4.9–256.5.9.5, two-
sided FET).

Assembly of additional cases
In an independent genome-sequenced cohort [34], we 
identified no variants similar to the ones in our case-
control cohort among 218 cases of TGA. However, in 826 
ToF cases, we identified four ultrarare PTVs, five cases 
with ultrarare PAVs disrupting disulfide bonds, and two 
additional ultrarare PAVs with strong in-silico predic-
tion scores (Table 2). Collectively, deleterious variants 
in NOTCH1 were thus found in 1.5% (10/641) of Euro-
pean ToF cases and 1.3% (11/839) of samples regardless 
of population (Fig. 1A). In addition, we assembled a fur-
ther 17 samples from the centres of various co-authors. 
These either fulfilled the filtering criteria established 
above, were deemed potentially causal due to evidence 
from segregation with the disease within the family, 
or were considered of interest for validation purposes 
regarding the specificity of the episignature analysis (see 

below). Collectively, we found 63 ultrarare, deleterious 
NOTCH1-variants in 67 individuals (Fig. 1; Table 2).

Of note, regions surrounding and preceding the extra-
cellular ligand binding site, as well as the intercellular 
ankyrin-repeats, display high conservation and low vari-
ant abundance in the population. Interestingly, we did not 
observe variants near the ligand binding site (Fig.  1A), 
while this appears to be a region frequently affected in 
AOS (Fig. 1B).

Discovery and validation of the NOTCH1-episignature
The collected cases displayed a heterogeneous pheno-
typic outcome as well as the type and classification of 
variants affecting NOTCH1 which called for an accu-
rate and accessible evaluation of these variants. We thus 
explored DNA methylation testing on a subset of avail-
able samples. The resultant probe set generated from a 
discovery cohort of 19 samples effectively distinguished 
between cases and controls (Fig.  2, Table S6). However, 
three samples from the discovery group (cases #35, #56, 
#58) didn’t align with the episignature and were excluded 
from the training set (Fig. 2, light purple). Two of these 
samples consistently grouped with controls in the heat-
map and MDS plots, displaying MVP scores close to 0; 
the other sample had a higher MVP score (0.88) but was 
not consistently grouped with the discovery cases and 
couldn’t be included in the discovery cohort. To validate 
the NOTCH1-episignature, we used three additional 
samples with confirmed pathogenic variants in NOTCH1 
(cases #57, #62, #64), all of which aligned with the epi-
signature (Fig.  2A, dark purple). Furthermore, each of 
these cases yielded a high MVP score, affirming their 
resemblance to our NOTCH1-episignature (Fig. 2B, dark 
purple).

After having successfully established an episignature, 
we investigated whether we could use it to reclassify 
VUSs. To this end, we evaluated four VUS samples (cases 
#15, #39, #53, #60). Our analysis revealed that two sam-
ples (cases #15, #39) aligned with the NOTCH1-episigna-
ture, while the other two did not (Fig. 2A and B, yellow).

Comparison of the NOTCH1 global DNAm profile 
with other neurodevelopmental disorders included in the 
EpiSign V5 classifier.

To explore the concurrence between the DNAm pro-
files defining the NOTCH1 cohort and those previously 
identified in 99 other disorders using the EpiSign™ v5 
classifier [13, 19, 51, 52], a functional analysis focusing on 
the overall DNAm alterations observed in the NOTCH1 
cohort was conducted. Regarding the genomic loca-
tion of the DMPs, most were located within Inter_CGI 
regions (39%), shores (23%), CDS (40%) and intergenic 
regions (26%) (Figure S2). Using clustering analyses on 
the top 500 most significant DMPs for each cohort, the 
NOTCH1 cohort exhibited the highest proportion of 
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DMP overlap with Sotos syndrome (34%) and Tatton-
Brown-Rahman syndrome (TBRS) (25%) in compari-
son with 99 other episignatures (Fig. 3A). Furthermore, 
cluster analysis using tree and leaf plots unveiled simi-
larities between NOTCH1 and other disorders, notably 
Lysine Methyltransferase 2D (KMT2D_p.3400–3700) 
and Smith-Magenis syndrome (SMS_del; 17p11.2) 
groups (Fig. 3B). Finally, the mean differences in β-values 
between NOTCH1 and other known episignature dis-
orders revealed more hypomethylation changes in the 
NOTCH1 cohort (Fig. 3C).

Enrichment analysis of probes of the episignature
Of the 210 probes contained within the identified episig-
nature, 120 overlap with protein-coding genes (Table S7). 
Seven of these (EYA1, ISL1, MSX2, NFATC4, PRDM16, 
RAI1 and TRAF7) represent genes previously published 

in the context of cardiac defects [53–59]. Upon perform-
ing a STRING analysis of NOTCH1 with all 120 genes, we 
noted several interactions, particularly for one large net-
work containing 32 of the 121 genes (Fig. 4, Full String 
network: Figure S3). Interestingly, GO-term enrichment 
analysis of the 32 genes of this network revealed “Regu-
lation of secondary heart field cardioblast proliferation” 
(GO:0003266) as the highest-ranking term, involving 
NOTCH1, ISL1 and EYA1 (Table S8).

  

Discussion
Here we report on a large exome-sequenced cohort, in 
which we identified ultrarare variants affecting NOTCH1 
as the most common monogenic cause of CHD. In addi-
tion, we established a distinct episignature in patients 
with NOTCH1-associated non-syndromic CHD. Given 

Fig. 1  Overview of variants found in NOTCH1. A: Representation of NOTCH1 variants found in the analyzed samples. Each dot represents an identified 
variant colour-coded by the corresponding phenotype group. “TOF (-like)” includes ToF, DORV and TAC (blue). “AOS_features” marks cases that displayed 
extracardiac anomalies possibly consistent with an AOS phenotype (red). Other CHD (darkgray) reprents all non-TOF-like phenotypes. Cases without 
CHD are shown in light gray. Functional domains are shown based on Uniprot (for details refer to Table S1). B: Overview of previously reported missense-
variants. (see Table S3 for details). Variants are split and color-coded based on the corresponding reported phenotype. Black: (ns-)CHD, Red: Adams-Oliver-
Syndrome, Blue: thoracic aortic aneuyrism. C: Density plot of missense variants present in gnomAD V4.1.0. D: Amino acid conservation as retrieved from 
Aminode.[53] Depicted is the substitution score per amino acid. High values indicate a low conservation of the residue
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the high abundance of variants in NOTCH1 in CHD 
patients, this episignature can possibly contribute to the 
diagnostic options for these patients.

Our results indicate that deleterious NOTCH1 variants 
might account for up to 1% of all CHD cases (38/3907 in 
our cohort), 2.2% amongst conotruncal defects (22/977) 
and ToF in particular (17/484; 3.5%). As illustrated by 
the literature reviewed as part of this work, NOTCH1 is a 
well-established contributor to CHD and ToF appears to 
be one of the predominant cardiac manifestations besides 
left-sided malformations.

Importantly, for none of our cases with ultra-rare 
NOTCH1 variants, was an alternative genetic explana-
tion identified. We also excluded the presence of patho-
genic variants in DNA- and histone-methylation related 
genes, which could possibly interfere with DNA-methyl-
ation independently of NOTCH1. This further strength-
ens our conclusion that the episignature correlates to 
NOTCH1-variants.

An interesting finding was the identification of ultra-
rare NOTCH1 variants that specifically impair disul-
fide bridges in the extracellular region of NOTCH1 in 
patients with conotruncal defects. This observation is 

substantiated by previous reports [8, 60, 61]. Disulfide 
bridges contribute to the correct three-dimensional pro-
tein structure and are highly conserved. We hypothesize 
that alterations of these residues alter the conformation 
of the extracellular regions, thereby hindering ligand 
binding and activation of NOTCH1-signalling.

Consequently, specific attention should be paid to cys-
teine-altering variants when analysing NOTCH1 variants. 
Conversely, we also observed four CHD samples with 
variants that created novel cysteines, while none were 
found in controls. Novel cysteines might similarly result 
in an altered protein conformation. Whether this is a rel-
evant disease mechanism remains to be elucidated in fur-
ther studies.

Of note, an experimentally-derived structure of 
the full NOTCH1-protein is not available, thus limit-
ing interpretability of structural effects. Nevertheless, 
we applied in-silico modelling for variants that might 
potentially alter disulfide-bonding patterns. Not all vari-
ants yielded a clear pattern. In some instances, however, 
modelling information concurred with the methylation 
signal, providing suggestions for the molecular basis of 
pathogenicity.

Fig. 2  Discovery and validation of the NOTCH1-episignature. A: The Euclidean hierarchical clustering heatmap depicts each column representing one 
NOTCH1 discovery case (highlighted in red), along with mild signatures (light purple), VUS (yellow), and validation samples (dark purple). Each row corre-
sponds to a specific probe selected for this episignature. Notably, a distinct separation is observed between the cases (in red) and controls (in blue). How-
ever, it’s worth mentioning that the negative cases tend to cluster together with the controls, except for one. B: The multidimensional scaling (MDS) plot 
illustrates the separation between NOTCH1 cases and controls, including the negative sample identified in (A). C: In the SVM classifier model, the selected 
NOTCH1-episignature probes were used to train the model. 75% of controls and 75% of samples from other neurodevelopmental disorders (depicted in 
blue) were utilised for training, while the remaining 25% of controls and 25% of other disorder samples (grey) were reserved for testing
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Given the considerable size and clinical importance of 
the NOTCH1-gene, variant assessment is a frequently 
recurrent task in the diagnostic setting. Indeed, we 
observed a considerable number of variants with uncer-
tain effects in our cohort.

The mapping of Mendelian disorders with disease-
specific DNAm episignature biomarkers and the iden-
tification of global disruptions in DNAm profiles are 
increasingly prevalent [13, 15]. Aberrant DNAm within 
gene promoters can disturb gene expression and result 
in abnormal phenotypes [62, 63]. As such episignatures 
are also extensively employed for the evaluation and 
reclassification of VUS [15, 63], we investigated whether 
a differential DNAm episignature is associated with 
NOTCH1-related CHD. We delineate a distinct DNAm 
episignature and demonstrate that it is sensitive and 
robust through cross-validation analysis. Additionally, we 
illustrate the specificity of this signature relative to con-
trols and other episignature disorders.

Episignatures are consistently detectable in periph-
eral blood across more than 200 genes studied to date, 
the vast majority of which are associated with condi-
tions lacking any hematologic phenotype. While system-
atic cross-tissue validation remains an important future 
research direction, current evidence supports the reli-
ability and clinical utility of peripheral blood–derived 

episignatures, even though this is not the primary tissue 
affected in NOTCH1-related CHD.

Three cases with ultra-rare NOTCH1 variants (#35, 
#56, #58), suspected to be pathogenic, clustered with 
controls and demonstrated an absence of the NOTCH1-
episignature. Case #35, carrying a variant in a canonical 
splice acceptor site, displayed an intermediate overlap 
with the episignature. Exon skipping through disruption 
of this splice site could potentially preserve the reading 
frame and result in a shortened, but intact protein. Such 
an altered protein might still have residual activity, result-
ing in a hypomorphic effect and generate the interme-
diate signature overlap. However, due to lack of patient 
material, we could not validate this using RNA sequenc-
ing. Case #56 carried a de novo NOTCH1 missense vari-
ant (p.(Gly427Arg)). This patient displayed symptoms 
consistent with Adams-Oliver syndrome, with a compa-
rably minor cardiovascular involvement (patent ductus 
arteriosus, pulmonary hypertension). Given the phe-
notype and the poor prediction score for the NOTCH1 
signature of this sample, it could indicate that the iden-
tified signature might be more informative for severe 
NOTCH1-related cardiac phenotypes, rather than AOS. 
Lastly, case #58 diagnosed with TGA and carrying the 
p.(Arg592Cys) NOTCH1 variant, also demonstrated lack 
of overlap with the NOTCH1-episignature. However, this 

Fig. 3  Assessment of the amount of DMPs shared between the NOTCH1 cohort and other syndromes with known episignatures. A: Methylation probe 
overlap. The percentage of DMPs shared between disorders is shown on the colour scale, ranging from white (0%) to red (100%). Each square in the graph 
represents the percentage of common probes between two syndromes, with the percentage of DMPs from the syndrome on the lower bar that also exist 
in the DMPs of the syndrome on the right-hand sidebar. B: A tree-and-leaf diagram is used, where each node represents a cohort, and syndromes with 
more similarity in methylation levels are located closer on the tree. Node size is related to the ratio of the number of DMPs to the total number of probes, 
while node colour demonstrates the overall mean methylation difference in the corresponding cohort. C: Comparison of the global mean methylation 
differences between syndromes with known episignatures

 



Page 16 of 21Dombrowsky et al. Genome Medicine            (2026) 18:2 

variant was reported in 17 samples in the newest gno-
mAD freeze (v.4.1.0) and has been listed as benign and as 
a VUS in ClinVar. Retrospectively, this variant would no 
longer be considered as (likely) pathogenic. Accordingly, 
in-silico modelling suggests that this variant is unlikely to 
result in the formation of a new stable disulfide-bridge.

Epigenetic signatures can be very useful to (re)classify 
VUS. We therefore investigated four individuals with a 
NOTCH1 VUS. Two cases (#15 and #39) clustered with 
the NOTCH1-episignature, indicating that those variants 
might contribute to disease etiology. Case #15 represents 
a ToF case with hypothyroidism and renal phenotypes, 
segregation was not possible due to lack of parental 
DNA.

For case #39 we could establish paternal inheritance 
for the VUS. However, to our knowledge, the father 
does not have CHD or NOTCH1-related phenotypes. 
As incomplete penetrance is frequent in CHD fami-
lies, analysing the segregation of the episignature in this 
family would provide valuable insights, as it allows bet-
ter understanding whether the episignature is a result of 
altered NOTCH1 activity, or rather indicates a modify-
ing mechanism that enforces a CHD phenotype expres-
sion in carriers of NOTCH1-variants. Unfortunately, the 
paternal DNA was not available for methylation testing. 
Based on in-silico modelling, this variant might lead to 
a disruption of the hydrophobic environment, increases 
flexibility of the ANK region, and thereby destabilises 
MAML1-interaction. Despite the paternal inheritance, 
both modelling and episignature testing concordantly 
suggest an effect of this variant. Two cases (#53, #60) did 
not have overlap with the episignature. Case #53 carry-
ing the p.(Glu242Lys) variant has no cardiac phenotype, 
but does exhibit various syndromic features. The variant 

is maternally inherited and the phenotype is also pres-
ent in the mother, suggesting a possible segregation with 
the phenotype. The other case (#60), that did not have an 
overlap with the episignature, carried the p.(Asp622Asn) 
variant, and comes from a family with pulmonary arte-
rial hypertension. Given the above, although suggestive, 
we conclude that a negative episignature cannot yet be 
used as definitive evidence for the absence of patho-
genicity. Further analyses, on larger numbers of cases 
with NOTCH1 VUS and their epigenetic signatures, are 
needed to establish this.

While systematic ancestry-focused studies on episigna-
ture biomarkers have not been performed, experimental 
design for feature selection, and available evidence from 
large scale studies and testing programs supports the 
robustness of episignatures across ancestral and ethnic 
backgrounds [19]. Nevertheless, future studies should 
preferably focus on non-European samples to confirm 
independence of the episignature from ancestry effects. 
While some of the cases also presented with extracar-
diac phenotypes, we did not observe generalizable simi-
larities, especially none for which the episignature might 
have a predictive value. The current data suggests a lim-
ited sensitivity for mild or syndromic cases. Testing addi-
tional samples with AOS-features might thus help to 
assess predictive value outside of nsCHD-cases.

Looking more closely at the differentially methylated 
positions (DMPs) of the identified NOTCH1  signature, 
we found minimal overlap between the NOTCH1 signa-
ture's DMPs and other established signatures (Fig. 3A), 
underscoring the highly specific nature of the NOTCH1 
episignature. Sotos- (34%) and TBR-syndrome (25%) had 
the largest overlaps. Sotos syndrome is caused by hetero-
zygous mutations in the NSD1 gene and is characterized 

Fig. 4  STRING interaction network of genes which are collocated with probes in the NOTCH1-episignature. Nodes represent overlapping genes. Edges 
represent data indicating an interaction, comprising “Textmining” (green lines), “Experiments” (pink lines) and “Databases” (blue lines). The minimal re-
quired interaction score cutoff was defined at >0.4. The full interaction network can be found in Figure S3 [84].
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by overgrowth, facial abnormalities, brain anomalies, 
seizures, and impaired intellectual development [64]. 
However, some Sotos patients also present with CHD, 
which could explain the overlap in some of the DMPs 
[65]. TBR syndrome is caused by dominant variants 
in the DNMT3A gene and is characterized by impaired 
intellectual development, face abnormalities, tall stature, 
seizures, scoliosis and large head circumference. There is 
only limited literature about patients with TBR syndrome 
presenting with CHD [66]. 

In addition, the closest established episignatures 
resembling NOTCH1 were found to be KMT2D-related 
as well as Smith-Magenis syndrome, which is associated 
with impairment of RAI1 (Fig. 3B). Both genes are associ-
ated with CHD [67, 68]. Furthermore, one probe of the 
NOTCH1-episignature overlaps with the UTR of RAI1.

One important question is how pathogenic NOTCH1-
variants could generate a specific DNAm-signature. 
NOTCH-signalling has been reported to interact 
with histone-methyltransferases such as KDM5A and 
SETD1A [69, 70]. Moreover, crosstalk between histone-
modification and regulation of DNA-methylation pat-
terns is well documented [71]. Given the above, we 
hypothesize that pathogenic NOTCH1 variants lead 
to altered NOTCH1-signalling which in turn affects 
histone-methyltransferases thereby impacting DNA-
methylation patterns. Alternatively, it is known that the 
NOTCH1 intracellular domain (ICN) localizes to endo-
thelial cell mitochondria, where it enhances mitochon-
drial metabolism [72]. In addition, a NOTCH1 variant 
observed in a non-syndromic ToF patient was demon-
strated to decrease ICN mitochondrial localization and 
pyruvate dehydrogenase activity in heart tissues [72]. 
Pyruvate dehydrogenase is integral for mitochondrial 
bioenergetics. This is of interest as recent findings suggest 
that mitochondrial dysfunction can, in turn, cause altera-
tions in metabolic processes tightly intertwined with 
DNA methylation, such as the methionine cycle [73]. 
NOTCH-signalling is one of the earliest and most signifi-
cant events in (cardiac) development and remains active 
throughout life. It is therefore conceivable that alterations 
of this pathway have long lasting implications, amongst 
others on DNA-methylation. Additional functional test-
ing e.g. applying ChIP-seq and RNA-seq could help shed 
light on underlying interactions. Due to unavailability of 
material, these tests could not be integrated in the scope 
of the presented data.

To look further into the connection between NOTCH1, 
methylation and CHD we sought to determine whether 
genes underlying the DMPs of the NOTCH1episignature 
are associated with cardiac development. We identified 
120 genes overlapping DMPs, several of these (7/120) are 
indeed known to be involved in cardiogenesis and have 
been associated with CHD.

A surprisingly large STRING-interaction network con-
taining 32 genes was found and revealed overrepresenta-
tion of the GO-term regulation of secondary heart field 
cardioblast proliferation. In particular, ISL1 and EYA1 
emerged as interesting contributors to this process. ISL1 
encodes a transcription factor of the LIM/homeodomain 
family regulating cell proliferation and survival [74]. It is 
described as a marker of early progenitor cell populations 
that contribute to the outflow tract, right ventricle, a sub-
set of left ventricular cells and a large number of atrial 
cells [75, 76]. Moreover, pathogenic variants in ISL1 have 
been reported in patients with CHD (DORV, VSD) [77, 
78]. and NOTCH1-signalling has been shown to posi-
tively regulate ISL1-expression in cardiac progenitor cells 
[79, 80]. 

 EYA1 is a member of the eyes absent (EYA) family of 
proteins, which acts as a protein phosphatase and tran-
scriptional coactivator [81]. In humans, variants in EYA1 
are associated with the branchiootorenal syndrome type 
1 (OMIM 113650), a condition involving malformations 
of the ears and kidneys, as well as craniofacial abnormali-
ties. Cardiac abnormalities are typically not part of the 
spectrum, but double-null Eya1-mice display impaired 
cardiovascular development with an interrupted or right-
sided aortic arch, amongst others [82]. Interestingly, the 
Eya1-Notch1 axis has been shown to play a role in vari-
ous developmental processes [83]. Dephosphorylation 
of the intracellular NOTCH1 (ICN) through EYA1 is 
thought to stabilise the protein, thus contributing to an 
enhanced NOTCH1-signalling [81]. 

Concluding, genes underlying the DMPs of the 
NOTCH1-episignature have direct and indirect links to 
(cardiac) development. It is therefore possible that aber-
rant alterations in methylation of these genes, as a con-
sequence of pathogenic NOTCH1 variants, could lead to 
CHD. Future research into these interactions is needed to 
elucidate the detailed mechanisms.

In general, given the high prevalence of NOTCH1 
variants among patients with CHD and having identi-
fied a specific NOTCH1 DNAm signature, we argue 
that DNAm analysis can contribute substantially to a 
more accurate variant assessment, ultimately resulting 
in improved case management. Moreover, this signature 
broadens the potential applications of epigenetic test-
ing as DNA from peripheral blood is usually available 
for individuals undergoing clinical genetic testing. Fur-
thermore, this work can lead to follow-up studies, such 
as refining sub-signatures amongst the individual sub-
types, extending the signature with regards to syndromic 
NOTCH1-related phenotypes, elucidating the underlying 
mechanism of this episignature and potentially extending 
this approach to other genes related to non-syndromic 
CHD.
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Conclusions
In this work we report on one of the largest cohorts with 
NOTCH1-associated CHD cases. Our analysis identified 
variants disrupting disulfide-bonds as a novel and fre-
quent mechanism for conotruncal malformations. Over-
all, deleterious variants in NOTCH1 are found in 1% of 
CHD cases and over 2% of conotruncal malformations, 
making it the most common monogenic cause in this 
type of disorder. In addition, we established a NOTCH1-
specific DNAm-signature, representing the first such sig-
nature in non-syndromic CHD-cases. We also show that 
genes underlying this signature have direct and indirect 
links to (cardiac) development and CHD. Overall, this 
novel signature considerably broadens the applicability of 
epigenetic testing and facilitates assessment of NOTCH1 
variant pathogenicity.
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