

1 **Erlotinib induces 3D genome rearrangements in lung cancer cells**
2 **activating tumor suppressor genes**
3 **through FOXA2-bound Epromoters**

4 **Author list:**

5 Guruprasadh Swaminathan¹, Julio Cordero^{2, 3}, Stefan Günther^{4, 5}, Johannes Graumann⁶,
6 Thomas Braun⁵, Gergana Dobreva^{2,3,7}, and Guillermo Barreto^{1,*}

7 **Affiliations:**

8 ¹Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France.

9 ²Department of Cardiovascular Genomics and Epigenomics, European Center for
10 Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim,
11 Germany.

12 ³German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany.

13 ⁴ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and
14 Lung Research; 61231 Bad Nauheim, Germany.

15 ⁵Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research;
16 61231 Bad Nauheim, Germany.

17 ⁶Institute of Translational Proteomics & Core Facility Translational Proteomics, Department
18 of Medicine, Philipps-University Marburg; 35043 Marburg, Germany.

19 ⁷Helmholtz-Institute for Translational Angio-Cardio Science (HI-TAC) of the Max Delbrück
20 Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University,
21 69117 Heidelberg, Germany

22 * Correspondence to: Guillermo.Barreto@univ-lorraine.fr

23

24 **ABSTRACT**

25 Non-small cell lung cancer (NSCLC) is the most frequent lung cancer (LC). While erlotinib is
26 an epidermal growth factor (EGFR) tyrosine kinase inhibitor (TKI) used in the treatment of
27 NSCLC, it remains unclear how this FDA-approved drug affects the genome. We performed
28 integrative multi-omics studies in human pulmonary carcinoma cells to elucidate the epigenetic
29 mechanisms induced by erlotinib. We identified 746 genes (including 34 tumor suppressor
30 genes, TSG) that were upregulated after treatment with erlotinib or gefitinib (another EGFR-
31 TKI). Interestingly, 45% of the upregulated genes (including 24 TSG) were in broad domains
32 of the euchromatin histone mark H3K4me3, and 63% (including 26 TSG) exhibited reduced
33 levels of the heterochromatin histone mark H3K27me3 after erlotinib treatment. Further,
34 H3K27ac-specific chromosome conformation capture-based methods revealed that erlotinib
35 significantly increased number and length of chromatin loops between promoters of
36 upregulated genes and active enhancers. We also detected augmented chromatin accessibility
37 after erlotinib treatment at the promoters of upregulated genes, which correlated with binding
38 of the transcription activator FOXA2. Remarkably, we identified gene clusters that seem to be
39 upregulated by promoters with enhancer activity (Epromoters) enriched with FOXA2. The
40 clinical relevance of our findings was confirmed by data from The Cancer Genome Atlas,
41 showing significantly improved survival outcomes in LC patients with high levels of *FOXA2*
42 and/or the 34 TSG found upregulated by erlotinib. Our results establish 3D genome
43 rearrangements as molecular mechanism mediating EGFR-TKI effects in NSCLC cells,
44 supporting the design of more specific therapies for NSCLC targeting different chromatin
45 features.

46

47 **KEYWORDS:** Lung cancer, H3K4me3, broad domains, H3K27me3, promoter-enhancer
48 looping, Epromoter, FOXA2

49

50 INTRODUCTION

51 Genomic alterations in tumor suppressor genes (TSG, such as *TP53* and *RBI*) and oncogenes
52 (such as *EGFR*, *KRAS*, *ALK*, *RET* and *ROS1*) are known to drive malignant transformation in
53 cancer [1–5]. However, while some cancers develop because of genomic alterations, others do
54 not, suggesting alternative events that trigger cancer. Specific chromatin rearrangements
55 provide a plausible explanation for those cancers that arise without somatic mutations, since
56 changes in chromatin are key events that must occur before cancer-related genes are expressed
57 [6–8]. Eukaryotic transcription occurs within the physiological template of chromatin, which
58 is hierarchically organized at different levels including chromosomal territories, compartments,
59 self-interacting topologically associating domains, and chromatin loops, altogether resulting in
60 a highly dynamic three-dimensional (3D) genome organization that plays an important role in
61 transcriptional regulation [9]. Chromatin can be structurally condensed blocking the access of
62 the transcription machinery to transcriptionally inactive regions (heterochromatin), or
63 structurally relaxed mediating the access of the transcription machinery to transcriptionally
64 active regions (euchromatin). Post-translational histone modifications are one of the
65 mechanisms by which chromatin structure and transcription are regulated. Tri-methylated
66 lysine 4 of histone 3 (H3K4me3) is a well-characterized euchromatin histone mark related to
67 genes with high transcriptional activity [10,11]. Additionally, studies have demonstrated that
68 genes with broad H3K4me3 domains exhibit higher transcriptional activity compared to those
69 with narrow domains [11,12]. Moreover, H3K4me3 broad domains are associated with
70 increased transcription elongation and enhancer activity, which together lead to high
71 expression of TSG [11]. On the other hand, tri-methylated lysine 27 of histone 3 (H3K27me3)
72 is a well-characterized heterochromatin histone mark that is deposited by the poly-comb
73 repressive complex 2 (PRC2) and is associated with transcriptional repression for cell type-
74 specific genes [13–16]. Further, H3K27me3 is characteristic for distal regulatory elements in

75 the genome that are capable of silencing gene expression (so called silencers), whereas it also
76 accumulates over intergenic regions and non-transcribed gene bodies forming large blocks of
77 H3K27me3-marked loci [17–20].

78

79 Structurally less-condensed euchromatin not only facilitates access of the transcriptional
80 machinery to promoters, but also binding of transcription factors (TFs) and co-activators to
81 typical enhancers (TYE), which are relatively short (~100–1000 bp) DNA sequences that
82 function as distal regulatory elements controlling transcription of their cognate promoters [21–
83 23]. In addition, super-enhancers (SE) are clusters of enhancers enriched with specific histone
84 marks (such as histone 3 monomethylated at lysine 4 or acetylated at lysine 27, H3K4me1 and
85 H3K27ac respectively), cofactors (such as components of the multimeric protein complex
86 cohesin and mediator of RNA polymerase II transcription subunit 1, MED1) and cell-type-
87 specific TFs [24–26]. Interestingly, E-promoters have been reported as promoters with
88 structural and functional characteristics of enhancers regulating not only the expression of their
89 cognate gene but also of other distal genes [27–30]. Chromatin loops can bring into close
90 physical proximity two distant sequences of DNA. Thus, chromatin looping is broadly accepted
91 as a means for enhancer-promoter interactions [31].

92

93 Pioneer TFs belonging to the FOXA protein family are embryonic master regulators playing a
94 crucial role in the development of organs that arise from the endoderm, such as the lung,
95 pancreas, liver, colon and prostate [32–36]. Accumulating evidence supports that FOXA
96 pioneer TFs induce embryonic expression signatures in non-cancerous somatic cells causing
97 malignant transformation during cancer initiation [7,37]. Forkhead Box A2 (FOXA2) is an
98 embryonic master regulator from the FOXA family of pioneer TFs that has been related to a

99 range of cancer subtypes [36,38–42]. In the context of lung cancer (LC), FOXA2 functions as
100 a TSG, playing a critical role in preserving epithelial integrity and halting cancer progression
101 [43,44]. FOXA2 can bind its target DNA sequence at promoters or enhancers even within
102 compacted chromatin and mediate changes in chromatin structure that allow binding of other
103 TFs to induce cell-type-specific gene signatures maintained through mitotic cell division [45].
104 The pioneered opening of regulatory elements at facultative heterochromatin and the
105 subsequent binding of TFs mediating signal-dependent, cell-type-specific transcription is
106 referred to as assisted loading [45]. Interestingly, pioneer factors exhibit cell-type-specific
107 binding patterns and can be excluded from specific chromatin structures such as constitutive
108 heterochromatin [46,47].

109
110 LC is histologically classified into small cell lung cancer (SCLC) and non-small cell lung
111 cancer (NSCLC) [48]. Whereas SCLC is a highly aggressive cancer that spreads very fast and
112 represents 15% of all LC cases [2,49], NSCLC progresses at a comparatively slower rate and
113 accounts for 85% of all LC cases [50]. NSCLC is further subcategorized into lung
114 adenocarcinoma (LUAD; 45%), squamous cell carcinoma (LUSC; 25%), and large cell
115 carcinoma (15%) [51]. Despite advancements in treatments, LC remains the leading cause of
116 cancer-related dead worldwide [52], and early detection remains essential for improving
117 survival rates [53–56]. Activation of epidermal growth factor receptor (EGFR) plays a key role
118 in LC progression [57,58]. Mutations in the EGFR are identified in 32% of NSCLC cases,
119 predominantly in LUAD. The majority of these EGFR mutants have either multi-nucleotide in-
120 frame deletions in exon 19 (ΔEx19), or a point mutation in exon 21 of *EGFR*, in which leucine
121 858 is substituted by arginine (L858R), each of these somatic mutations resulting in activation
122 of the tyrosine kinase domain of EGFR. The small molecules erlotinib and gefitinib are EGFR
123 tyrosine kinase inhibitors (TKIs) used to manage and treat specific NSCLC and pancreatic

124 cancer [59,60]. LUADs responsive to these EGFR-TKI possess the *EGFR* mutations described
125 above and often increased *EGFR* copy number [61,62]. Erlotinib and gefitinib inhibit EGFR
126 tyrosine kinase activity by reversibly competing with ATP for binding in the kinase domain.
127 However, the effects on the genome of LC cells caused by EGFR-TKI have been sparsely
128 studied. Here, we performed integrative multi-omics studies to determine the effect of blocking
129 EGFR by erlotinib on the 3D genome of NSCLC cells to elucidate the epigenetic mechanisms
130 leading to expression of TSG, thereby providing further insights into the therapeutic effects of
131 EGFR-TKIs, as well as the molecular basis for designing more specific therapies for NSCLC
132 targeting different chromatin features.

133

134

135 **RESULTS**

136 **Erlotinib increases H3K4me3 broad domains associated with gene activation.**

137 We analyzed the transcriptome of a human alveolar basal epithelial adenocarcinoma cell line
138 (A549) after erlotinib treatment by total RNA sequencing (RNA-seq, Fig. 1a-b, Supplementary
139 Fig. 1a-b, Source Data file). From the transcripts that were significantly affected by erlotinib
140 treatment (n = 1,002), a minority (n = 256; 25.5%) showed reduced expression after erlotinib
141 treatment, whereas 74.5% (n = 746; further referred to as upregulated transcripts or genes)
142 showed increased expression with a median of $-0.6 \log_2 \text{RPKM} + 1$ and an interquartile range
143 (IQR) of $3.9 \log_2 \text{RPKM} + 1$ ($P = 3.49E-283$), as compared to $-1.37 \log_2 \text{RPKM} + 1$ (IQR = 3.86
144 $\log_2 \text{RPKM} + 1$) in control (Ctrl) non-treated cells (Fig. 1b, top). These 746 upregulated genes
145 after erlotinib treatment included 34 genes that were previously reported as TSG (Source Data
146 file). Further, we also detected significantly increased expression of the 746 upregulated genes
147 in four different publicly available RNA-seq datasets (Supplementary Fig. 1c, Source Data
148 file), including erlotinib treated A549 cells [63], as well as PC-9 cells treated with erlotinib,
149 gefitinib or osimertinib [64–66], confirming our results in two human pulmonary
150 adenocarcinoma cell lines treated with different EGFR-TKIs. Interestingly, single-cell RNA-
151 seq (scRNA-seq) in a lung adenocarcinoma patient-derived xenograft tumor model, in which
152 tumor-bearing mice were non-treated or erlotinib treated [67] showed that the cell cluster with
153 highest *EGFR* levels was the only cell cluster with significantly increased expression of the 34
154 TSG included in the 746 upregulated genes (Supplementary Fig. 1d). These scRNA-seq results
155 in a lung adenocarcinoma patient-derived xenograft tumor model confirmed the RNA-seq
156 results in two human pulmonary adenocarcinoma cell lines (Fig. 1a-b; Supplementary Fig. 1c),
157 as well as demonstrated a direct correlation between *EGFR* levels and cell sensitivity to
158 erlotinib. To determine the clinical relevance of the *in vitro* RNA-seq and *in vivo* scRNA-seq
159 results, we analyzed RNA-seq data from control donors and NSCLC patients deposited at The

160 Cancer Genome Atlas (TCGA; Fig. 1c). We found that expression levels of the 746 upregulated
161 genes were significantly lower in non-treated NSCLC patients (median = 2.06 log2 TPM+1;
162 IQR = 4.16 log2 TPM+1; P = 5.53E-5) as compared to Ctrl donors (median = 2.2 log2 TPM+1;
163 IQR = 5.12 log2 TPM+1). In addition, expression levels of the 746 upregulated genes
164 significantly increased in NSCLC patients that were treated with erlotinib (median = 3.23 log2
165 TPM+1; IQR = 4.49 log2 TPM+1; P = 3.35E-110) as compared to non-treated NSCLC patients.
166 Similar results were obtained by analyzing the RNA-seq data from control donors and NSCLC
167 patients deposited at TCGA focusing on the expression of 34 TSG included in the 746
168 upregulated genes (Fig. 1c, bottom; Source Data file). These findings in Ctrl donors and
169 NSCLC patients non-treated or treated with erlotinib confirmed the results in human
170 pulmonary adenocarcinoma cell lines (Fig. 1a-b; Supplementary Fig. 1c) and in the lung
171 adenocarcinoma patient-derived xenograft tumor model (Supplementary Fig. 1d). Gene Set
172 Enrichment Analysis (GSEA) of the differentially expressed genes (DEGs) after erlotinib
173 treatment (Fig. 1d) revealed significant enrichment of signaling pathways related to cancer,
174 including EGFR-resistance, PI3K-AKT-, mTOR-, MAPK-, TGFB- and NF κ B-signaling across
175 the upregulated transcripts, whereas glycolysis, WNT-, TNF- and IL-17-signaling were
176 significantly enriched in the down-regulated transcripts. To further investigate the effect of
177 erlotinib treatment in lung adenocarcinoma cells, we performed a sequencing experiment
178 following chromatin immunoprecipitation (ChIP-seq) for genome-wide profiling of H3K4me3
179 (Fig. 1e-h, Supplementary Fig. 2a, Source Data file). Correlating with the effect of erlotinib
180 treatment in the transcriptome of A549 cells, we detected genome-wide increase of H3K4me3
181 levels after erlotinib treatment (Fig. 1e, top; median = 0.47 RPMM; IQR = 3.31E-3 RPMM; P
182 = 1.17E-26), as compared to Ctrl non-treated cells (median = 0.44 RPMM; IQR = 6.51E-3
183 RPMM). Since the increasing effect of erlotinib in H3K4me3 levels was not observed at
184 transcription start sites (TSS) -/+2 kb (Fig. 1e, bottom), we performed genome-wide peak

185 distribution analysis of the H3K4me3 ChIP-seq and found that the number of H3K4me3 peaks
186 increased after erlotinib treatment at promoters and gene bodies as compared to Ctrl non-treated
187 cells (Fig. 1f). To gain further insight into this finding, we determined broad and narrow
188 domains of H3K4me3 (Fig. 1g) and found that H3K4me3 broad domains spanning promoters
189 and gene bodies showed a significant increase in erlotinib-treated cells from 79.5% to 85.1%
190 ($P < 1E-4$) for promoters and from 25.3% to 27.3% ($P = 0.03$) for gene bodies, compared to
191 control non-treated cells, whereas non-significant change was observed in intergenic regions.
192 Further analysis showed that 338 genes coding for transcripts that were increased after erlotinib
193 treatment as determined by RNA-seq in two different human pulmonary adenocarcinoma cell
194 lines (Fig. 1a-b, Supplementary Fig. 1c) were located in H3K4me3 broad domains and included
195 26 known TSG (Fig. 1h; Supplementary 2b). Focusing on the H3K4me3 broad domains
196 spanning these 338 upregulated genes (Fig. 1i, top; Source Data file) we detected significantly
197 increased H3K4me3 levels after erlotinib treatment at promoters (median = 2.37 RPMM; IQR
198 = 1.28 RPMM; $P = 9.9E-12$) and gene bodies (median = 1.93 RPMM; IQR = 0.89 RPMM; P
199 = 4.1E-7), as compared to the same promoters (median = 2.12 RPMM; IQR = 1.09 RPMM)
200 and gene bodies (median = 1.67 RPMM; IQR = 0.55 RPMM) in Ctrl non-treated cells.
201 Focusing on H3K4me3 broad domains spanning promoters and bodies of genes that were
202 downregulated after erlotinib treatment (Fig. 1i, bottom), erlotinib treatment did not
203 significantly change H3K4me3 levels. The levels of H3K4me3 significantly increased after
204 erlotinib treatment at promoters and gene bodies of these 338 genes that were upregulated after
205 erlotinib treatment, supporting that H3K4me3 broad domains are associated with increased
206 transcription elongation.

207

208 **Gene activation induced by erlotinib correlates with reduced H3K27me3 broad domains.**

209 To further investigate the effect of erlotinib on the chromatin landscape, we performed a
210 sequencing experiment following Cleavage Under Targets and Tagmentation (CUT&Tag) for
211 high-resolution genome-wide profiling of the heterochromatin histone mark H3K27me3 in Ctrl
212 non-treated or erlotinib treated A549 cells (Fig. 2a-d, Supplementary Fig. 3a-c; Source Data
213 file). We detected significant genome-wide reduction of H3K27me3 levels after erlotinib
214 treatment (Fig. 2a, top; median = 0.98 RPMM; IQR = 0.08 RPMM; P = 9.32E-13) as compared
215 to Ctrl non-treated cells (median = 1 RPMM; IQR = 0.1 RPMM). In contrast to the results
216 obtained for H3K4me3 at the TSS -/+2kb (Fig. 1e, bottom), we detected significant reduction
217 of H3K27me3 levels at TSS -/+2kb after erlotinib treatment (Fig. 2a, bottom). However, in
218 reflection of our observations for H3K4me3, genome-wide peak distribution analysis of the
219 H3K27me3 CUT&Tag revealed that the majority of the H3K27me3 peaks were also in broad
220 domains (Supplementary Fig. 3b). In addition, H3K27me3 broad domains spanning promoters
221 and gene bodies showed a significant decrease in erlotinib-treated cells from 82.6% to 78% (P
222 < 1E-4) for promoters and from 29.3% to 23.6% (P < 1E-4) for gene bodies, compared to
223 control non-treated cells (Fig. 2b, Source Data file). Focusing on the 746 upregulated genes
224 after erlotinib treatment (Fig. 1a-b and Supplementary Fig. 1c), we found that H3K27me3
225 levels were reduced in 63% (n = 470) of these genes including 24 TSG, whereas in only 256
226 genes (34%) including 9 TSG the H3K27me3 levels were increased (Fig. 2c; Supplementary
227 Fig. 3c). Focusing on the H3K27me3 broad domains spanning these 470 upregulated genes
228 (Fig. 2d; Source Data file) we detected significantly decreased H3K27me3 levels following
229 erlotinib treatment at promoters (median = 4.64 RPMM; IQR = 3.96 RPMM; P = 8.87E-8) and
230 gene bodies (median = 4.1 RPMM; IQR = 3.75 RPMM; P = 1.7E-2) as compared to the same
231 promoters (median = 4.82 RPMM; IQR = 3.93 RPMM) and gene bodies (median = 4.56
232 RPMM; IQR = 3.88 RPMM) in Ctrl non-treated cells. Our results indicate that erlotinib

233 treatment reduced genome-wide H3K27me3 levels including promoters and bodies of 470
234 genes that were upregulated following erlotinib treatment.

235

236 **Erlotinib activates enhancers and increases promoter-enhancer chromatin loops.**

237 As the majority of DEGs following erlotinib treatment in two different human pulmonary
238 adenocarcinoma cell lines presented increased transcript levels (Fig. 1a-b, Supplementary Fig.
239 1c), we investigated the effect of erlotinib specifically in enhancers. We performed H3K27ac
240 ChIP-seq in Ctrl non-treated or erlotinib treated A549 cells (Supplementary Fig. 4a) and
241 analyzed the data using the rank-ordering of super-enhancers (ROSE) algorithm [68] to
242 distinguish SE from TYE (Fig. 3a, left). We detected 1,649 SE in Ctrl non-treated A549 cells
243 and this number significantly increased to 1,739 ($P = 1.02E-4$) following erlotinib treatment.
244 Comparison of the genomic coordinates of the SE in Ctrl and erlotinib treated cells showed
245 that only 701 SE were in common between both conditions (Fig. 3a, right). Furthermore, while
246 we observed after erlotinib treatment significantly reduced H3K27ac levels in 948 SE that were
247 specific to Ctrl cells (Fig. 3b, top; Source Data file), the levels of H3K27ac significantly
248 increased in 1,038 SE that were specific for erlotinib treated cells (Fig. 3b, bottom; Source Data
249 file). Genome-wide peak distribution analysis of the H3K27ac ChIP-seq data (Fig. 3c) showed
250 that the increase of H3K27ac levels took place in intergenic regions, whereas the reduction of
251 H3K27ac levels occurred at promoters and gene bodies, suggesting that most of the new SE
252 after erlotinib treatment were in intergenic regions.

253

254 To determine the effect of erlotinib on 3D chromatin conformation we implemented a
255 technique that combines *in situ* Hi-C library preparation with a chromatin immunoprecipitation
256 (HiChIP, Fig. 3d-g, Supplementary Fig 4b-c, Source Data file). We used for this HiChIP-seq

257 chromatin from Ctrl non-treated or erlotinib treated A549 cells and H3K27ac-specific
258 antibodies to precipitate active enhancers that physically interact with promoters. We detected
259 a significantly increased number of chromatin interaction hubs after erlotinib treatment (Fig.
260 3d, top) that were distributed across all chromosomes (Fig. 3e). Furthermore, the length of the
261 chromatin loops also significantly increased after erlotinib treatment (Fig. 3d, bottom; median
262 = 16.11 kb; IQR = 2.53 kb; P = 2.22E-16) as compared to Ctrl non-treated cells (median =
263 15.88 kb; IQR = 2.5 kb). The increased number of chromatin loops following erlotinib
264 treatment was more pronounced in chromatin loops exceeding 50 kb (Fig. 3f). Moreover, of
265 the 746 upregulated genes (Fig. 1a-b, Supplementary Fig. 1c), we found 81% (n = 605) to
266 physically interact through chromatin loops with active enhancers, including 42% (n = 312)
267 with SE and 39% (n = 293) with TYE (Fig. 3g; Supplementary Fig. 4c; Source Data file).

268

269 **Erlotinib increases chromatin accessibility at Epromoters and super-enhancers bound by**
270 **pioneer transcription factor FOXA2.**

271 Integrative analysis of the H3K4me3 ChIP-seq (Fig. 1e-i, Supplementary Fig. 2a-b),
272 H3K27me3 CUT&Tag (Fig. 2a-d, Supplementary Fig. 3a-c) and H3K27ac HiChIP-seq (Fig.
273 3d-g, Supplementary Fig. 4b-c) revealed that 214 genes among the 746 upregulated genes
274 following erlotinib treatment (1) were located in H3K4me3 broad domains, with increased
275 H3K4me3 levels, (2) have decreased H3K27me3 levels and (3) were physically interacting
276 with active enhancers via chromatin loops (Fig. 4a), all these chromatin features likely
277 contributing to their increased expression after erlotinib treatment. Exploring the chromosome
278 distribution of the 746 upregulated genes, we found that groups of these genes were in various
279 chromosomes in same A compartments (Fig. 4b; Supplementary Fig. 5a) suggesting that genes
280 in the same A compartment may be co-regulated. Visualization of the loci of various of these
281 gene clusters using the integrative genome viewer (IGV) (Fig. 4c; Supplementary Fig. 5b),

282 showed that genes in the same cluster were interacting through chromatin loops with each other
283 and with enhancers. Moreover, the number and the length of the chromatin loops inside each
284 cluster increased following erlotinib treatment, confirming our genome-wide results (Fig. 3d-
285 g). Interestingly, analysis of publicly available ChIP-seq datasets [69,70] showed that the
286 anchors of the chromatin loops were enriched with CTCF and components of the cohesin
287 complex (RAD21 and SMC1A), suggesting their involvement in the regulation of chromatin
288 changes induced by erlotinib.

289
290 To gain further insight into these results, we analyzed sequencing data based on assay for
291 transposase-accessible chromatin (ATAC-seq) in Ctrl or erlotinib treated pulmonary
292 adenocarcinoma PC-9 cells [71] (Fig. 5a; Supplementary Fig. 6a-b; Source Data file). We
293 found that erlotinib treatment significantly increased chromatin accessibility at TSS -/+1 kb of
294 the 214 upregulated genes (Fig. 5a, top) and the 34 upregulated TSG (Fig. 5a, bottom). Motif
295 search analysis of these TSS -/+1kb (Fig. 5b) revealed significant enrichment of nucleotide
296 sequences containing binding motifs for the pioneer TF FOXA2 [7]. Confirming these results,
297 FOXA2-specific ChIP-seq (Fig. 5c; Supplementary Fig. 6c-d; Source Data file) showed
298 significant enrichment of FOXA2 at the TSS -/+0.5kb of the 214 upregulated genes and the 34
299 upregulated tumor suppressor genes in a second pulmonary adenocarcinoma cell line (A549),
300 whereas FOXA2 was not enriched at the same TSS in a human SCLC cell line (NCI-H889)
301 supporting specificity of FOXA2 enrichment at TSS of the 746 upregulated genes with respect
302 to the LC type (Supplementary Fig. 6d). Remarkably, similar results were obtained for the
303 active, H3K27ac-labelled 1,038 SE (Fig. 3a-b) induced by erlotinib treatment (Fig. 5d-f). At
304 these distal regulatory elements (SE), we observed increased chromatin accessibility following
305 erlotinib treatment (Fig. 5d), significantly enriched nucleotide sequences containing FOXA2
306 binding motifs (Fig. 5e) that were confirmed by ChIP-seq showing FOXA2-enrichment at the

307 active SE (Fig 5f). IGV genome browser snapshots focusing on the loci of the gene clusters
308 previously shown in Fig. 4c and Supplementary Fig. 5b revealed increased chromatin
309 accessibility following erlotinib treatment at the promoters of the upregulated genes, as well as
310 at the enhancers that physically interacted with these promoters through chromatin loops (Fig.
311 6, top; Supplementary Fig. 6e, top). Interestingly, we observed inside each gene cluster that
312 FOXA2 enrichment was higher in one of the promoters as compared to the promoters of other
313 genes in the same cluster, specifically in pulmonary adenocarcinoma cells (Fig. 6, middle;
314 Supplementary Fig. 6e, middle). Similarly, promoters with enhancer activity (Epromoters) that
315 regulate transcription of various genes in a cluster are preferentially bound by a key TF [29,30].
316 Thus, we implemented a script to predict Epromoters [30] and found that those promoters with
317 higher FOXA2 enrichment in each cluster were identified as Epromoters (Fig. 6, bottom;
318 Supplementary Fig. 6e, bottom). Further, we analyzed an RNA-seq dataset in A549 cells
319 containing long non-coding RNA molecules (50-2000 nucleotides) transcribed from enhancer
320 regions (so called enhancer RNAs, eRNAs) [72,73], and found that eRNAs are transcribed
321 from the predicted Epromoters (Fig. 6, bottom; Supplementary Fig. 6e, bottom), and with a
322 lower frequency from the enhancers and other promoters in the same cluster. To confirm the
323 results from the IGV genome browser snapshots of the loci of the gene clusters presented in
324 Fig. 6 and Supplementary Fig. 6e, we predicted Epromoters [30] in the 746 upregulated genes
325 and found 139 Epromoters with significantly increased chromatin accessibility after erlotinib
326 treatment (Fig. 7a, Source Data file), significant enrichment of nucleotide sequences containing
327 FOXA2 binding motifs (Fig. 7b, Source Data file) that was confirmed by ChIP-seq showing
328 FOXA2-enrichment at Epromoters in pulmonary adenocarcinoma cells (A549) compared to
329 the same loci in human SCLC cells (NCI-H889) supporting specificity of FOXA2 enrichment
330 at these 139 Epromoters with respect to the lung cancer type (Fig 7c, Source Data file).
331 Moreover, RNA-seq-based transcriptome analysis in cells that were transfected with Ctrl or

332 *FOXA2*-specific small interfering RNAs (siRNA, *siCtrl*, *siFOXA2*; Fig. 7d, Supplementary
333 Fig. 6f; Source Data file) showed a significant decrease in the expression levels of the 746
334 upregulated transcripts, including the 214 upregulated genes identified in Fig. 4a and the 34
335 TSG, after *FOXA2*-specific loss-of-function (LOF; Fig 7d) demonstrating the requirement of
336 *FOXA2* for the basal transcriptional levels of these genes. Our results indicate that the genes in
337 the same clusters are (1) co-activated after erlotinib treatment through increased chromatin
338 accessibility at TSS, (2) binding of *FOXA2* preferentially to an Epromoter in each cluster, (3)
339 physical interaction with active SE via chromatin loops that are stabilized by CTCF and the
340 cohesin complex.

341

342 **Gene expression signature induced by erlotinib can be used for diagnosis and prognosis
343 of LUAD patients.**

344 Extending our findings to translational applicability, we performed principal component
345 analysis (PCA) of RNA-seq data from Ctrl donors and NSCLC patients deposited at TCGA
346 restricted to 746 upregulated genes following erlotinib treatment (Fig. 1a-b; Supplementary
347 Fig. 1c). This analysis not only allowed us to differentiate between Ctrl donors and NSCLC
348 patients, but also to discriminate between the NSCLC subtypes LUAD and LUSC (Fig. 8a,
349 left). Similar results were obtained after PCA of RNA-seq data deposited at TCGA using the
350 expression of 214 upregulated genes identified in Fig. 4a (Fig. 8a, right). Further, genome-wide
351 association studies (GWAS) of cancer genomics datasets revealed 960 single nucleotide
352 polymorphisms (SNPs) in the 34 TSG included in the 746 upregulated genes (Fig. 8b).
353 Interestingly, 26% (n = 246) of these SNPs were found in LC genomics datasets, from which
354 LUAD was the most frequent (16%; n = 152) followed by LUSC (5%; n = 49) (Fig. 8c). The
355 most frequent mutation type in the LC-specific SNPs was missense mutations (75%; n = 185)
356 (Fig. 8d). Similarly, GWAS of cancer genomics datasets focusing on the 1,038 SE induced

357 after erlotinib treatment revealed 164 SNPs, from which 22% (n = 36) were found in LC
358 genomics datasets (Fig. 8e). Interestingly, 44% (n = 16) of these SNPs were found in LUAD
359 genomics datasets, followed by LUSC data sets (19%; n = 7) (Fig. 8f). Survival analysis of the
360 1,411 LC patients from the Kaplan-Meier plotter [74] (Fig 8g, left; Source Data file) showed a
361 significantly longer survival of patients with increased levels of the 34 TSG included in the
362 746 upregulated genes after erlotinib treatment (n = 704; median survival = 99.4 months;
363 hazard ratio = 0.62; P = 2.5E-10; Cox regression) as compared to patients with low expression
364 levels (n = 707; median survival = 52 months). Remarkably, the positive effect of the increased
365 levels of the 34 TSG on the longer survival of patients was specific to LUAD patients (Fig. 8e,
366 middle; Source Data file), since it was not observed in LUSC patients (Fig. 8e, right; Source
367 Data file). Similar results were obtained when the *FOXA2* expression levels were considered
368 for survival analysis in the 2,166 LC patients from the Kaplan-Meier plotter (Supplementary
369 Fig. 7a-c; Source Data file). These findings support the clinical relevance of the 746 genes
370 upregulated following erlotinib treatment identified here (Fig. 1a-b; Supplementary Fig. 1c) as
371 gene expression signature not only for molecular differentiation of NSCLC patients in LUAD
372 and LUSC, but also for prognosis prediction of LUAD patients, which might help to develop
373 patient-tailored therapies.

374

375 **DISCUSSION**

376 Geusz and colleagues demonstrated a dual role for FOXA pioneer TFs in endodermal organ
377 development [26]. First, in endodermal organ precursor cells, FOXA pioneer TFs bind to
378 primed enhancers, which are enriched for strong FOXA binding motifs, as well as for binding
379 motifs of cell-lineage-specific TFs mediating response to determined signaling pathways, such
380 as EGF signaling. The binding of FOXA pioneer TFs to these primed enhancers induced
381 chromatin rearrangements resulting in a more accessible chromatin state at genomic elements
382 regulating organ cell type-specific gene expression. Second, this accessible chromatin state
383 allows cell-lineage-specific TFs to bind these regulatory elements and modulate gene
384 expression facilitating signal-dependent lineage initiation and enforcing organ cell type-
385 specific gene expression. Our results support the hypothesis that FOXA pioneer TFs play a
386 similar dual role in NSCLC and regulate chromatin rearrangements that allow binding of cell-
387 lineage-specific TFs mediating response to EGF signaling to induce cancer-related gene
388 expression signatures. Supporting this hypothesis, we showed that blocking EGF signaling in
389 NSCLC cells by EGFR-TKIs induce changes in their 3D genome, including increased
390 H3K4me3 broad domains, reduced H3K27me3 levels and increased chromatin loops mediating
391 promoter-SE interactions. These chromatin rearrangements together lead to increased
392 expression of 746 genes including 34 TSG that may explain the therapeutic effects of the
393 EGFR-TKIs in LUAD. The observed changes in chromatin of NSCLC cells after EGFR-TKI
394 treatment may be related to the pioneer TF FOXA2, which is enriched at the TSS of the 34
395 increased TSG (Fig. 5c), active SE (Fig. 5f) and Epromoters regulating cluster of upregulated
396 genes after erlotinib treatment (Fig. 7c). Interestingly, inhibition of EGFR by another TKI
397 (afatinib) alone or in combination with gemcitabine (nucleoside analog used as chemotherapy
398 medication) [75] led to eradication of cancer stem cells and reduced pancreatic cancer
399 metastasis [77]. Since FOXA pioneer TFs are required for embryonic development of organs

400 that arise from the endoderm [32–36], it will be interesting to determine whether EGFR-TKIs
401 will induce similar changes in the 3D genome of pancreatic cancer cells, or of cancer cells in
402 other organs of endodermal origine, similar to the 3D genome rearrangements reported here
403 for lung cancer cells. The implications of embryonic master regulators in promoting
404 tumorigenesis can be exploited clinically as new therapeutic targets to specifically ablate
405 cancer cells. Following this line of ideas, specific silencing of the pioneer factor FOXA1 in
406 cancer cells reduced cancer hallmarks [76].

407

408 The *EGFR* mutations ΔEx19 and L858R are the most common genomic drivers of NSCLC that
409 are targetable with first-generation EGFR-TKIs, such as erlotinib and gefitinib. However, most
410 of the NSCLC patients treated with these EGFR-TKIs develop resistance to the treatment. Over
411 50% of the patients with acquired EGFR-TKI resistance harbor a secondary point mutation in
412 the EGFR kinase domain that substitutes threonine 790 by methionine (T790M) producing a
413 drug-resistant EGFR variant [77]. The need to overcome this resistance mechanism led to the
414 development of third-generation EGFR-TKIs, of which osimertinib is currently the only one
415 with regulatory approval. Osimertinib is an EGFR (T790M) mutant selective EGFR-TKI that
416 induces a similar gene expression signature as erlotinib and gefitinib (Supplementary Fig. 1c).
417 It is reasonable to assume that osimertinib will induce similar effects on the 3D genome as the
418 ones described here for erlotinib and gefitinib. Thus, our results showing the effect of EGFR-
419 TKIs on different chromatin features provide the molecular basis for designing more specific
420 therapies targeting H3K4me3 broad domains, SE or Epromoters that will allow to induce the
421 expression of TSG. Building on this perspective, broad H3K4me3 domains have been linked
422 to increased transcription elongation and enhancer activity, collectively leading to the high
423 expression of the TSG *TP53* and *PTEN* [11]. Further, SE were found at key oncogenic drivers
424 and other genes that are important in tumor pathogenesis [24]. Interestingly, treatment of

425 multiple myeloma cells with the BET-bromodomain inhibitor JQ1 led to loss of the
426 transcriptional coactivator BRD4 at SE and consequent transcription elongation defects, that
427 preferentially impacted oncogenes, including the *MYC* oncogene [78]. Another study by Lewis
428 and colleagues showed that deletion of a SE or specific degradation of its eRNA reduced the
429 expression of the SE-controlled *PODXL* gene, thereby suppressing cell proliferation,
430 migration, tumor growth, and metastasis in mouse xenograft models of triple-negative breast
431 cancer [79]. Moreover, Wang and colleagues found by integrating GWAS, expression
432 Quantitative Trait Loci (eQTLs) and 3D chromatin interactions that genetic variations at
433 Epromoters are associated with various cancer types [80]. It will be the scope of our future
434 work to determine the clinical relevance of targeting H3K4me3 broad domains, SE or
435 Epromoters using CRISPR–Cas9 gene-editing technology [81] either to reduce oncogene
436 expression, or to induce TSG expression as therapeutic strategy for NSCLC alone or as
437 combination treatment to improve the efficacy of treatment with EGFR TKIs.

438

439 **METHODS**

440 **Cell culture**

441 Human NSCLC epithelial cells A549 (ATCC CCL-185) were cultured in complete RPMI 1640
442 medium supplemented with 10% FBS, 1% penicillin-streptomycin, and 2mM L-glutamine.
443 Cells were maintained at 37 °C, 5% CO₂ in a humidified incubator. During subculturing, cells
444 were washed with 1x PBS trypsinized with 0.25% (w/v) Trypsin and subcultured at the ratio
445 of 1:5 to 1:10. The cell lines used in this paper are mycoplasma free. They were regularly tested
446 for mycoplasma contamination. In addition, they are not listed in the database of commonly
447 misidentified cell lines maintained by ICLAC.

448

449 **Erlotinib treatment**

450 A549 cells were cultured RPMI 1640 medium with standard 100 mm cell culture dishes.
451 Erlotinib hydrochloride (Sigma-Aldrich #SML2156) was dissolved in DMSO (Sigma-Aldrich
452 #34869) according to the manufacturer's instructions and used at a final concentration of 5 μM.
453 The cells were treated with 5 μM erlotinib (Erlo) or DMSO as a control (Ctrl) for 48 h. After
454 24 h of treatment, the medium was replenished with fresh erlotinib to maintain consistent
455 treatment conditions.

456

457 **Total RNA isolation and RNA sequencing data analysis**

458 Total RNA from A549 cells were isolated using the RNeasy Mini kit (Qiagen), quantified using
459 a Nanodrop Spectrophotometer (ThermoFisher Scientific), and was subjected to total RNA
460 sequencing. RNA sequencing data for this paper were generated as previously described
461 [16,82]. Total RNA and library integrity were verified on LabChip GX Touch 24 (Perkin
462 Elmer). Sequencing was performed on the NextSeq500 instrument (Illumina) using V2
463 chemistry with paired end setup. Raw reads were visualized by FastQC

464 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) to determine the quality of the
465 sequencing. Trimming was performed using trimmomatic (version 0.39) [83] with the
466 following parameters LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 HEADCROP:5
467 MINLEN:15. High quality reads were mapped to the human genome (hg38) using Bowtie2
468 (version 2.4.4) [84]. SAM files were sorted and converted to BAM files using Samtools
469 (version 1.13) with the command samtools view -Sb -u (<https://www.htslib.org/doc/samtools-view.html>). BAM files were converted to BED files using bedtools
470 (<https://bedtools.readthedocs.io/en/latest/content/tools/bamtobed.html>). After mapping, tag
471 directories were obtained with makeTagDirectory from HOMER (version 4.11.1)
472 (<http://homer.ucsd.edu/homer/ngs/tagDir.html>) using default settings [85]. Samples were then
473 quantified by using analyzeRepeats.pl (<http://homer.ucsd.edu/homer/ngs/analyzeRNA.html>)
474 from HOMER with the parameters (analyzeRepeats.pl rna hg38 -count genes -d Tag -rpkm;
475 reads per kilobase per millions mapped). To avoid division through zero, those reads with zero
476 RPKM were set to 0.001. Upregulated genes after erlotinib treatment defined for those genes
477 with a log2FC (Erlotinib/Control) ≥ 0.5 and downregulated those genes with a log2FC
478 (Erlotinib/Control) ≤ 0.5 . Volcano and all box plots were generated using GraphPad Prism 8
479 software.
480

481

482 **Chromatin immunoprecipitation (ChIP)**

483 ChIP analysis was performed as described earlier with minor adaptations [21]. Briefly, cells
484 were cross-linked with 1% methanol-free formaldehyde (ThermoFisher Scientific) lysed, and
485 sonicated with Diagenode Bioruptor to an average DNA length of 300-600 bp. After
486 centrifugation, the soluble chromatin was immunoprecipitated with 2 μ g of antibodies specific
487 for H3K4me3 (Abcam, #ab8580), H3K27ac (Abcam, #ab4729), and IgG (Santa Cruz, #sc-
488 2027). Immunoprecipitated chromatin was purified using the QIAquick PCR purification kit

489 (Qiagen) and subjected to next-generation sequencing. TruSeq DNA library preparation kit
490 (Illumina) was used to generate the ChIP libraries and sequenced using Illumina HiSeq 2500
491 system.

492

493 **Cleavage under targets and tagmentation (CUT&Tag)**

494 CUT&Tag experiments were performed as described previously [86], using the antibody
495 specific for H3K27me3 (Cell Signaling Technology, #9733). Briefly, 1×10^6 cells were
496 harvested, washed with wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM
497 spermidine), and immobilized to concanavalin A coated beads with incubation at room
498 temperature for 10 min. The bead-bound cells were incubated in 200 μ l of primary antibody
499 buffer (wash buffer with 1% BSA, 2 mM EDTA, and 0.05% digitonin for gentle
500 permeabilization of the plasma and nuclear membrane) with 1:100 primary antibody dilution
501 at 4 °C by rotating overnight. The next day, the primary antibody buffer was removed and cells
502 were washed with 800 μ l of dig-wash buffer (wash buffer with 1% BSA and 0.05% digitonin)
503 three times to remove unbound antibodies. The cells were then incubated with guinea pig anti-
504 rabbit antibody (Novus Biologicals, NBP1-72763) in 200 μ l of dig-wash buffer at room
505 temperature for 1 h with slow rotation. After a brief wash with dig-wash buffer as above, cells
506 were resuspended in 200 μ l of dig-300 buffer (20 mM HEPES pH 7.5, 300 mM NaCl and
507 0.5 mM spermidine, 1% BSA and 0.01% digitonin) with 1:200 dilution of CUT&Tag-IT®
508 Assembled pA-Tn5 Transposomes (Active Motif, #53164) and incubated at room temperature
509 for 1 h with slow rotation. pA-Tn5-bound cells were washed with 800 μ l of dig-300 buffer three
510 times, followed by tagmentation in 200 μ l of tagmentation buffer (dig-300 buffer with 10 mM
511 MgCl₂) at 37 °C for 1 h. To stop tagmentation, and solubilize DNA fragments, add 10 μ L 0.5M
512 EDTA, 3 μ L 10% SDS and 2.5 μ L 20 mg/mL Proteinase K were added to each sample and
513 mixed by full-speed quick vortexing, and further incubated at 63 °C for another 1 h to digest

514 protein and to reverse cross-link DNA. Genomic DNA was extracted and purified QIAquick
515 PCR purification kit (Qiagen) and subjected to library preparation as indicated
516 (<https://www.protocols.io/view/bench-top-cut-and-tag>) with minor adaptations. The libraries
517 were size selected by SPRI-bead-based approach after the final PCR with 18 cycles. In detail,
518 samples were 1st cleaned up by 1x bead:DNA ratio to eliminate residuals from PCR reaction,
519 followed by a 2-sided-bead cleanup step with an initial 0.6x bead:DNA ratio to exclude larger
520 fragments. The supernatant was transferred to a new tube and incubated with additional beads
521 in 0.2x bead:DNA ratio to eliminate smaller fragments, like adapter and primer dimers. Bound
522 DNA samples were washed with 80% ethanol, dried, and resuspended in TE buffer. Library
523 integrity was verified with 2100 Bioanalyzer system (Agilent Technologies). TruSeq DNA
524 library preparation kit (Illumina) was used to generate the CUT&Tag libraries and sequenced
525 (paired-end) using Illumina HiSeq 2500 system.

526

527 **Meta-analysis of NGS data (ChIP-seq, CUT&Tag, and ATAC-seq)**

528 Raw reads of samples from ChIP-seq, CUT&Tag, and ATAC-seq were visualized by FastQC
529 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) to determine the quality of the
530 sequencing. Trimming was performed using trimmomatic (version 0.39) [83] with the
531 following parameters LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 HEADCROP:5
532 MINLEN:15. High quality reads were mapped to the human genome (hg38) using Bowtie2
533 (version 2.4.4) [84]. For the CUT&Tag samples, the trimmed reads were mapped with bowtie2
534 settings (--local --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 700). SAM
535 files were sorted and converted to BAM files using Samtools (version 1.13) with the command
536 samtools view -Sb -u (<https://www.htslib.org/doc/samtools-view.html>). Further, PCR
537 duplicated reads were removed using picard tools (version 3.3.0)
538 (<https://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates>).

539 Duplicate-removed BAM files were converted to BED files using bedtools
540 (<https://bedtools.readthedocs.io/en/latest/content/tools/bamtobed.html>). The BED files were
541 further used to create tag directories using the function makeTagDirectory (default settings)
542 from HOMER (version 4.11.1) (<http://homer.ucsd.edu/homer/ngs/tagDir.html>). Reads Per
543 kilobase per million mapped reads (RPKM) normalized coverage tracks were generated using
544 deepTools (version 3.5.6) [87] with the bamCoverage function. Bedtools multicov
545 (<https://bedtools.readthedocs.io/en/latest/content/tools/multicov.html>) was used to quantify the
546 signal from BAM files that overlap with intervals specified in a BED file. Peak calling for
547 H3K4me3 was performed as described previously [12] using MACS2 (version 2.2.9) with
548 settings (callpeak -g hs -q 0.05 --broad --extsize 1000 --keep-dup 1 --nomodel) [88]. To define
549 H3K4me3 broad domains, summary statistics of peak sizes were initially analyzed. Peaks
550 larger than 2.7 kilobases (kb) were classified as broad domains, while those smaller than 1.9
551 kb were categorized as narrow domains. Peak calling for H3K27ac was performed with the
552 settings (callpeak -g hs -q 0.05 --broad --extsize 200 --keep-dup 1 --nomodel). Blacklisted
553 regions were subtracted from the peaks using bedtools intersect -v option
554 (<https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html>). The peaks were then
555 annotated to the genomic regions of human genome with the function annotatePeaks.pl
556 (<http://homer.ucsd.edu/homer/ngs/annotation.html>) from HOMER. Aggregate or enrichment
557 plots and heatmaps to quantify ChIP-seq, CUT&Tag, ATAC-seq signals normalized by read
558 count per million mapped reads (RPMM) or RPKM were generated from deepTools using their
559 computeMatrix command followed by plotProfile or plotHeatmap functions or using the
560 function `annotatePeaks.pl` from HOMER
561 (<http://homer.ucsd.edu/homer/ngs/quantification.html>) with the parameters (`annotatePeaks.pl`
562 `hg38 -size 2000 -hist 50 -d Tag -norm`). The enrichment was quantified around the promoters

563 at TSS \pm 1kb/TSS \pm 2kb, genome wide or at defined coordinates as indicated in the figures.

564 Quantified enrichment scores were used to generate box plots.

565 For the visualization of tracks, including BigWig or BedGraph tracks, peaks, and BED files,

566 as well as for generating snapshots, the Integrative Genomics Viewer (IGV) was used [89].

567

568 **Definition of Super-Enhancers and Epromoters**

569 To identify super-enhancers, H3K27ac ChIP-seq signal and peaks were used as inputs for the

570 program Rank Ordering of Super-Enhancer (ROSE package) with default settings [68,78]. To

571 define Ctrl-specific and Erlo-specific super-enhancers, the respective peaks obtained using

572 MACS2 were used as inputs. The Ctrl peaks were called by using the Erlo BAM file as the

573 background, while the Erlo peaks were called by using the Ctrl BAM file as the background.

574 Epromoters were defined using the script described earlier, with minor adaptations [30].

575 H3K27ac ChIP peaks and promoters (1kb upstream from TSS) were used as inputs for the

576 script, and the Epromoters were crossed with FOXA2 peaks using bedtools intersect.

577

578 **Definition of H3K27me3 broad domains**

579 Peak calling for H3K27me3 broad domains was performed with the settings (callpeak -g hs -q

580 0.05 --broad --extsize 1000 --keep-dup 1 --nomodel). Then, peaks were then merged to a

581 maximum distance of 4 kb using bedtools with the option bedtools merge -d 4000

582 (<https://bedtools.readthedocs.io/en/latest/content/tools/merge.html>). To define H3K27me3

583 broad domains, summary statistics of peak sizes were initially analyzed. Peaks larger than 1.9

584 kb were classified as broad domains, while those smaller than 1.5 kb were categorized as

585 narrow domains.

586

587 **Chromatin conformation capture by in situ Hi-C followed by chromatin
588 immunoprecipitation (HiChIP)**

589 HiChIP experiments were performed as previously described [90] using antibodies specific for
590 H3K27ac (Abcam, #ab4729) with the following optimizations: 5–10 million cells were
591 crosslinked with 1% formaldehyde at room temperature for 10 minutes. Prior to restriction
592 digestion, sodium dodecyl sulfate (SDS) treatment was done at 62 °C for 10 minutes.
593 Restriction digestion with MboI (New England Biolabs France, R0147M) was performed for
594 2 hours at 37 °C. Before the fill-in reaction, MboI was heat-inactivated at 62 °C for 10 minutes,
595 followed by two washing steps of pelleted nuclei using 1x fill-in reaction buffer. After the fill-
596 in reaction, ligation was carried out at 4 °C for 16 hours, ensuring effective proximity ligation
597 for subsequent steps.

598

599 **HiChIP sequencing and data analysis**

600 HiChIP libraries were sequenced in paired-end mode using the Illumina HiSeq 2500 system,
601 achieving a depth of over 100 million read pairs (2 x 100 bp). HiChIP data analysis was done
602 as describe previously [12]. HiChIP-seq paired-end reads were aligned to the human genome
603 (hg38), duplicate reads were removed, reads were assigned to MboI restriction fragments,
604 filtered into valid interaction pairs, and the interaction matrices were generated using the HiC-
605 Pro pipeline default settings [91]. The config file of the HiC-Pro was set to allow validPairs at
606 any distance from each other. HiC-Pro valid interaction reads were then used to detect
607 significant interactions using: (1) Tag directories were created using the function
608 makeTagDirectory from HOMER using the alignment BAM files from HiC-Pro output. The
609 command line is (makeTagDirectory Tag R1.bam R2.bam -tbp 1). (2) We used runHiCpca.pl
610 function from HOMER (<http://homer.ucsd.edu/homer/interactions2/HiCpca.html>) to perform
611 the chromatin compartment analysis (PCA) of the data with the command (runHiCpca.pl -res

612 30000 -genome hg38 -cpu 8). (3) We used analyzeHiC from HOMER [92] to identify the
613 HiChIP interactions (<http://homer.ucsd.edu/homer/interactions/>) as follows analyzeHiC Tag -
614 res 10000 -cpu 8 -interactions -center -pvalue 0.05 -nomatrix. (4) And the interactions were
615 annotated to the human genome (hg38) using the function annotateInteractions.pl from
616 HOMER (<http://homer.ucsd.edu/homer/interactions/HiCannotation.html>). (5) HiChIP
617 interaction hubs were generated using the analyzeHiC tool, and the interactions were annotated
618 to the human genome (hg38) with the annotateInteractions.pl script, as described above. The
619 interactions were extracted in BEDPE format to determine the total number of interactions,
620 chromosomal distribution, and loop size. The loop size was represented as Log2 (size in
621 kilobases). (6) The annotated HiChIP interactions were filtered by (a) the peaks of H3K27ac,
622 then (b) with the reference of 746 upregulated genes, and (c) with the peaks of CTCF. The
623 filtered loops were extracted in BEDPE format and then visualized using IGV genome browser.
624 (7) The HiChIP contact matrices were generated using the allValidPairs output from HiC-Pro
625 and its utilities (<https://github.com/nservant/HiC-Pro/blob/master/doc/UTILS.md>).
626 Visualization of contact matrices was performed using Juicebox
627 (<https://www.aidenlab.org/juicebox/>) from Juicer tools [93] with the following command line
628 (hicpro2juicebox.sh -i .allValidPairs -g hg38.chrom.sizes -j juicer_tools.2.20.00.jar -r
629 MboI_resfrag_hg38.bed) or with GENOVA package
630 (<https://github.com/robinweide/GENOVA>) [94].

631

632 **Statistical Analysis**

633 Depending on the dataset, various statistical tests were conducted to assess the significance of
634 the results. The values of the statistical tests used across different experiments are available in
635 the Source Data file. Additional details on the statistical analysis for specific experiments are
636 provided in the figures and figure legends. Briefly, RNA-seq, ChIP-seq, CUT&Tag, and

637 HiChIP samples were analyzed using next-generation sequencing. For other experiments
638 presented here, samples were analyzed in triplicates, and experiments were performed three
639 times. Statistical analyses were carried out using Excel Solver and using GraphPad Prism 8
640 software. Data displayed in box plots represent a five-number summary. One-tailed or two-
641 tailed t-tests were employed to assess the differences between groups, with significance levels
642 denoted as follows: $*P \leq 0.05$; $**P < 0.01$; and $***P < 0.001$.

643 **List of tools used for analysis**

644 Online tools and open-source software were used for analysis and to create figure panels as
645 indicated. The Cancer Genome Atlas (TCGA) (<https://www.cancer.gov/tcga>) [95];
646 TCGAbiolinks [96]; Tumor suppressor gene database ([TSGeneHome](#)); KEGG database;
647 ShinyGO 0.82 ([ShinyGO 0.82](#)); Juicebox Web App ([Juicebox](#)); MEME Suite [97]; JASPAR
648 database ([JASPAR](#)); eRNAbase [73]; cBioPortal [98]; GWAS catalog [99]; KM plotter [74];
649 Microsoft Office Suite; R (<https://www.r-project.org/>); and GraphPad Prism 8.

650

651 **Data availability**

652 The data that support this study are provided with this paper. Source data are provided with
653 this paper as a Source Data file. The sequencing data generated in this study have been
654 deposited in NCBI's Gene Expression Omnibus database [100] under accession numbers
655 GSE29ABC, GSE29DFG, GSE29HIJ and GSE29KLM. Furthermore, we retrieved and used
656 publicly available datasets to aid analysis of our data. Supplementary Data 1 contains all data
657 sets used in this study.

658

659 **REFERENCES**

- 660 1. El-Telbany A, Ma PC. Cancer genes in lung cancer: racial disparities: are there any? *Genes*
661 *Cancer* 2012; **3**:467–480.
- 662 2. Rubio K, Romero-Olmedo AJ, Sarvari P, *et al*. Non-canonical integrin signaling activates
663 EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. *Theranostics* 2023; **13**:2384–
664 2407.
- 665 3. Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-
666 small cell lung cancer: Past, present and future. *World J Clin Oncol* 2021; **12**:217–237.
- 667 4. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. *J Biomed Biotechnol*
668 2011; **2011**:583929.
- 669 5. Jia Y, Vong JS-L, Asafova A, *et al*. Lamin B1 loss promotes lung cancer development and
670 metastasis by epigenetic derepression of RET. *J Exp Med* 2019; **216**:1377–1395.
- 671 6. Rubio K, Dobersch S, Barreto G. Functional interactions between scaffold proteins,
672 noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing
673 principle for 3-dimensional nuclear architecture: implications in cancer. *FASEB J* 2019;
674 **33**:5814–5822.
- 675 7. Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating
676 Embryonic Expression Signatures in Cancer. *Trends Mol Med* 2019; **25**:287–302.
- 677 8. Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis
678 and therapy. *Cancer Metastasis Rev* 2015; **34**:229–241.
- 679 9. Zhang S, Übelmesser N, Josipovic N, *et al*. RNA polymerase II is required for spatial
680 chromatin reorganization following exit from mitosis. *Sci Adv* 2021; **7**:eabg8205.
- 681 10. Benayoun BA, Pollina EA, Ucar D, *et al*. H3K4me3 breadth is linked to cell identity and
682 transcriptional consistency. *Cell* 2014; **158**:673–688.
- 683 11. Chen K, Chen Z, Wu D, *et al*. Broad H3K4me3 is associated with increased transcription
684 elongation and enhancer activity at tumor-suppressor genes. *Nat Genet* 2015; **47**:1149–1157.
- 685 12. Cordero J, Swaminathan G, Rogel-Ayala DG, *et al*. Nuclear microRNA 9 mediates G-
686 quadruplex formation and 3D genome organization during TGF-β-induced transcription. *Nat*
687 *Commun* 2024; **15**:10711.
- 688 13. Cai Y, Zhang Y, Loh YP, *et al*. H3K27me3-rich genomic regions can function as silencers
689 to repress gene expression via chromatin interactions. *Nat Commun* 2021; **12**:719.

690 14. Laible G, Wolf A, Dorn R, *et al.* Mammalian homologues of the Polycomb-group gene
691 Enhancer of zeste mediate gene silencing in *Drosophila* heterochromatin and at *S. cerevisiae*
692 telomeres. *EMBO J* 1997; **16**:3219–3232.

693 15. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. *Nature* 2011;
694 **469**:343–349.

695 16. Singh I, Contreras A, Cordero J, *et al.* MiCEE is a ncRNA-protein complex that mediates
696 epigenetic silencing and nucleolar organization. *Nat Genet* 2018; **50**:990–1001.

697 17. Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the
698 human and mouse genomes. *Nat Commun* 2020; **11**:1061.

699 18. Pang B, Snyder MP. Systematic identification of silencers in human cells. *Nat Genet* 2020;
700 **52**:254–263.

701 19. Hosogane M, Funayama R, Shirota M, Nakayama K. Lack of Transcription Triggers
702 H3K27me3 Accumulation in the Gene Body. *Cell Rep* 2016; **16**:696–706.

703 20. Pauder FM, Sloane MA, Huang R, *et al.* H3K27me3 forms BLOCs over silent genes and
704 intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome.
705 *Genome Res* 2009; **19**:221–233.

706 21. Dobersch S, Rubio K, Singh I, *et al.* Positioning of nucleosomes containing γ -H2AX
707 precedes active DNA demethylation and transcription initiation. *Nat Commun* 2021; **12**:1072.

708 22. Singh I, Ozturk N, Cordero J, *et al.* High mobility group protein-mediated transcription
709 requires DNA damage marker γ -H2AX. *Cell Res* 2015; **25**:837–850.

710 23. Zaugg JB, Sahlén P, Andersson R, *et al.* Current challenges in understanding the role of
711 enhancers in disease. *Nat Struct Mol Biol* 2022; **29**:1148–1158.

712 24. Hnisz D, Abraham BJ, Lee TI, *et al.* Super-enhancers in the control of cell identity and
713 disease. *Cell* 2013; **155**:934–947.

714 25. Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human genome.
715 *Nucleic Acids Res* 2016; **44**:D164-171.

716 26. Geusz RJ, Wang A, Lam DK, *et al.* Sequence logic at enhancers governs a dual mechanism
717 of endodermal organ fate induction by FOXA pioneer factors. *Nat Commun* 2021; **12**:6636.

718 27. Zabidi MA, Arnold CD, Schernhuber K, *et al.* Enhancer-core-promoter specificity
719 separates developmental and housekeeping gene regulation. *Nature* 2015; **518**:556–559.

720 28. Engreitz JM, Haines JE, Perez EM, *et al.* Local regulation of gene expression by lncRNA
721 promoters, transcription and splicing. *Nature* 2016; **539**:452–455.

722 29. Dao LTM, Galindo-Albarrán AO, Castro-Mondragon JA, *et al.* Genome-wide
723 characterization of mammalian promoters with distal enhancer functions. *Nat Genet* 2017;
724 **49**:1073–1081.

725 30. Santiago-Algarra D, Souaid C, Singh H, *et al.* Epromoters function as a hub to recruit key
726 transcription factors required for the inflammatory response. *Nat Commun* 2021; **12**:6660.

727 31. Hsieh T-HS, Cattoglio C, Slobodyanyuk E, Hansen AS, Darzacq X, Tjian R. Enhancer-
728 promoter interactions and transcription are largely maintained upon acute loss of CTCF,
729 cohesin, WAPL or YY1. *Nat Genet* 2022; **54**:1919–1932.

730 32. Wang A, Yue F, Li Y, *et al.* Epigenetic priming of enhancers predicts developmental
731 competence of hESC-derived endodermal lineage intermediates. *Cell Stem Cell* 2015; **16**:386–
732 399.

733 33. Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts and
734 controversies. *Development* 2006; **133**:1611–1624.

735 34. Wan H, Dingle S, Xu Y, *et al.* Compensatory roles of Foxa1 and Foxa2 during lung
736 morphogenesis. *J Biol Chem* 2005; **280**:13809–13816.

737 35. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is
738 dependent on Foxa transcription factors. *Nature* 2005; **435**:944–947.

739 36. Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory
740 mechanisms and therapeutic implications in cancer. *Cell Death Discov* 2024; **10**:172.

741 37. Magnani L, Eeckhoute J, Lupien M. Pioneer factors: directing transcriptional regulators
742 within the chromatin environment. *Trends Genet* 2011; **27**:465–474.

743 38. Orstad G, Fort G, Parnell TJ, *et al.* FoxA1 and FoxA2 control growth and cellular identity
744 in NKX2-1-positive lung adenocarcinoma. *Dev Cell* 2022; **57**:1866-1882.e10.

745 39. Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-
746 to-mesenchymal transition in pancreatic cancer. *Cancer Res* 2010; **70**:2115–2125.

747 40. Tang Y, Shu G, Yuan X, Jing N, Song J. FOXA2 functions as a suppressor of tumor
748 metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. *Cell*
749 *Res* 2011; **21**:316–326.

750 41. Camolotto SA, Pattabiraman S, Mosbruger TL, *et al.* FoxA1 and FoxA2 drive gastric
751 differentiation and suppress squamous identity in NKX2-1-negative lung cancer. *Elife* 2018;
752 **7**:e38579.

753 42. Park Y-L, Kim S-H, Park S-Y, *et al.* Forkhead-box A1 regulates tumor cell growth and
754 predicts prognosis in colorectal cancer. *Int J Oncol* 2019; **54**:2169–2178.

755 43. Sahoo SS, Ramanand SG, Gao Y, *et al.* FOXA2 suppresses endometrial carcinogenesis and
756 epithelial-mesenchymal transition by regulating enhancer activity. *J Clin Invest* 2022;
757 **132**:e157574.

758 44. Wang R, Shi Y, Chen L, *et al.* The ratio of FoxA1 to FoxA2 in lung adenocarcinoma is
759 regulated by LncRNA HOTAIR and chromatin remodeling factor LSH. *Sci Rep* 2015; **5**:17826.

760 45. Swinstead EE, Miranda TB, Paakinaho V, *et al.* Steroid Receptors Reprogram FoxA1
761 Occupancy through Dynamic Chromatin Transitions. *Cell* 2016; **165**:593–605.

762 46. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency
763 reprogramming factors' initial engagement with the genome. *Cell* 2012; **151**:994–1004.

764 47. Zaret KS, Lerner J, Iwafuchi-Doi M. Chromatin Scanning by Dynamic Binding of Pioneer
765 Factors. *Mol Cell* 2016; **62**:665–667.

766 48. Detterbeck FC, Woodard GA, Bader AS, *et al.* The Proposed Ninth Edition TNM
767 Classification of Lung Cancer. *Chest* 2024; **166**:882–895.

768 49. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. *Nat Rev Dis
769 Primers* 2021; **7**:3.

770 50. Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. *Clin Chest
771 Med* 2011; **32**:703–740.

772 51. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell
773 lung cancer. *Nature* 2018; **553**:446–454.

774 52. Bray F, Laversanne M, Sung H, *et al.* Global cancer statistics 2022: GLOBOCAN estimates
775 of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;
776 **74**:229–263.

777 53. Krauss E, Haberer J, Barreto G, Degen M, Seeger W, Guenther A. Recognition of
778 breathprints of lung cancer and chronic obstructive pulmonary disease using the Aeonose®
779 electronic nose. *J Breath Res* 2020; **14**:046004.

780 54. Mehta A, Cordero J, Dobersch S, *et al.* Non-invasive lung cancer diagnosis by detection of
781 GATA6 and NKX2-1 isoforms in exhaled breath condensate. *EMBO Mol Med* 2016; **8**:1380–
782 1389.

783 55. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status
784 and future trends. *Nat Rev Clin Oncol* 2023; **20**:624–639.

785 56. Rubio K, Müller JM, Mehta A, *et al.* Preliminary results from the EMoLung clinical study
786 showing early lung cancer detection by the LC score. *Discov Oncol* 2023; **14**:181.

787 57. Liu T-C, Jin X, Wang Y, Wang K. Role of epidermal growth factor receptor in lung cancer
788 and targeted therapies. *Am J Cancer Res* 2017; **7**:187–202.

789 58. Andrews Wright NM, Goss GD. Third-generation epidermal growth factor receptor
790 tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. *Transl Lung Cancer*
791 *Res* 2019; **8**:S247–S264.

792 59. Liao B-C, Lin C-C, Lee J-H, Yang JC-H. Optimal management of EGFR-mutant non-small
793 cell lung cancer with disease progression on first-line tyrosine kinase inhibitor therapy. *Lung*
794 *Cancer* 2017; **110**:7–13.

795 60. Azuma K, Hirashima T, Yamamoto N, *et al.* Phase II study of erlotinib plus tivantinib
796 (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-
797 cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib. *ESMO Open* 2016;
798 **1**:e000063.

799 61. Takeuchi K, Ito F. EGF receptor in relation to tumor development: molecular basis of
800 responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. *FEBS J* 2010;
801 **277**:316–326.

802 62. Li AR, Chitale D, Riely GJ, *et al.* EGFR mutations in lung adenocarcinomas: clinical
803 testing experience and relationship to EGFR gene copy number and immunohistochemical
804 expression. *J Mol Diagn* 2008; **10**:242–248.

805 63. Gong K, Guo G, Panchani N, *et al.* EGFR inhibition triggers an adaptive response by co-
806 opting antiviral signaling pathways in lung cancer. *Nat Cancer* 2020; **1**:394–409.

807 64. Criscione SW, Martin MJ, Oien DB, *et al.* The landscape of therapeutic vulnerabilities in
808 EGFR inhibitor osimertinib drug tolerant persister cells. *NPJ Precis Oncol* 2022; **6**:95.

809 65. Song K-A, Hosono Y, Turner C, *et al.* Increased Synthesis of MCL-1 Protein Underlies
810 Initial Survival of EGFR-Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug
811 Target. *Clin Cancer Res* 2018; **24**:5658–5672.

812 66. Kwon E-J, Cha H-J, Lee H. Systematic omics analysis identifies CCR6 as a therapeutic
813 target to overcome cancer resistance to EGFR inhibitors. *iScience* 2024; **27**:109448.

814 67. Moghal N, Li Q, Stewart EL, *et al.* Single-Cell Analysis Reveals Transcriptomic Features
815 of Drug-Tolerant Persisters and Stromal Adaptation in a Patient-Derived EGFR-Mutated Lung
816 Adenocarcinoma Xenograft Model. *J Thorac Oncol* 2023; **18**:499–515.

817 68. Whyte WA, Orlando DA, Hnisz D, *et al.* Master transcription factors and mediator establish
818 super-enhancers at key cell identity genes. *Cell* 2013; **153**:307–319.

819 69. Fournier M, Bourriquen G, Lamaze FC, *et al.* FOXA and master transcription factors recruit
820 Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells. *Sci Rep*
821 2016; **6**:34962.

822 70. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
823 genome. *Nature* 2012; **489**:57–74.

824 71. Guler GD, Tindell CA, Pitti R, *et al.* Repression of Stress-Induced LINE-1 Expression
825 Protects Cancer Cell Subpopulations from Lethal Drug Exposure. *Cancer Cell* 2017; **32**:221–
826 237.e13.

827 72. Sartorelli V, Lauberth SM. Enhancer RNAs are an important regulatory layer of the
828 epigenome. *Nat Struct Mol Biol* 2020; **27**:521–528.

829 73. Song C, Zhang G, Mu X, *et al.* eRNABase: a comprehensive database for decoding the
830 regulatory eRNAs in human and mouse. *Nucleic Acids Res* 2024; **52**:D81–D91.

831 74. Lánczky A, Győrffy B. Web-Based Survival Analysis Tool Tailored for Medical Research
832 (KMplot): Development and Implementation. *J Med Internet Res* 2021; **23**:e27633.

833 75. Schäfer A, Schomacher L, Barreto G, Döderlein G, Niehrs C. Gemcitabine functions
834 epigenetically by inhibiting repair mediated DNA demethylation. *PLoS One* 2010; **5**:e14060.

835 76. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key
836 determinant of estrogen receptor function and endocrine response. *Nat Genet* 2011; **43**:27–33.

837 77. Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: a double role in lung
838 cancer cell survival? *J Thorac Oncol* 2009; **4**:1–4.

839 78. Lovén J, Hoke HA, Lin CY, *et al.* Selective inhibition of tumor oncogenes by disruption of
840 super-enhancers. *Cell* 2013; **153**:320–334.

841 79. Lewis MW, King CM, Wisniewska K, *et al.* CRISPR Screening of Transcribed Super-
842 Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression. *Cancer Res* 2024;
843 **84**:3684–3700.

844 80. Wan J, van Ouwerkerk A, Mouren J-C, *et al.* Comprehensive mapping of genetic variation
845 at Epromoters reveals pleiotropic association with multiple disease traits. *Nucleic Acids Res*
846 2025; **53**:gkae1270.

847 81. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using
848 the CRISPR-Cas9 system. *Nat Protoc* 2013; **8**:2281–2308.

849 82. Rubio K, Singh I, Dobersch S, *et al.* Inactivation of nuclear histone deacetylases by EP300
850 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. *Nat Commun* 2019; **10**:2229.

851 83. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
852 data. *Bioinformatics* 2014; **30**:2114–2120.

853 84. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 2012;
854 **9**:357–359.

855 85. Heinz S, Benner C, Spann N, *et al.* Simple combinations of lineage-determining
856 transcription factors prime cis-regulatory elements required for macrophage and B cell
857 identities. *Mol Cell* 2010; **38**:576–589.

858 86. Kaya-Okur HS, Wu SJ, Codomo CA, *et al.* CUT&Tag for efficient epigenomic profiling
859 of small samples and single cells. *Nat Commun* 2019; **10**:1930.

860 87. Ramírez F, Ryan DP, Grüning B, *et al.* deepTools2: a next generation web server for deep-
861 sequencing data analysis. *Nucleic Acids Res* 2016; **44**:W160-165.

862 88. Zhang Y, Liu T, Meyer CA, *et al.* Model-based Analysis of ChIP-Seq (MACS). *Genome
863 Biol* 2008; **9**:R137.

864 89. Robinson JT, Thorvaldsdóttir H, Winckler W, *et al.* Integrative genomics viewer. *Nat
865 Biotechnol* 2011; **29**:24–26.

866 90. Mumbach MR, Rubin AJ, Flynn RA, *et al.* HiChIP: efficient and sensitive analysis of
867 protein-directed genome architecture. *Nat Methods* 2016; **13**:919–922.

868 91. Servant N, Varoquaux N, Lajoie BR, *et al.* HiC-Pro: an optimized and flexible pipeline for
869 Hi-C data processing. *Genome Biol* 2015; **16**:259.

870 92. Heinz S, Texari L, Hayes MGB, *et al.* Transcription Elongation Can Affect Genome 3D
871 Structure. *Cell* 2018; **174**:1522-1536.e22.

872 93. Durand NC, Shamim MS, Machol I, *et al.* Juicer Provides a One-Click System for
873 Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst* 2016; **3**:95–98.

874 94. van der Weide RH, van den Brand T, Haarhuis JHI, Teunissen H, Rowland BD, de Wit E.
875 Hi-C analyses with GENOVA: a case study with cohesin variants. *NAR Genom Bioinform*
876 2021; **3**:lqab040.

877 95. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an
878 immeasurable source of knowledge. *Contemp Oncol (Pozn)* 2015; **19**:A68-77.

879 96. Colaprico A, Silva TC, Olsen C, *et al.* TCGAbiolinks: an R/Bioconductor package for
880 integrative analysis of TCGA data. *Nucleic Acids Res* 2016; **44**:e71.

881 97. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. *Nucleic Acids Res* 2015;
882 **43**:W39-49.

883 98. Gao J, Aksoy BA, Dogrusoz U, *et al.* Integrative analysis of complex cancer genomics and
884 clinical profiles using the cBioPortal. *Sci Signal* 2013; **6**:pl1.

885 99. Visscher PM, Brown MA, McCarthy MI, Yang J. Five Years of GWAS Discovery. *The
886 American Journal of Human Genetics* 2012; **90**:7–24.

887 100. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and
888 hybridization array data repository. *Nucleic Acids Res* 2002; **30**:207–210.

890 **Acknowledgments**

891 We thank Roswitha Bender and Anne Robert for technical support; Diana G. Rogel-Ayala,
892 Hector A. Aguirre-Alarcon, Karla Rubio, Virginie Marchand, Iouri Motorine and the EpiRNA-
893 Seq Core Facility for support with NGS-based methods; Kerstin Richter, Alessandro Ianni,
894 Sylvain Maenner and Bruno Charpentier for reagents; Sandrine Gulberti, Hervé Kempf, Jean-
895 Baptiste Vincourt, Sylvie Fournel-Gigleux, Mohamed Ouzzine, Catherine Bui, Lydia Barré
896 and Nick Ramalanjaona for comments. GB was funded by the “Centre National de la
897 Recherche Scientifique” (CNRS, France), “Délégation Centre-Est” (CNRS-DR6) and the
898 “Université de Lorraine” (UL, France) through the initiative “Lorraine Université
899 d’Excellence” (LUE) and the dispositif “Future Leader”. GD and JC are supported by the
900 CRC 1366 (Projects A03, A06), the CRC 873 (Project A16), the CRC1550 (Project A03)
901 funded by the DFG, the DZHK (81Z0500202) funded by BMBF, the Medical Faculty
902 Mannheim of University of Heidelberg (90703207) and the Baden-Württemberg foundation
903 special program “Angioinformatics single cell platform”. GS was awarded a doctoral fellowship
904 and received support from the DrEAM mobility grant episode 10th, both by the UL (France)
905 through the initiative LUE. TB is supported by the Deutsche Forschungsgemeinschaft,
906 Excellence Cluster Cardio-Pulmonary Institute (CPI), Transregional Collaborative Research
907 Center TRR81, TP A02, SFB1213 TP B02, TRR 267 TP A05 and the German Center for
908 Cardiovascular Research.

909

910 **Authors Contributions Statement**

911 GS, SG and GB designed and performed the experiments; JG, TB and GD were involved in
912 study design; GB and GS designed the study; GS, JC, GB and SG analyzed the data; GB, GS,

913 JG, and JC wrote the manuscript. All authors discussed the results and commented on the
914 manuscript.

915

916 **Competing Interests Statement**

917 The Authors declare no competing interests.

918

919

920 **FIGURE LEGENDS**

921 **Figure 1: Erlotinib increases H3K4me3 broad domains associated with gene activation.**

922 **(a)** RNA-sequencing in human lung adenocarcinoma cells. A549 cells were treated with control
923 (DMSO) or 5 μ M erlotinib for 48 h. Volcano plot represents the significance (-log10 *P*-values
924 after paired two-tailed t-test) vs. expression log2 fold change (log2FC ratios) between the
925 average of control (Ctrl) and erlotinib (Erlo) treated cells. Differentially expressed genes
926 (DEGs) of upregulated (up; n=746) and downregulated (down; n=256) genes were identified
927 by a cutoff of *P*<0.05. **(b)** Box plots of RNA-seq-based expression analysis of DEGs after
928 erlotinib. **(c)** Box plots of RNA-seq-based expression analysis from TCGA of upregulated (up;
929 n=746) and tumor suppressor genes (TSG; n=34) in normal lung (Ctrl; n=59), patients with
930 non-small cell lung cancer (LC; n=1,050), and patients with lung adenocarcinoma treated with
931 erlotinib (LC+Erlo; n=22). **(d)** Gene set enrichment analysis (GSEA) of upregulated and
932 downregulated genes as identified in **1a**. sig, signaling; EGFR resist, EGFR resistance. FDR,
933 false discovery rate. **(e)** Box plots showing the levels of H3K4me3 in Ctrl or Erlo treated A549
934 cells genome-wide or at transcription start site (TSS -/+ 2 kb). Bar plots showing the
935 distribution of H3K4me3 peaks **(f)** and bar plots displaying the broadness of H3K4me3 **(g)** in
936 different genomic regions at Promoters (Peaks -/+ 2 kb from TSS), Gene body (exon and intron
937 regions outside the -/+ 2 kb TSS), and Intergenic (peaks not located in previous regions) in Ctrl
938 or Erlo treated A549 cells. **(h)** Bar plot with the distribution of upregulated genes in the
939 H3K4me3 domains (45% broad; n=338, including 26 TSG, 17% narrow; n=128). **(i)** Box plots
940 showing the levels of H3K4me3 in the significantly upregulated or downregulated genes that
941 were separated into the indicated H3K4me3 domains (broad or narrow), and genomic regions
942 (promoter or gene body). In all box plots, values were normalized using RPKM, reads per
943 kilobase of transcript per million mapped reads or TPM, transcript per million; represented as
944 log2 RPKM + 1 or log2 TPM + 1. All box plots display the median (middle line), 25th and 75th

945 percentiles (box), and 5th and 95th percentiles (whiskers). Statistical significance is
946 represented by asterisks: *** $P \leq 0.001$; ** $P \leq 0.01$; * $P \leq 0.05$; ns, non-significant. P -values
947 were calculated after two-tailed t-test (box plots) or two-tailed Fisher exact test (bar plots). See
948 also Supplementary Fig. 1 and Supplementary Fig. 2. Source data are provided as a Source
949 Data file.

950

951 **Figure 2: Gene activation induced by erlotinib correlates with reduced H3K27me3 broad**
952 **domains.** (a) Box plots showing the levels of H3K27me3 in control Ctrl or Erlo treated A549
953 cells genome-wide or at transcription start site (TSS -/+ 2 kb). Data were normalized using
954 RPMM, read count per million mapped reads. (b) Bar plots displaying the broadness of
955 H3K27me3 in different genomic regions at Promoters (Peaks -/+ 2 kb from TSS), Gene body
956 (exon and intron regions outside the -/+ 2 kb TSS), and Intergenic (peaks not located in
957 previous regions) in Ctrl or Erlo treated A549 cells. (c) Distribution of 746 upregulated genes
958 based on H3K27me3 levels (63% decreased; n=470, including 24 TSG, 34% increased; n=256,
959 including 9 TSG, and unchanged; n=20). Values, z-score of the normalized read counts as
960 RPMM is obtained from annotatePeaks.pl from HOMER. (d) Box plots showing the levels of
961 H3K27me3 in the significantly upregulated or downregulated genes that were separated into
962 the indicated H3K27me3 domains (broad or narrow), and genomic regions (promoter or gene
963 body) in Ctrl or Erlo treated A549 cells. All box plots display the median (middle line), 25th
964 and 75th percentiles (box), and 5th and 95th percentiles (whiskers). Statistical significance is
965 represented by asterisks: *** $P \leq 0.001$; ** $P \leq 0.01$; * $P \leq 0.05$; ns, non-significant. P -values
966 were calculated using a two-tailed t-test (box plots). See also Supplementary Fig. 3. Source
967 data are provided as a Source Data file.

968

969 **Figure 3: Erlotinib activates enhancers and increases promoter-enhancer chromatin
970 loops. (a)** Left, hockey stick plot after analysis using the ROSE algorithm and showing
971 distribution of normalized H3K27ac ChIP-seq signal across typical enhancers (TYE) and
972 super-enhancers (SE) in Ctrl (gray line) or Erlo (red line) treated A549 cells. Right, venn
973 diagram showing the Ctrl-specific (n=948) and Erlo-specific (n=1,038) SE. **(b)** Aggregate and
974 box plots after ChIP-seq in A549 cells showing the enrichment of H3K27ac and at Ctrl-specific
975 or Erlo-specific SE. Data were normalized using RPMM, read count per million mapped reads.
976 **(c)** Left, bar plots showing the distribution of H3K27ac peaks in different genomic regions at
977 promoters, gene body, and intergenic regions. Right, shows H3K27ac enrichment in different
978 genomic regions represented as ratios of peaks (Erlo versus Ctrl) in A549 cells. **(d)** Top, box
979 plot showing the number of chromatin interaction hubs by H3K27ac-specific HiChIP-seq;
980 bottom, box plot showing the size of the loops (length in kilobases, kb) in Ctrl or Erlo treated
981 A549 cells. **(e)** Bar plot representing the total number of H3K27ac-specific chromatin
982 interactions distributed across the chromosomes in the Ctrl and Erlo treated conditions. **(f)** Left,
983 bar plots show the number of H3K27ac-specific chromatin interactions grouped based on the
984 loop size as indicated (Mb; megabases, kb; kilobases). Right, squares represent the ratios of
985 loop size (Erlo versus Ctrl). **(g)** Bar plot showing the distribution of enhancers looping to 746
986 upregulated genes (42% loop to SE; n=312, including 14 TSG, and 39% loop to TYE; n=293,
987 including 10 TSG, unchanged). All box plots represent the median (middle line), 25th, 75th
988 percentile (box), and 5th and 95th percentile (whiskers). In all plots asterisks represent *P*-
989 values, ****P*≤0.001; ***P*≤0.01; **P*≤0.05; ns, non-significant. *P*-values were calculated after
990 two-tailed t-test (box plots). See also Supplementary Fig. 4. Source data are provided as a
991 Source Data file.

992

993 **Figure 4: Erlotinib increases promoter-enhancer chromatin loops enriched with CTCF**
994 **and the cohesin complex at their anchors. (a)** Venn diagram showing the common
995 upregulated genes (n=214) from the three groups, namely H3K4me3 broad (n=338);
996 H3K27me3 decreased (n=470); and looping to enhancers (n=605). **(b)** Changes in chromatin
997 compartmentalization are visualized across a ~25Mb (Mb; megabases) window using
998 compartment scores (y-axis) derived from H3K27ac-specific HiChIP experiments in the Ctrl
999 and Erlo treated conditions. Upregulated genes in clusters are highlighted in green, and key
1000 tumor suppressor genes (TSG) are highlighted in red (*NUAK1*, *DUSP1*, and *SLIT3*). **(c)**
1001 Snapshots depict H3K27ac-specific chromatin contact matrices represented as pyramid plots
1002 comparing control (Ctrl, left) and erlotinib (Erlo, right) treated conditions at the top. Black dots
1003 within the pyramids represent the number of H3K27ac-specific interactions. Below the
1004 pyramid plots, ChIP-seq tracks illustrate factors of the cohesin complex (RAD21, SMC1A)
1005 and CTCF, along with CTCF peak annotations, and H3K27ac-specific chromatin loops. The
1006 visualization spans a ~2.5Mb window surrounding the promoters of key TSG (red triangle) and
1007 upregulated gene in clusters (bright green triangles). Co-enrichment of RAD21, SMC1A, and
1008 CTCF at TSG promoter is highlighted in red boxes, while upregulated genes are marked with
1009 bright green boxes. Regions looping to the promoters are indicated by orange boxes, illustrating
1010 chromatin interactions. The IGV genome browser was used for visualization. See also
1011 Supplementary Fig. 5.

1012

1013 **Figure 5: Erlotinib increases chromatin accessibility at TSS and super-enhancers bound**
1014 **by pioneer transcription factor FOXA2.**

1015 **(a)** Box plots from ATAC-seq showing the accessibility at the transcription start site (TSS -/+
1016 1 kb) of 214 upregulated genes (top) or 34 tumor suppressor genes (TSG; bottom) in Ctrl or
1017 Erlo treated PC-9 cells. Data were normalized using RPMM, read count per million mapped

1018 reads. **(b)** Motif analysis reveals significant enrichment of nucleotide motifs from 214
1019 upregulated genes and 34 TSG that show FOXA2 binding sites (indicated by magenta dotted
1020 boxes) as predicted using the JASPAR database. *E value* represents the statistical significance
1021 of the motif. **(c)** Aggregate and box plots showing the FOXA2 ChIP-seq enrichment at
1022 transcription start site (TSS -/+ 1 kb) of 214 upregulated genes or 34 TSG in A549 and NCI-
1023 H889 cells. **(d)** Similar to **a**, box plots from ATAC-seq showing accessibility at loci of super
1024 enhancers (SEs, n=1,038). **(e)** Similar to **b**, motif analysis highlights significant enrichment of
1025 nucleotide motifs at SE loci, revealing FOXA2 binding sites. **(f)** Similar to **c**, aggregate and
1026 box plots showing FOXA2 enrichment at SE loci. All box plots display the median (middle
1027 line), 25th and 75th percentiles (box), and 5th and 95th percentiles (whiskers). Statistical
1028 significance is represented by asterisks: *** $P \leq 0.001$; ** $P \leq 0.01$; * $P \leq 0.05$; ns, non-
1029 significant. *P*-values were calculated using a two-tailed t-test (box plots). See also
1030 Supplementary Fig. 6. Source data are provided as a Source Data file.

1031

1032 **Figure 6: Erlotinib increases chromatin accessibility at Epromoters and enhancers bound**
1033 **by pioneer transcription factor FOXA2.** **(a)** Genome browser snapshots of selected tumor
1034 suppressor genes (TSG) loci showing chromatin accessibility by ATAC-seq (blue) in Ctrl and
1035 Erlo treated PC-9 cells, FOXA2 ChIP-seq in A549 (magenta) and NCI-H889 cells (gold). The
1036 tracks below depict Epromoters (red), eRNAs (arctic blue), CTCF peaks (black), and
1037 H3K27ac-specific chromatin loops in Erlo treated A549 cells. The visualization spans a
1038 ~2.5Mb window surrounding the promoters of key TSG (red triangle) and upregulated gene in
1039 clusters (bright green triangles). Co-enrichment of FOXA2 with ATAC-seq, Epromoter,
1040 eRNAs, and CTCF peaks at TSG promoter is highlighted in red boxes, while upregulated genes
1041 are marked with bright green boxes. Regions looping to the promoters are indicated by orange

1042 boxes, illustrating chromatin interactions. The IGV genome browser was used for visualization.

1043 See also Supplementary Fig. 6.

1044

1045 **Figure 7: Erlotinib increases chromatin accessibility at Epromoters bound by pioneer**

1046 **transcription factor FOXA2.** (a) Box plots from ATAC-seq showing the accessibility at

1047 Epromoters (n=139) in Ctrl or Erlo treated PC-9 cells. Data were normalized using RPMM,

1048 read count per million mapped reads. (b) Motif analysis reveals significant enrichment of

1049 nucleotide motifs Epromoters that show FOXA2 binding sites (indicated by magenta dotted

1050 boxes) as predicted using the JASPAR database. *E value* represents the statistical significance

1051 of the motif. (c) Aggregate and box plots showing the FOXA2 ChIP-seq enrichment at

1052 Epromoters in A549 and NCI-H889 cells. (d) Box plots of RNA-seq-based expression analysis

1053 of upregulated genes (left; n=746, middle; n=214) and tumor suppressor genes (TSG; n=34) in

1054 the control (Ctrl) or siRNA construct specific for FOXA2 (siFOXA2). All box plots display

1055 the median (middle line), 25th and 75th percentiles (box), and 5th and 95th percentiles

1056 (whiskers). Statistical significance is represented by asterisks: *** $P \leq 0.001$; ** $P \leq 0.01$;

1057 * $P \leq 0.05$; ns, non-significant. *P*-values were calculated using a two-tailed t-test (box plots).

1058 See also Supplementary Fig. 6. Source data are provided as a Source Data file.

1059

1060 **Figure 8: Gene expression signature induced by erlotinib can be used for diagnosis and**

1061 **prognosis of LUAD patients.** (a) Principal Component Analysis (PCA) plots from

1062 highlighting the differences in gene expression patterns among three sample groups from

1063 TCGA: Lung Squamous Cell Carcinoma patients (LUSC; n=519, blue squares), Normal lung

1064 samples (Normal; n=59, green circles), and Lung Adenocarcinoma patients (LUAD; n=539,

1065 brown triangles). The left PCA plot illustrates data distribution along Dim1 (92.2% variance)

1066 and Dim2 (5.6% variance) for the 746 upregulated genes, while the right PCA plot shows

1067 distribution along Dim1 (90.7% variance) and Dim2 (7.1% variance) for the 214 upregulated
1068 genes. **(b, c, d)** Pie chart showing the distribution of 960 single nucleotide polymorphisms
1069 (SNPs) across 34 tumor suppressor genes (TSGs) in various cancers. The segments represent
1070 different cancers, with lung cancer showing the highest proportion of SNPs (26%, n=246),
1071 followed by other cancer types. In **c**, the radar plot visualizes the 246 SNPs across different
1072 lung cancer types, including LUAD (n=152), LUSC (n=49), Large cell carcinoma (n=23),
1073 SCLC (Small Cell Lung Cancer, n=18), and atypical carcinoid (n=4). In **d**, bar plot illustrates
1074 the types of mutations in lung cancer, the mutation categories include fusion, splice site,
1075 frameshift, nonsense, and missense as indicated. **(e,f)** Pie chart showing the distribution of 164
1076 SNPs across super enhancers (SEs; n=1,038) in various cancers. The segments represent
1077 different cancers, with lung cancer showing the highest proportion of SNPs (22%, n=36),
1078 followed by other cancer types. In **f**, the radar plot visualizes the 36 SNPs across different lung
1079 cancer types, including LUAD (n=16), LUSC (n=7), Large cell carcinoma (n=6), SCLC (n=4),
1080 and other LC types (n=3). **(g)** Kaplan-Meier survival curves illustrating overall survival of
1081 patients based on the expression of 34 TSGs across different lung cancer types. Survival
1082 probabilities are represented for all lung cancer patients (left), LUAD patients (middle), and
1083 LUSC patients (right). Patients with high TSG expression (red curves) show distinct survival
1084 patterns compared to those with low expression (black curves). Lung cancer (HR = 0.62, $P =$
1085 2.5e-10, median survival in months: high expression vs. low expression is 99.43 vs. 52), LUAD
1086 (HR = 0.51, $P =$ 8.9e-08, median survival in months: high expression vs. low expression is
1087 125.7 vs. 69), and LUSC (HR = 0.96, $P =$ 0.75, median survival in months: high expression vs.
1088 low expression is 57 vs. 58). HR, hazard ratio. See also Supplementary Fig. 6. Source data are
1089 provided as a Source Data file.

1090

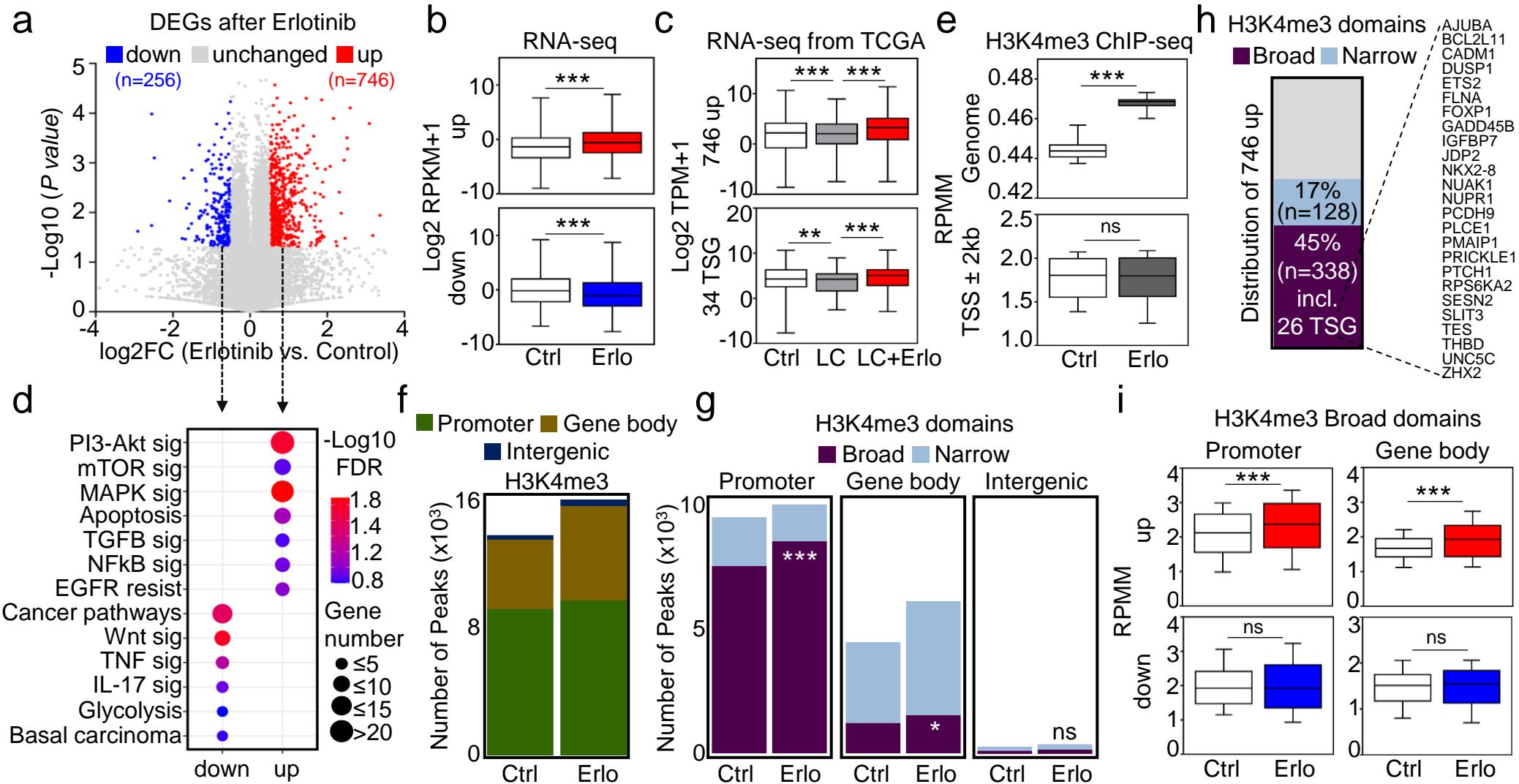


Figure 1

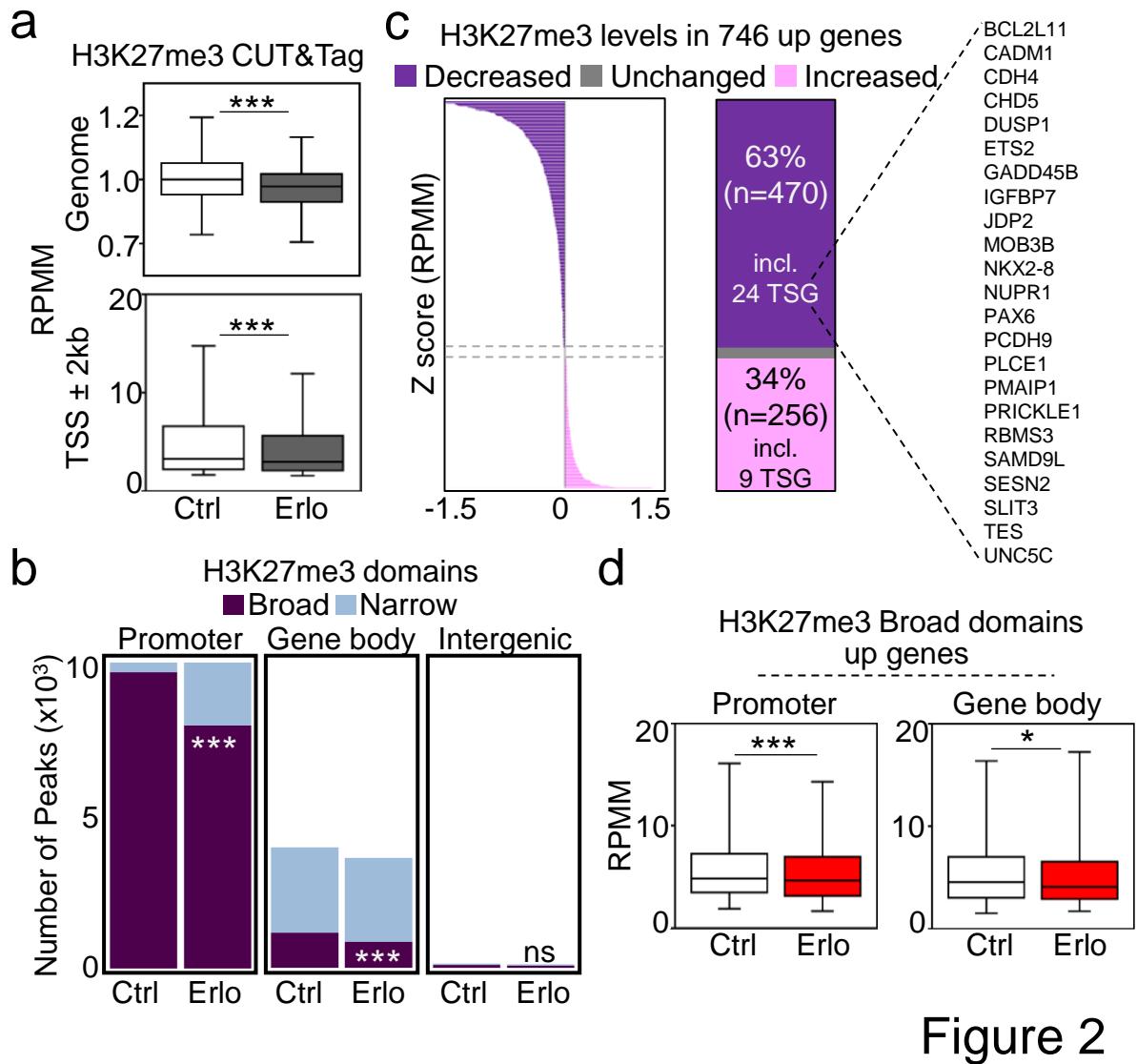


Figure 2

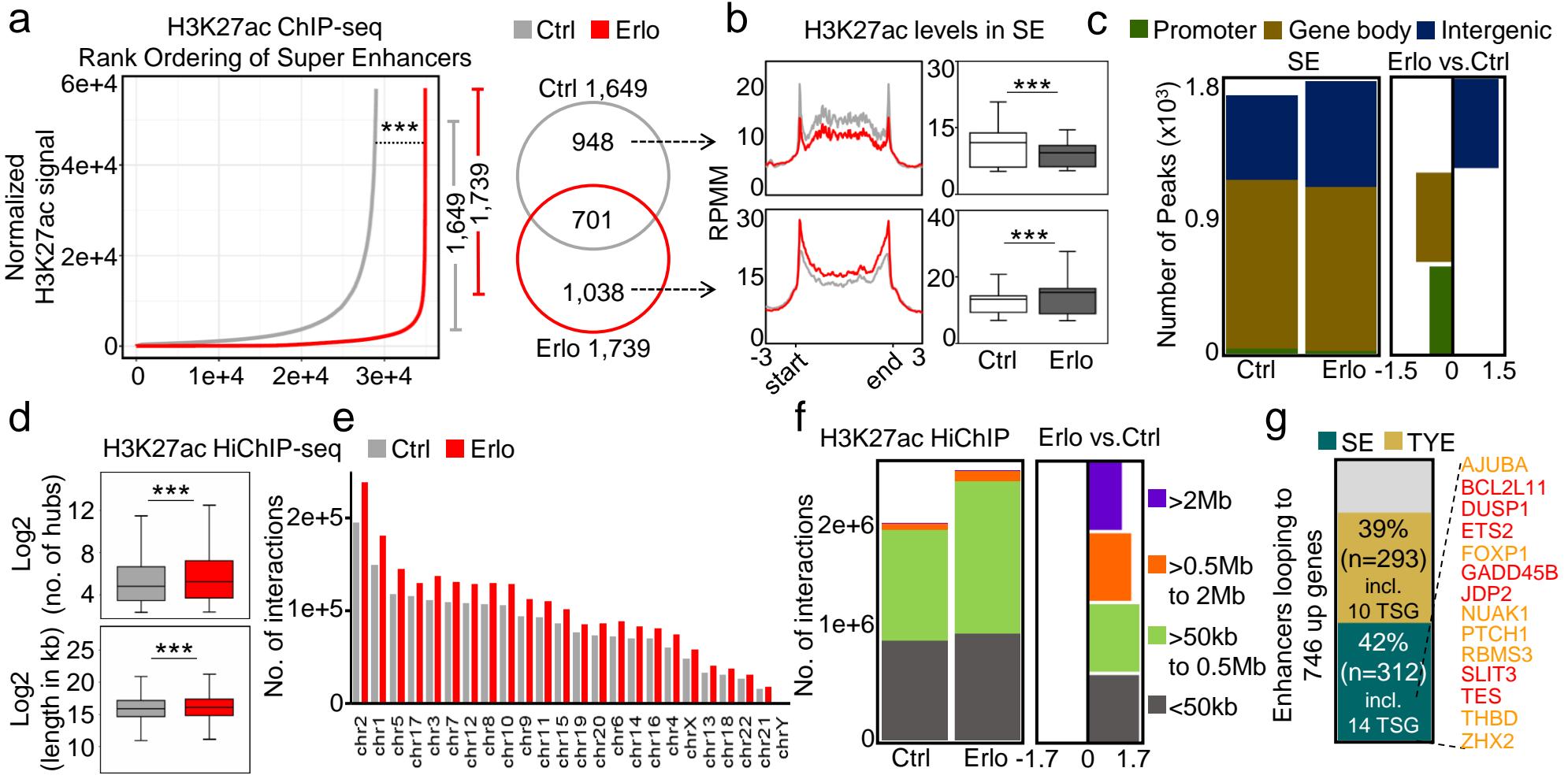


Figure 3

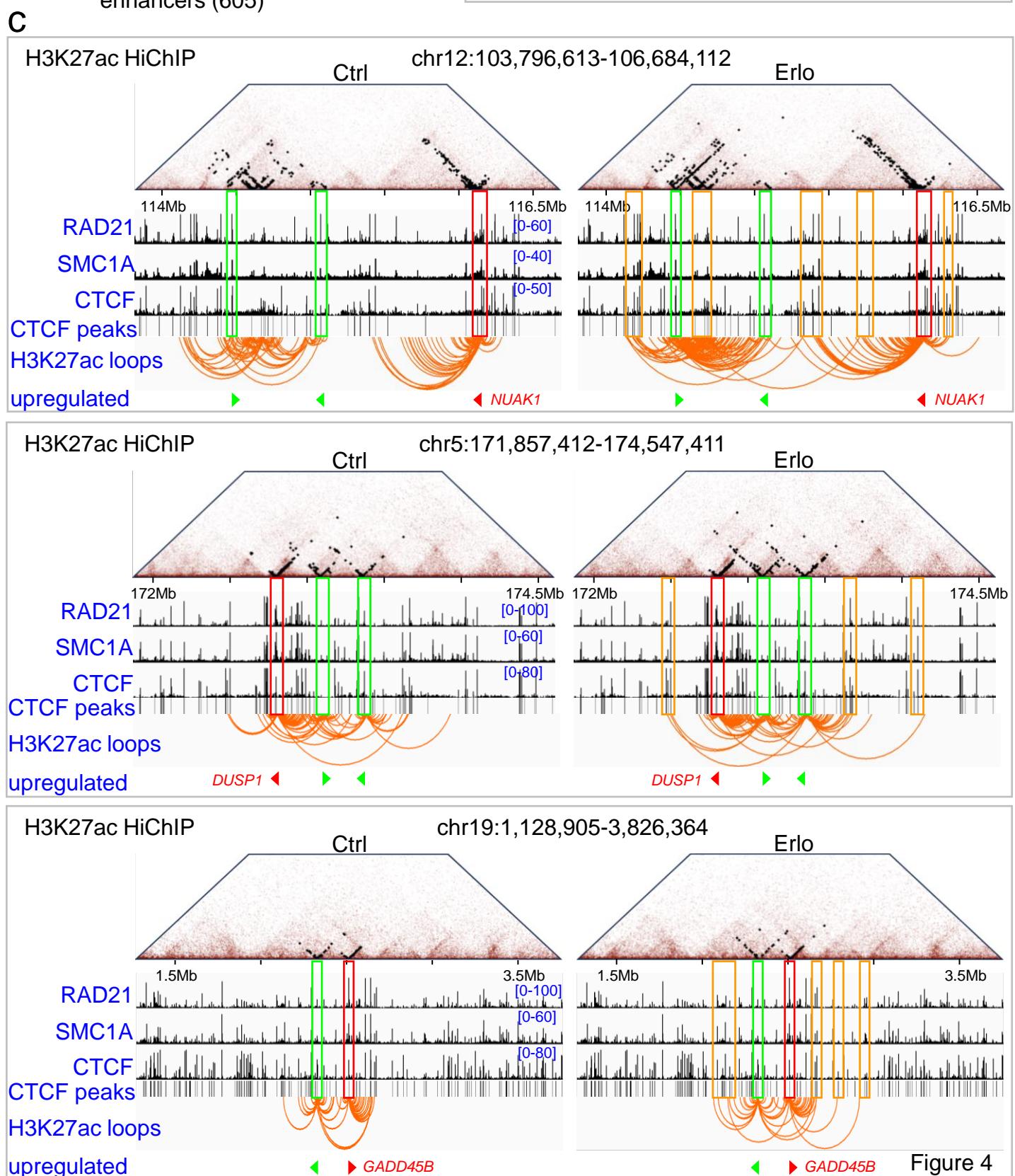
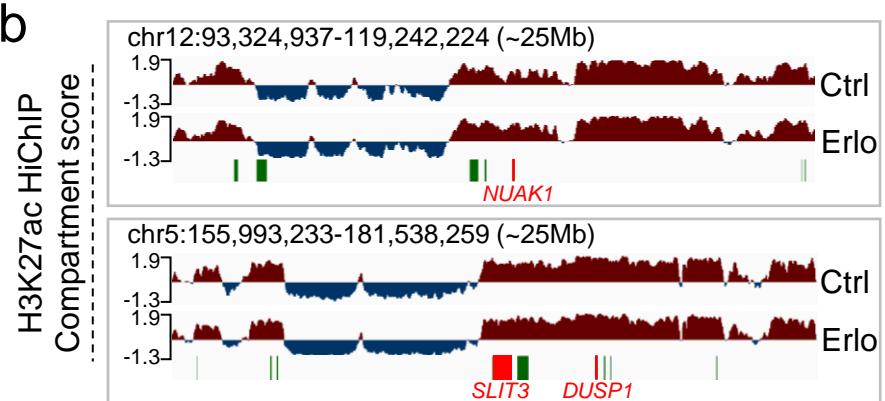
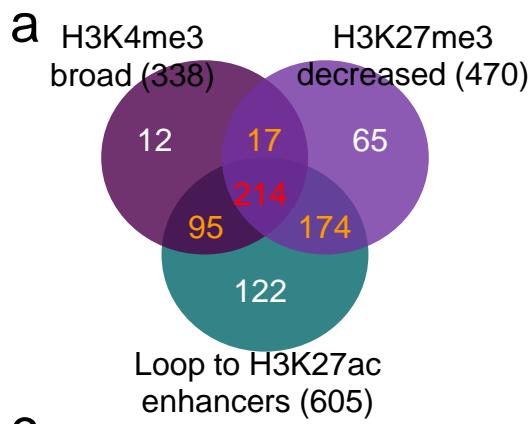
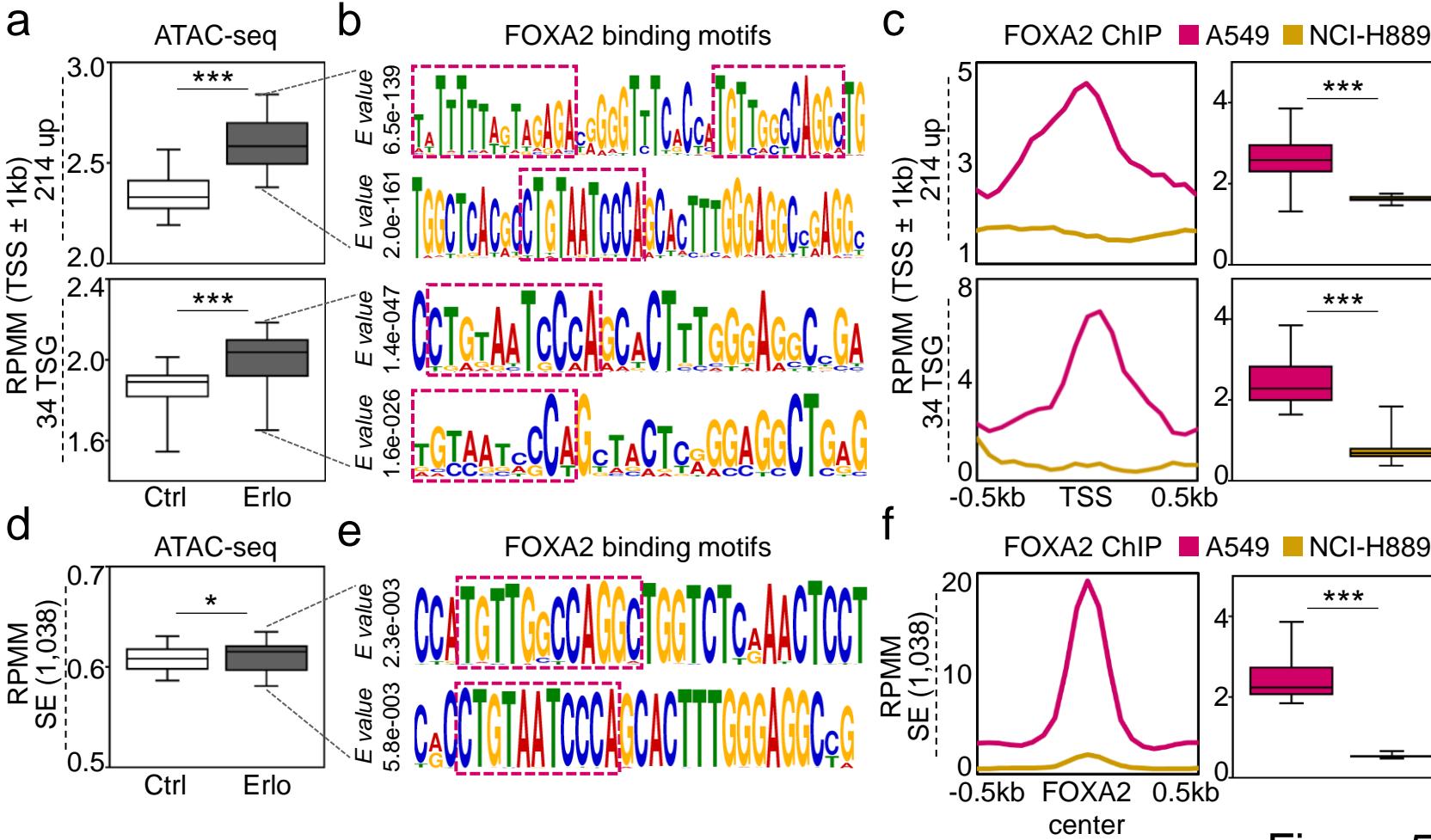
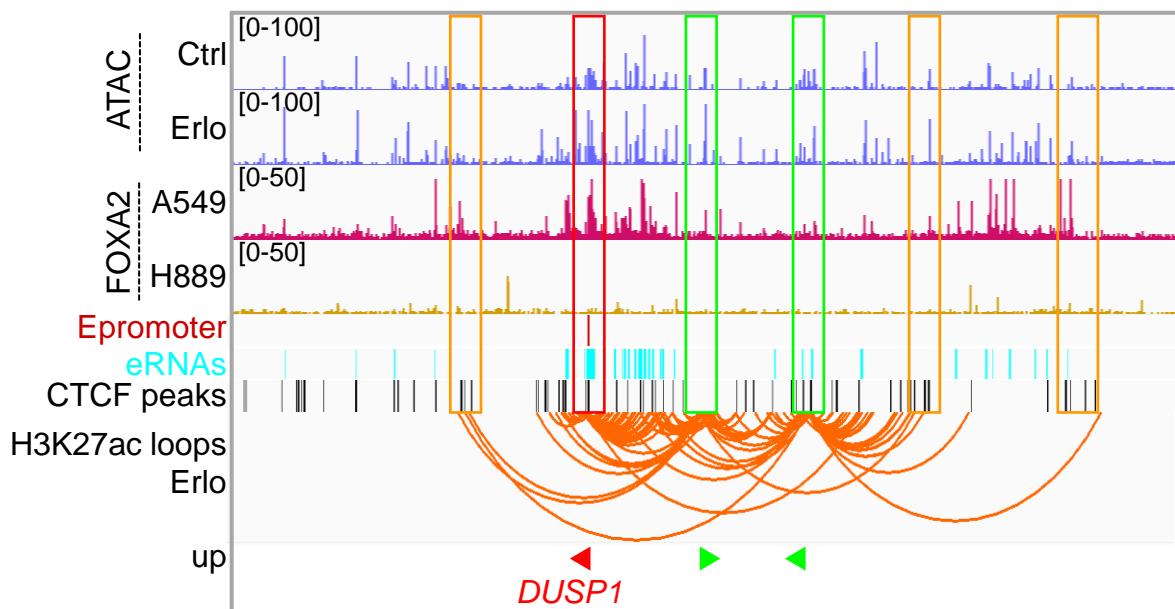




Figure 4





Figure 5

a

chr12:103,796,613-106,684,112

chr5:171,857,412-174,547,411

chr19:1,128,905-3,826,364

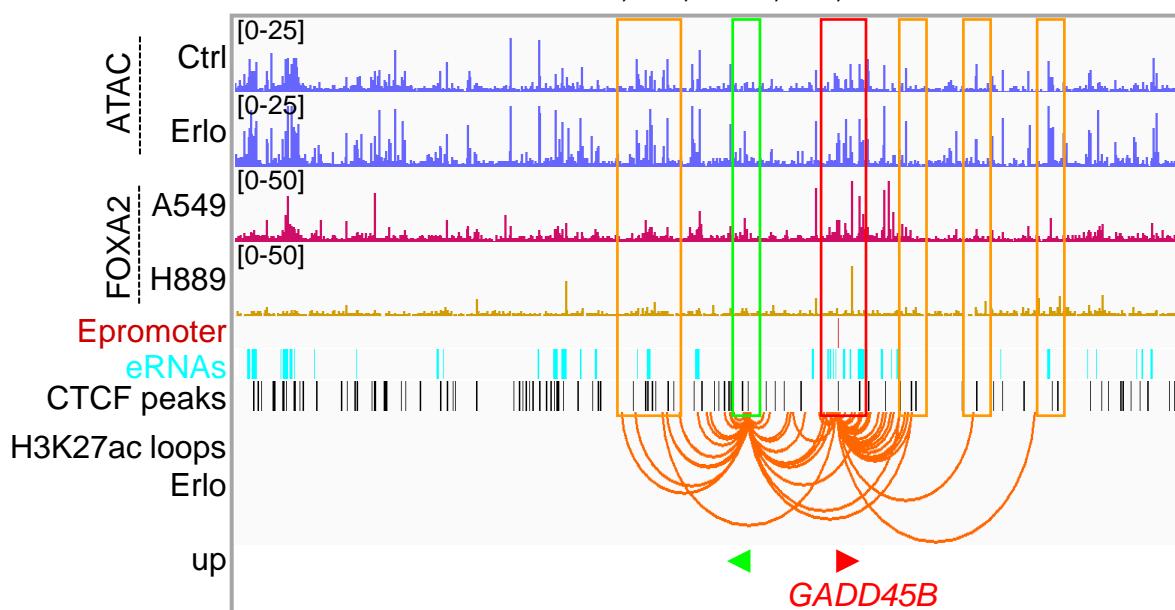


Figure 6

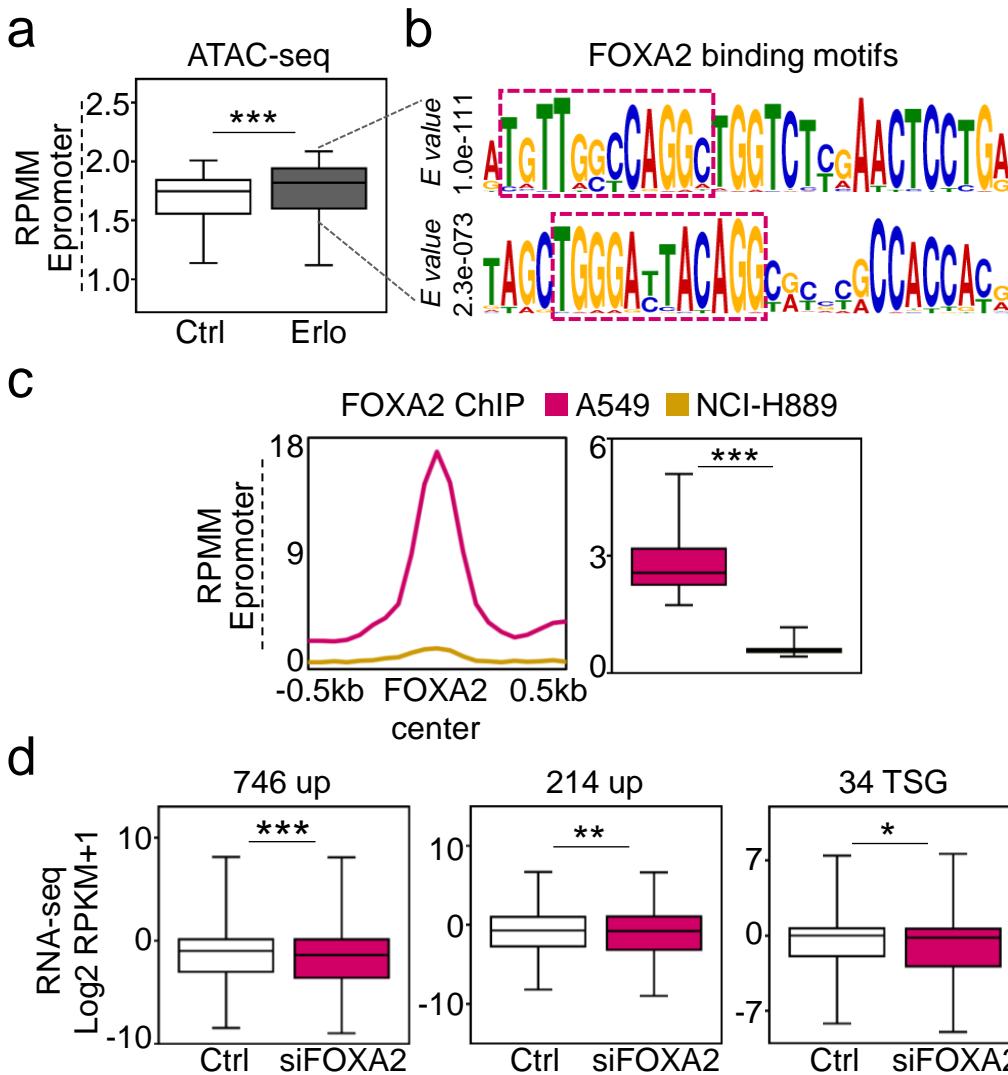


Figure 7

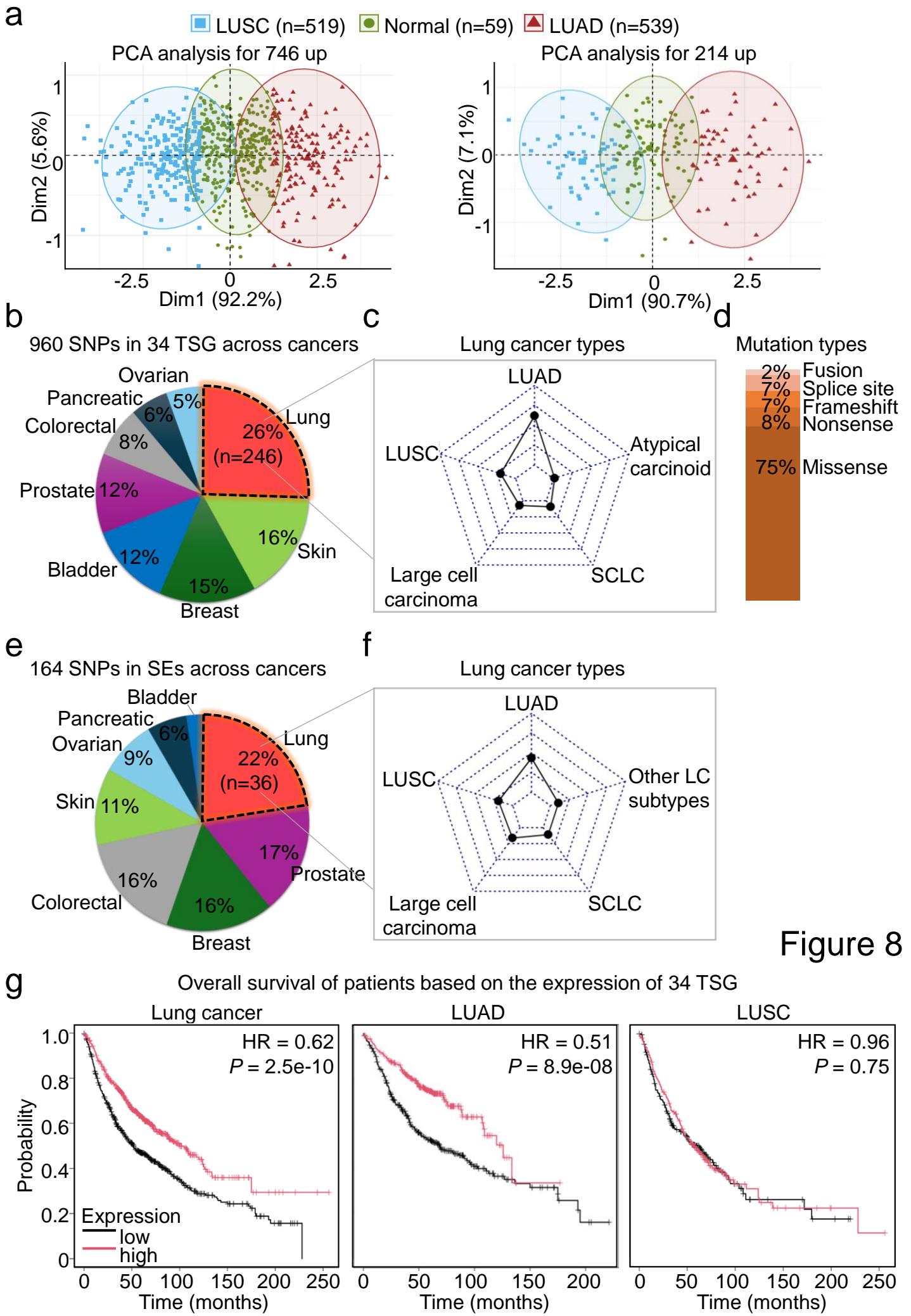


Figure 8