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Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity
and mortality with both monogenic and polygenic components. Here, we
report results from alarge genome-wide association study and multitrait

analysisincluding 5,900 HCM cases, 68,359 controls and 36,083 UK Biobank
participants with cardiac magnetic resonance imaging. We identified 70

loci (50 novel) associated with HCM and 62 loci (20 novel) associated with
relevant left ventricular traits. Among the prioritized genes in the HCM loci,
we identify anovel HCM disease gene, SVIL, which encodes the actin-binding
protein supervillin, showing that rare truncating SVIL variants confer a
roughly tenfold increased risk of HCM. Mendelian randomization analyses
support a causal role of increased left ventricular contractility in both
obstructive and nonobstructive forms of HCM, suggesting common disease
mechanisms and anticipating shared response to therapy. Taken together,
these findings increase our understanding of the genetic basis of HCM, with
potentialimplications for disease management.

HCM is a disease of the cardiac muscle characterized by thickening
of the left ventricular (LV) wall with or without obstruction of flow
(obstructive, 0HCM; nonobstructive, nHCM). HCM s associated with
anincreased risk of arrhythmia, heart failure, stroke and sudden death.
Previously viewed as aMendelian disease with rare pathogenic variants
incardiacsarcomere genesidentified in~35% of cases (HCMgygc.), HCM
is now known to have complex and diverse genetic architectures’. Previ-
ous studies have established that common genetic variants underlie a
large portion of disease heritability in HCM not caused by rare patho-
genic variants (sarcomere-negative (HCMszc_)) and partly explainthe
variable expressivity in HCM patients carrying pathogenic variants
(sarcomere-positive (HCMgyrc.)), but such studies had limited power
toidentify alarge number of significant loci*”.

We report a meta-analysis of seven case-control HCM
genome-wide association study (GWAS) datasets comprising a total
of 5,900 HCM cases, 68,359 controls and 9,492,702 variants with a

minor allele frequency (MAF) > 1% (Supplementary Table 1; see study
flowchartin Fig. 1). We identified 34 loci significantly associated with
HCM (at P< 5 x107®), of which 15 were novel (Table 1and Supplementary
Figs.1and 2a). Stratified analyses in HCMg g, (1,776 cases) and HCM-
sarc- (3,860 cases) identified a further five loci (Table 1, Supplemen-
tary Fig. 2b and Supplementary Table 2). Using conditional analysis®,
we identified more independent associations with HCM, HCMgpc.,
and HCMqg,yc_ with a false discovery rate (FDR) <1% (Supplementary
Table 3). We estimated the heritability of HCM attributable to common
genetic variation (h%,) inthe all-comer analysis tobe 0.17 + 0.02 using
linkage disequilibrium (LD) score regression (LDSC)®, and found higher
estimates (0.25 + 0.02) using genome-based restricted maximum likeli-
hood (GREML)®, with higher h%p, in HCMgypc- (0.29 + 0.02) compared
with HCMggc. (0.16 + 0.04) (Supplementary Table 4).

To further maximize HCM locus discovery, we performed a mul-
titrait analysis of GWAS (MTAG)’ (Fig. 2). We first completed a GWAS
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Fig.1|Study flowchart. Flowchart of meta-analysis of seven case-control HCM
GWAS datasets, GWAS of LV traits and downstream analyses. Created using
BioRender.com.

of ten cardiomyopathy-relevant LV traits in 36,083 participants of
the UK Biobank (UKB), using machine learning assessment of cardiac
magnetic resonance (CMR) imaging® for LV volumes, wall thickness
and myocardial strain (Supplementary Table 5 and Supplementary
Figs. 3-12). We discovered 62 loci associated with LV traits (20 novel)
(Supplementary Table 6). LDSC analyses’ demonstrated high genetic
correlations (rg) between LV traits within three clusters (contractility,
volume and mass) and with HCM (Fig. 2 and Supplementary Table 7).
Leveraging such correlations, we performed an HCM MTAG by includ-
ing the three LV traits most correlated with HCM (one trait from each
cluster), namely global circumferential strain (contractility cluster;
rg=-0.62), LV end-systolic volume (volume cluster; rg = -0.48) and
the ratio of LV mass to end-diastolic volume (mass cluster; rg = 0.63).
MTAG resulted in a substantial increase in mean x? equivalent to an
increase in effective sample size (N) of the HCM GWAS of ~29% (from
21,725t028,106), with an estimated upper bound of the false discovery
rate (maxFDR)’ of 0.027. Effect estimates derived from MTAG were
strongly correlated with those from GWAS (Supplementary Fig. 13).
MTAG resulted in a substantial step up in loci discovered, identifying
atotal of 68 loci associated with HCM at P< 5 x 1078, including 48 that
have not been published previously (13 novel loci also identified in
the single-trait HCM GWAS, and 35 additional novel loci from MTAG)
(Fig.3, Supplementary Table 8 and Supplementary Fig.14). Two of the
34 locireaching genome-wide significance inthe HCM GWAS were not
significantin MTAG (loci mapped to TRDN/HEY2 and CHPF). The total
number of lociidentified in GWAS or MTAG is therefore 70 (50 novel).
Although it was not possible to test for replication for the 35 novel
MTAG loci, a previous study strongly supports the robustness of the
HCM-LV traits MTAG approach, whereby all ten HCM loci uncovered
using MTAG in this previous study were independently validated®, and
allreach P<5x1078in the present GWAS.

MAGMA'™ gene set analysis identified several significant gene
sets linked to muscle, contractility and sarcomeric function (Supple-
mentary Table 9), and tissue expression analysis pointed to cardiac
tissue (LV and atrial appendage (AA)) (Supplementary Table 10). Within
cardiac tissue, we further explored the contribution of specific cell
types in HCM by leveraging available single-nuclei RNA sequencing
(snRNA-seq) data from donor human hearts". Using sc-linker'?, we

identified significant enrichment of heritability in cardiomyocyte
and adipocyte cell types (cardiomyocyte, FDR-adjusted P=1.8 x107¢;
adipocyte, FDR-adjusted P= 3.0 x 107%) and cell states (Supplementary
Fig.15).

Lead variants at GWAS and MTAG loci map to noncoding sequences
of the genome, with only a few exceptions that are missense variants
in BAG3, ADPRHL1, PROBI and RNF207 (Table 1 and Supplementary
Tables 8 and 11). Prioritization of potential causal genes in HCM
MTAG loci was performed using OpenTargets variant-to-gene (V2G)
mapping” (Supplementary Table 12) and FUMA" (Supplementary
Table13). Of all prioritized genes, 26 were selected based on concord-
ance in both OpenTargets (top three genes per locus) and FUMA, as
well as LV-specific expression in bulk RNA-seq data (genotype-tissue
expression project (GTEx) v.8) and expression in cardiomyocytes
using publicly available snRNA-seq data® (Fig. 4a and Supplementary
Tables 12 and 13). Of those 26 genes, 14 are in novel loci and include
genesinvolved in cardiomyocyte energetics and metabolism (RNF207
(ref.16), MLIP”), myocyte differentiation and transcriptional regulation
(MITF'®, PROX1 (ref.19), TMEMI1S82 (ref.20)), myofibril assembly (SVIL™)
and calcium handling and contractility (PDE3A*, SRL™). To identify fur-
ther genes associated with HCM, we performed a transcriptome-wide
association study (TWAS) using S-MultiXcan?* with the MTAG summary
statistics and cardiac tissues (LV and AA) from GTEx v.8. TWAS identi-
fied 127 genesssignificantly associated with HCM at P < 3.7 x 1076 (Sup-
plementary Table 14), of which 50 were not mapped to MTAG loci using
either FUMA or OpenTargets, including HHATL (P=1x10"")—a gene
of uncertain function prioritized based on dominant LV expression
and whose depletion in zebrafish may lead to cardiac hypertrophy®.
Finally, we used OpenTargets to explore association of the 70 lead
single nucleotide polymorphisms (SNPs) (or any other SNP in linkage
disequilibrium, 2> 0.5) with published cardiovascular, metabolic or
other traits (Supplementary Table 15). Of the 70 loci associated with
HCM, 51were previously associated at P< 5 x 108 with cardiovascular
and/or cardiometabolic traits, including ECG measures, body mass,
blood pressure, atrial fibrillation, left ventricular structure/function,
atherosclerotic cardiovascular disease and lipids.

GWAS loci often colocalize with genes harboring disease-causing
rare variants®. To identify novel HCM disease genes, we explored
whether rare (MAF <107*) predicted loss-of-function (LoF) variants
in the 26 prioritized genes from significant GWAS/MTAG loci are
associated with HCM. We performed case-control burden testing
using sequencing data from BioResource of Rare Diseases (BRRD),
Genomics England (GEL), UKB and the Oxford Medical Genetics Labo-
ratory (OMGL; only for SVIL), followed by a fixed-effects model IVW
meta-analysis comprised of up to 2,502 unrelated HCM cases and
486,217 controls (Fig. 4b and Supplementary Table 16a). Rare LoF vari-
ants in ALPK3 and SVIL were significantly associated with HCM at the
Bonferroni-corrected P < 0.0019 (0.05/26). While truncating variantsin
ALPK3have previously been shown to cause HCM and are now included
in most clinical testing panels®*%, SVIL represents a novel HCM gene
with a comparable effect size for LoF variants (odds ratio (OR), 10.5,;
95% confidence intervals (Cl), 4.3-26.1; P=3.6 x107). As exploratory
analyses, we also performed exome-wide gene-based burden testing
for LoF variants using two MAF filters (< 10 and <10™*) and report the
summary statistics in the supplement (Supplementary Tables 17 and
18 and Supplementary Figs. 16-18). Effect estimates for rare SVIL LoF
variants do not show significant heterogeneity across the four data-
sets (Supplementary Fig. 19), and the associations remain significant
when excluding each dataset one atatime (Supplementary Table 16b).
Furthermore, synonymous variant burden testing was performed as
anegative control and did not show significant associations (Fig. 4b
and Supplementary Table 16¢). SVIL LoF variants found in eight unre-
lated cases are listed in Supplementary Table 19 and Fig. 4c. None of
the eight unrelated HCM cases that carry a SVIL LoF variant carries
any other pathogenic or likely pathogenic variant. Family screening
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Table 1| Lead variants from the HCM GWAS

Lead SNP GRCh37 EA/ EAF OR (95% P Q Locus name GWSin GWSin
NEA cl) HCMgpnc. HCMgpnc.

Genome-wide significant loci from all HCM meta-analysis

rs2234962 10:121429633 C/T 0.21 1.45 1.39x107° 0.36 BAG3 (missense) . .
(1.38-1.52)

rs2644262 18:34223566 C/T 0.29 1.38 1.79x10™% 0.43 FHOD3/TPGS2 . .
(1.32-1.45)

rs78310129 11:56793878 T/C 0.01 3.53 9.79x107%° 1.59E-09 MYBPC3 .
(2.92-4.27)

rs1048302 1:16340879 T/G 0.33 1.28 8.47x107%° 0.59 HSPB7 .
(1.23-1.34)

rs2070458* 22:24159307 A/T 0.22 1.30 5.93x107% 0.09 VPREB3/SMARCB1 .
(1.24-1.37)

rs3176326* 6:36647289 A/G 0.21 1.30 318x107% 014 CDKNTA .
(1.24-1.37)

rs12212795 6:118654308 C/G 0.05 1.51 4.76x107% 0.33 SLC35F1/PLN .
(1.39-1.65)

rs4577128* 17:64308473 C/T 0.57 1.23 3.26x107 0.97 PRKCA .
(118-1.29)

rs393838 17:43705756 C/G 0.23 1.26 5.02x107% 0.91 CRHR1/MAPT .
(1.20-1.32)

rs8033459* 15:85253258 T/C 0.46 1.20 7.04x10™ 0.66 ALPK3/NMB .
(115-1.25)

rs11196085* 10:114505037 C/T 0.28 122 1.85x10™" 0.75 VTIA/TCF7L2 .
(116-1.28)

rs7301677 12:115381147 C/T 0.74 1.22 7.01x107 0.27 TBX3 .
(116-1.29)

rs2177843* 10:75409877 T/C 0.16 1.26 2.80x10™™ 0.91 MYOZ1/SYNPO2L .
(119-1.34)

rs41306688 13:114078558 C/A 0.03 1.60 3.04x10™ 0.22 ADPRHL1 (missense) .
(1.42-1.80)

rs2191445* 5:57011469 T/A 0.80 123 8.22x10™ 0.37 ACTBL2 .
(117-1.30)

rs4894803* 3:171800256 G/A 0.41 118 219x107° 0.63 FNDC3B .
(113-1.24)

rs13061705 3:14291129 C/T 0.69 119 5.67x107° 0.68 SLC6A6/LSM3 .
(113-1.25)

rs13021775 2:37059557 C/G 0.50 117 5.98x10™" 0.50 STRN .
(112-1.23)

rs8006225 14:95219657 G/T 0.83 1.22 2.64x10™ 0.5 GSC .
(115-1.30)

rs10052399* 5:138668504 T/C 0.27 118 3.99x10™ 0.03 SPATA24
(112-1.24)

rs66520020* 7128438284 T/C 0.16 121 5.87x10™" 0.96 CCDC136/FLNC
(1.14-1.28)

rs12460541 19:46312077 G/A 0.66 116 6.01x10™" 0.13 DMPK/SYMPK
(111-1.21)

rs7461129 8:125861374 T/C 0.31 116 8.19x10™" 0.87 MTSS1
(111-1.21)

rs56005624 2:179774634 G/T 014 121 8.31x10™" 0.62 CCDC141/SESTD1 .
(114-1.28)

rs7824244 8:21802432 A/G 014 1.22 2.39x107° 0.34 XPO7 .
(114-1.29)

rs12270374 11:14375079 C/T 0.36 114 6.85x107"° 0.92 RRAS2/COPB1
(1.09-1.20)

rs62222424 21:30530131 G/A 0.93 1.32 1.21x10°° 0.69 CCT8
(1.20-1.44)

rs11687178 2:11584197 C/A 0.65 114 7.70x10™° 0.26 E2F6/ROCK2
(1.09-1.19)
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Table 1 (continued) | Lead variants from the HCM GWAS

Lead SNP GRCh37 EA/ EAF OR (95% P Q Locus name GWSin GWSin
NEA Cl) HCMgrc. HCMgppe-

rs9320939 6:123818871 A/G 0.49 113 1.04x107® 0.04 TRDN/HEY2 .
(1.08-1.18)

rs2540277 2:103426177 Cc/T 0.94 1.32 2.31x10°® 0.84 TMEM182/MFSD9
(119-1.45)

rs6566955 18:55922789 G/A 0.31 114 2.93x10°® 0.16 NEDDA4L
(1.08-1.19)

rs13004994 2:220406239 T/G 0.46 113 3.02x10® 012 CHPF
(1.08-1.18)

rs2645210 10:4098453 A/G 0.19 116 3.94x10°8 0.52 KLF6/AKR1E2
(110-1.23)

rs113907726 14:53316867 G/T 0.19 116 410%10° 0.27 FERMT2/ERO1A
(110-1.22)

Additional loci discovered in HCMg,c. or HCMgapc-

rs9311485 3:52987645 T/G 0.25 113 1.86x1077 0.09 ITIH3/SFMBT1 .
(1.08-1.19)

rs77963625 12:46446897 C/T 0.03 1.38 2.97x1077 0.24 SCAF11 .
(1.22-1.57)

rs846111 1:6279370 G/C 0.73 114 6.32x1077 0.52 RNF207 (missense) .
(1.08-1.20)

rs58747679 12:26348304 T/C 071 112 1.30x107°® 0.15 SSPN .
(1.07-118)

rs112787369 14:68252852 T/A 0.04 1.21 6.04x10™ 0.62 ZYVE26 (missense) .
(1.08-1.35)

All reported summary statistics refer to the all HCM case-control meta-analysis results, including for loci identified only in the HCMgge. and HCMgygc- stratified analyses. The table is sorted
in increasing order of the all-comer Pvalues. Novel loci are shown in bold. An asterisk marks loci that reached significance in a previous multitrait analysis of GWAS (MTAG)® and now reach
significance in the present GWAS. Locus naming was performed primarily by OpenTargets™, also considering functional mapping and annotation of GWAS (FUMA)'" mapping, and previous
rare variant associations with HCM?, Dots indicate the presence of GWS. EA/NEA, effect and noneffect alleles; EAF, effect allele frequency; GWS, genome-wide significance (P<5%10°®%); Q,

Cochrane’s heterogeneity test Pvalue.

e (s€) 1 s.e.) Mean x?
s (8- 19y (.2) X HCM GWAS
LV contractility —strain'®¥ 0.14 (0.03) 0.26 (0.09)  1.068 Mean x*=1.181
Ny = 21,725
strain™ 0.8 (0.04) 0.56(0.06)  1.116
Irgpyl
100 ~strain®™®  0.22(0.03) 0.62(0.06) 1134
LVEF 0.18(0.02) 0.49(0.07)  1.094
0.75
LVESVi  0.26(0.02) -0.48(0.06) 1144 MTAG
0.50
LVEDVi  0.23(0.02) -0.35(0.06) 1.146
| 0.25
]

Fig.2|Genetic correlation of LV traits and HCM and use of MTAG to empower
locus discovery. Pairwise genetic correlation between LV traits shown in
heatmap as absolute values (|rg,,|) ranging from O (white) to 1(red). LV traits are
sorted into three clusters based on |rg,,| along the xand y axes using Euclidean
distance and complete hierarchical clustering: LV contractility (blue), volume
(bluish green) and mass (orange) (see dendrogram on top). The table in the
middle shows the individual LV trait h%, and genetic correlation with HCM
(rgucm), With corresponding s.e. The trait with the strongest correlation (based

!

HCM MTAG
Mean x? =1.219
N, = 28,106
maxFDR = 0.027

onrg,qv) ineach of the three clusters was carried forward for MTAG to empower
locus discovery in HCM. MTAG resulted inanincrease in N g, based on number

of cases and controls and increase in mean y” statistic from 21,725 to 28,106, with
an estimated maxFDR of 0.027. Since strain® and strain'"¢ are negative values
whereincreasingly negative values reflect increased contractility, we show —
strain“™and -strain'"¢ to facilitate interpretation of rg,,c, sign. Full rg,y and rg;,c,
results are shownin Supplementary Table 7.
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Fig. 3| Circular Manhattan plot of HCM summary statistics from MTAG
analysis. Previously published loci are identified in black (n = 20), novel loci
discovered by single-trait all-comer GWAS meta-analysis are identified in blue
(n=13) and other novel loci from MTAG are identified in green (n = 35). Two
other loci reaching GWAS significance threshold in the single-trait HCM GWAS
meta-analysis but not reaching significance in MTAG are not shown (mapped to
TRDN/HEY2 and CHPF; Table 1). P values are not corrected for multiple testing

and correspond to the HCM MTAG including the fixed-effects meta-analysis of
seven HCM case-control GWAS and three LV traits (Fig. 2). Significant variants
with P<5x10"®are shown asblack triangles. Results with P <1x 10 are assigned
P=1x107", Locus naming was performed primarily by OpenTargets gene
prioritization considering FUMA and previous gene association with Mendelian
HCM. See Supplementary Table 8 for loci details.

provided limited evidence of cosegregation. In one family, variant
SVIL:p.(GIn255Ter) was carried by two cousins withHCM and, inanother
family, variant SVIL:p.(Argl616Ter) was carried by two siblings with
HCM. SVIL encodes supervillin, alarge, multidomain actin and myosin
binding protein with several muscle and nonmuscleisoforms, of which
the muscle isoform has known roles in myofibril assembly and Z-disk
attachment?®. SVILis highly expressed in cardiac, skeletal and smooth
muscle myocytes in the GTEx v.9 snRNA-seq dataset’’, and SVIL mor-
pholino knockdown in zebrafish produces cardiac abnormalities®. In
humans, LoF SVIL variants have been associated with smaller descend-

ing aortic diameter®, and homozygous LoF SVIL variants have been

shown to cause a skeletal myopathy with mild cardiac features (left
ventricular hypertrophy)*. Of interest, common variants in the SVIL
locus are also associated with dilated cardiomyopathy (DCM)® and,

using a Bayesian pairwise analysis approach (GWAS-PW*) including
the present HCM GWAS meta-analysis and a published DCM GWAS™,
we show that DCM and HCM share the same causal SNP but with the
expected opposite directions of effect (Supplementary Table 20).
Takentogether, these datasupport SVIL asthelikely causal geneinthe
HCM GWAS locus and identify SVIL as anovel disease gene for HCM, in
whichrare LoF alleles have an effect size similar to that of minor HCM
disease genes tested in clinical practice® 2.

Rare sarcomeric gene variants that cause HCM have been shown to
resultinincreased contractility, and cardiac myosininhibitors attenuate
the development of sarcomeric HCM in animal models®. Previous data
from GWAS and Mendelian randomization (MR) also support a causal
association of increased LV contractility with HCM, extending beyond
rare sarcomeric variants’. Pharmacologic modulation of LV contractility
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Fig. 4| HCMlocus-to-gene mapping, prioritization and rare LoF association
testing identifies SVIL as anew HCM disease gene. a, HCM locus-to-gene
mapping and prioritization based on cardiac expression. Locus-to-gene mapping
was done using the OpenTargets” V2G pipeline (release of 12 October 2022) for
all 68 lead variants at the HCM MTAG loci and using FUMA" for the HCM MTAG
summary statistics (see Methods for detailed parameters). Of 164 genes mapped
using both FUMA and OpenTargets (top 3 genes per locus), 26 were prioritized
because of either high specificity of LV expression using the bulk RNA-seq data
of the GTEx project® release v.8 and/or high expression in cardiomyocytes using
snRNA-seq data®. See Methods and Supplementary Tables 12 and 13 for details.
b, Rare (MAF <107*) LoF variant association analyses with HCM versus controls
performed for all 26 genes using sequencing datain up to 2,502 unrelated HCM

cases and 486,217 controls from four datasets followed by IVW meta-analysis.
Association of rare synonymous (SYN) variants was also performed as a negative
control. Results shown restricted to two genes (ALPK3 and SVIL) reaching the
Bonferroni-corrected threshold of P < 0.0019 (0.05/26) in the IVW meta-analysis.
Filled circles and error bars represent the OR and their 95% Cl, respectively, from
the meta-analysis for LoF (blue) and SYN (red). P values shown are not corrected
for multiple testing. Full results appear in Supplementary Table 16. ¢, Schematic
oftherare LoF SVIL variants in HCM cases (top) and controls (bottom) along the
linear structure of SVIL, showing the Gelsolin-like and headpiece (HP) domains.
The coordinates reflect the codon numbers, and the colored bars are the exons.
Detailed variant annotation appears in Supplementary Table 19. Panel a was
created using BioRender.com.

using myosininhibitors hasbeenapprovedrecently inthe treatment of
HCM associated with LV obstruction (0HCM)***, but remains of uncer-
tainutilityinnHCM where no specific therapy currently exists. To further
dissect the specificimplication of LV contractility innHCM and oHCM,
we performed two-sample MR, testing the causal association of LV con-
tractility asexposure, withHCM, nHCM and oHCM as outcomes. GWAS of
nHCM (2,491 cases) and oHCM (964 cases) were performed (Supplemen-
tary Table 2), showing substantially shared genetic basis between nHCM
and oHCM (rg =0.87;s.e.0.13; P=4 x10™) (Supplementary Table 8). LV
contractility in the general population was assessed with CMR using a

volumetric method (LV ejection fraction (LVEF)), and three-dimensional
tissue deformation methods (thatis, global LV strainin the longitudinal
(strain®"¢), circumferential (strain®) and radial (strain™) directions).
Results from the primary MR inverse variance weighted (IVW) analysis
areshowninFig.5a, and sensitivity analyses results appearin Supplemen-
tary Table 21 and Supplementary Figs. 20 and 21. Although significant
heterogeneity inthe exposure-outcome effects and potential violations
of MRassumptions are possible limitations, MR findings supporta causal
association between increased LV contractility and increased risk for
both nHCM and oHCM, with a substantial risk increase of 12-fold and
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Fig. 5| MR analysis of LV contractility and blood pressure on risk of o0HCM
and nHCM. In both panels, filled circles represent the OR per s.d. increase
inferred from the IVW two-sample MR. Error bars represent the 95% Cl of the
OR. a, MR suggests causal association of LV contractility (exposure) with HCM,
oHCM and nHCM (outcomes), where increased contractility increases disease
risk. Genetic instruments for LV contractility were selected from the present
GWAS of LVEF and LV strain in the radial (strain_rad), longitudinal (strain_long)
and circumferential (strain_circ) directions in 36,083 participants of the UKB
without cardiomyopathy and with available CMR. To facilitate interpretation
of effect directions, OR for strain_circ and strain_long reflect those of increased
contractility (more negative strain_circ and strain_long values). The outcome
HCM GWAS included 5,900 HCM cases versus 68,359 controls. Of those, 964
cases and 27,163 controls were included in the oHCM GWAS and 2,491 cases and
27,109 were included in the nHCM GWAS. Note a logarithmic scale in the x axis.
b, MR suggests causal associations of SBP and DBP with HCM, nHCM and oHCM.
Geneticinstruments for SBP, DBP and PP (SBP - DBP) were selected froma
published GWAS including up to 801,644 people®. See Supplementary Table 21
for full MR results.

29-fold per s.d. increase in the absolute value of strain®™, respectively
(Fig. 5a). These data suggest that increased contractility is involved in
both oHCM and nHCM development, and thus myosin inhibitors cur-
rently approved for symptom control in oHCM may also be of clinical
benefit in nHCM. Finally, we also performed MR analyses exploring
whether increased systolic (SBP) and diastolic (DBP) blood pressure,
and pulse pressure (PP = SBP — DBP) are causally associated withnHCM
and oHCM. As for LV contractility, the causal association of SBP and
DBP with HCM? extended to both oHCM and nHCM subgroups (Fig. 5b,
Supplementary Table 21 and Supplementary Fig. 22), suggesting that
lowering blood pressure may be atherapeutic target to mitigate disease
progression for bothnHCM and oHCM.

The large number of new susceptibility loci arising from this work
support new inferences regarding disease mechanisms in HCM. With

the identification of the role of SVIL, we have uncovered further evi-
dencethat asubset of genes underlies both monogenic and polygenic
forms ofthe condition. However, this shared genetic architecture does
not extend to the core sarcomere genes that cause monogenic HCM;
instead, the common variantlociimplicate processes outside the myo-
filament, thereby widening our biological understanding. The shared
mechanistic pathways between oHCM and nHCM suggest that the new
class of myosin inhibitors may be effective in both settings, whereas
the further exploration of newly implicated loci and pathways may in
the future yield new treatment targets.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
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acknowledgements, peer review information; details of author contri-
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Methods

Ethics

The study was approved by the following ethics review boards: Research
Ethicsand New Technology Development Committee of the Montreal
Heart Institute (2011/208), Medical Ethical Committee of Amster-
dam University Medical Center (UMC; W20_226 no. 20.260), South
Central-Hampshire B Research Ethics Committee (09/H0504/104),
Hammersmith and Queen Charlotte’s Research Ethics Committee
(09/H0707/69) and the National Research Ethics Service (11/NW/0382,
13/EE/0325, 14/EE/1112, 14/SC/0190, 19/SC/0257, 21/NW/0157). The
study of HCM patients from Amsterdam UMC was performed under
awaiver—approved by the Medical Ethical Committee of Amsterdam
UMC-allowing genotyping and genome-wide association study of
people affected by cardiovascular disease. All other study participants
provided informed consent.

GWAS of HCM

The HCM GWAS included cases and controls from seven strata: the
Hypertrophic Cardiomyopathy Registry (HCMR), a Canadian HCM
cohort, a Netherlands HCM cohort, the Genomics England 100,000
Genome Project (GEL), the Royal Brompton HCM cohort, an Italian
HCM cohort and the BioResource for Rare Disease (BRRD) project.
Quality control (QC) and association analyses were performed per
strata, followed by a meta-analysis. The seven strata are described in
the Supplementary Note and in Supplementary Table 1. Cases con-
sisted of unrelated patients diagnosed with HCM in presence of unex-
plained LV hypertrophy defined as a LV wall thickness (LVWT) >15 mm,
or >13 mm and either presence of family history of HCM or a patho-
genic or likely pathogenic genetic variant causing HCM. HCM cases
underwent gene panel sequencing as per clinical indications. Variants
identified within eight core sarcomere genes (MYBPC3, MYH7, TNNI3,
TNNT2, MYL2, MYL3, ACTCI and TPM1I) were assessed centrally at the
Oxford laboratory using the American College of Medical Genetics
and Genomics (ACMG) guidelines*®. HCM cases were dichotomized
into sarcomere-positive and sarcomere-negative groups using a clas-
sification framework previously reported in Neubauer et al.”. In addi-
tion to the primary all-comer GWAS analyses including all cases with
HCM (total of 5,900 cases and 68,359 controls), analyses stratified
for sarcomere status in cases and randomly allocated controls were
performed, including a total of 1,776 cases versus 29,414 controls in
the HCMg,zc. analysis and 3,860 cases versus 38,942 controls in the
HCMgpc- analysis.

Meta-analyses for the all-comer HCM GWAS was performed on
betas and standard errors using GWAMA*., We kept variants where
meta-analysis came from two or more studies and also had a sample
size >5,000. Genomic inflation was estimated from the median x* dis-
tribution and using HapMap3 European ancestry LD scores using LD
Score Regression’. All variants were mapped to Genome Reference
Consortium Human Build 37 (GRCh37) extrapolated using the 1000
Genome phase 3 genetic maps. A genome-wide significant locus was
assigned where two variants had a meta-analysis P <5 x 10 and were
0.5 cM distance apart. A similar approach was implemented for the
HCMgppe. and HCM e stratified analyses, which comprised five and
seven strata, respectively (the GEL and BRRD strata did not include
enough HCMq,xc, cases). Variants were retained where meta-analysis
came from two or more studies and had sample size >5,000 for HCM-
sarc-and >2,500 for HCMg,gc, cases. The final datasetincluded 9,492,702
(all-comer), 7,614,734 (HCMgyrc.) and 9,226,079 (HCMgupc) variants
after filtering. The results of the all-comer HCM GWAS meta-analysis
and stratified analyses are presented in Table 1, Supplementary Figs.1
and 2 and Supplementary Table 2.

AFDR1% P value cut-off was derived from the all-comer, HCMg g,
and HCMg,c. sSummary statistics using Simes method (Stata v.10.1),
and the corresponding P valueswere 8.5 x107%,1.6 x 10 and 7.8 x 10°%,
respectively. Using the 1% FDR P-value thresholds, we then performed

a stepwise model selection to identify 1% FDR independently associ-
ated variants using GCTA*. The analysis was performed chromosome
wise using default window of 10 Mb, 0.9 collinearity and UKB reference
panel containing 60,000 unrelated European ancestry participants.
The results of this conditional analysis are presented in Supplemen-
tary Table 3.

HCM heritability attributable to common variants

We estimated the heritability of HCM attributable to common genetic
variation (h%) inthe all-comer HCM, as well as HCMgrc, and HCMg g
using LDSC’® and GREML®. For LDSC, HapMap3 SNPs were selected
from the summary statistics corresponding to HCM, HCMqxc. and
HCMs,zc- meta-analyses. The h%, was computed on the liability scale
assuming a disease prevalence of 0.002 (ref. 43). Since LDSC tends to
underestimate h’p, we also estimated i’y using GREML, as previ-
ously performed®*. We first computed h%y, for HCM, HCMggc, and
HCMgpe- using GREML for each of the largest three strata (HCMR, the
CanadianHCM cohort and the Netherlands HCM cohort), followed by
fixed-effects and random-effects meta-analyses combining all three
strata. To exclude the contribution of rare founder HCM causing vari-
ants, we excluded the MYBPC3locus for the Canadian and Netherlands
strata and the TNNT2 locus for the Canadian stratum®. The results of
R\ analyses are presented in Supplementary Table 4.

GWAS of CMRimaging-derived LV traits

UKB study population. The UKB is an open-access population cohort
resource that has recruited half a million participants in its initial
recruitment phase, from 2006 to 2010. At the time of analysis, CMR
imaging data were available from 39,559 participants in the imaging
substudy. The UKB CMR acquisition protocol has been described pre-
viously**. In brief, images were acquired according to a basic cardiac
imaging protocol using clinical 1.5 T wide bore scanners (MAGNETOM
Aera, Syngo Platform VD13A, Siemens Healthcare) in three separate
imaging centers. Extensive clinical and questionnaire data and geno-
types are available for these participants. Clinical data were obtained
at the time of the imaging visit. These included sex (31), age (21003),
weight (21002), height (50), SBP (4080), DBP (4079), self-reported
noncancer illness code (20002) and ICD-10 codes (41270). The mean
age at the time of CMR was 63 + 8 years (range 45-80) and 46% of par-
ticipants were male. Cohort anthropometrics, demographics and
comorbidities are reported in Supplementary Table 5. Exclusion criteria
for the UKBimaging substudy included childhood disease, pregnancy
and contraindications to magnetic resonance imaging (MRI) scan-
ning. For the current analysis, we also excluded, by ICD-10 code and/or
self-reported diagnoses, anyone with heart failure, cardiomyopathy,
a previous myocardial infarction or structural heart disease. After
imaging QC and exclusions for comorbidities or genotype QC, we had
amaximum cohort size of 36,083 people. The UKB received National
Research Ethics Approval (REC reference no.11/NW/0382). The present
study was conducted under terms of UKB access approval no.18545.

LV trait phenotyping. Description of CMRimage analysisis detailed in
the Supplementary Note and inref. 3. Weincluded ten LV phenotypes
for GWAS analyses: end-diastolic volume (LVEDV), end-systolic volume
(LVESV), LV ejection fraction (LVEF), mass (LVM), concentricity index
(LV concentricity index (LVconc) = LVM/LVEDV), mean wall thickness
(meanWT) and maximum wall thickness (maxWT) as well as global peak
strain in radial (strain™), longitudinal (strain'°"¢) and circumferential
(strain®") directions. The means and s.d. values of all ten LV pheno-
types, overall and stratified by sex, are shownin Supplementary Table 5.

LV trait GWAS. A description of genotyping, imputation and QC
appearsinthe Supplementary Note. The GWAS model for LVEF, LVconc,
meanWT, maxWT, strain™, strain'"¢ and strain“" included age, sex,
mean arterial pressure (MAP), body surface area (BSA, derived fromthe
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Mosteller formula) and the first eight genotypic principal components
ascovariates. LVEDV, LVESV and LVM were indexed to BSA for the analy-
sis, as commonly performedin clinical practice. Forindexed values (LV
end-diastolic volume indexed for BSA (LVEDVi), LV end-systolic volume
indexed for BSA (LVESVi) and LV mass indexed for BSA (LVMi), the GWAS
modeldid notinclude BSA as a covariate, but all other covariates were
the same as for nonindexed phenotypes. BOLT-LMM (v.2.3.2)* was
used to construct mixed models for association with around 9.5 million
directly genotyped and imputed SNPs. A high-quality set of directly
genotyped model SNPs was selected to account for random effectsin
the genetic association analyses. These were selected by MAF (>0.001),
and LD-pruned (* < 0.8) to create an optimum SNP set size of around
500,000. The model was then applied to the >9.8 millionimputed SNPs
passing QC and filtering. Results of the LV traits GWAS are shown in
Supplementary Table 6 and Supplementary Figs. 3-12.

Locus definition and annotation. Genomic loci associated with all
LV traits were annotated jointly. Specifically, summary statistics were
combined with a P value corresponding to the minimal P value (minP)
across all ten summary statistics. The minP summary statistics was then
used to define loci using FUMA v.1.4.2 (ref. 14) using a maximum lead
SNP Pvalue of 5 x 1078, maximum GWAS P value of 0.05 and r* threshold
for independent significant SNPs of 0.05 (using the European 1000
Genomes Project dataset) and merging LD blocks within 250 kb. Loci
were then mapped to genes using positional mapping (<10 kb), expres-
sion quantitative trait loci mapping using GTEx v.8 restricted to atrial
appendage, left ventricle and skeletal muscle tissues, and chromatin
interaction mapping using left and right ventricles. Genes mapped
using FUMA were further prioritized by querying the Clinical Genomes
Resource (ClinGen)** for genes linked to Mendelian heart disease with
moderate, strong or definitive evidence, and using arecent review of
overlapping GWAS and Mendelian cardiomyopathy genes®. In addition
to FUMA locus-to-gene mapping, we also report closest gene and top
gene mapped using OpenTargets®™. Annotated LV trait loci are shown
inSupplementary Table 6.

Genetic correlations between HCM and LV traits

Pairwise genetic correlations for HCM and the ten LV traits were
assessed using LDSC v.1.0.1 (ref. 9). The analysis was restricted to
well-imputed nonambiguous HapMap3 SNPs, excluding SNPs with
MAF < 0.01and those with low sample size, using default parameters.
Wethenassessed genetic correlations for each of the 55 pairs (HCM and
ten LV traits) using precomputed LD scores from the European 1000
Genomes Project dataset. We did not constrain the single-trait and
cross-trait LD score regression intercepts. The results of the genetic
correlation analyses are shown in Fig. 2 and Supplementary Table 7.

Multitrait analysis of GWAS

We performed multitrait analysis of GWAS summary statistics using
MTAG (v.1.0.8) to increase power for discovery of genetic loci associ-
ated with HCM. MTAG jointly analyzes several sets of GWAS summary
statistics of genetically correlated traits to enhance statistical power.
Due to high computation needs to calculate the maxFDR with MTAG,
we limited the number of GWAS summary statistics to four (HCM plus
three LV traits). The three LV traitstoinclude were selected as follows.
First, we performed hierarchical clustering of the ten LV traits using the
absolute value of the pairwise genetic correlations, Euclidean distance
and the complete method, predefining the number of clusters to three.
This resulted in clustering of LV traits into an LV contractility cluster
(LVEF, strain™, strain'"¢ and strain®™), an LV volume cluster (LVEDVi,
LVESVi) and an LV mass cluster (LVMi, LVconc, meanWT, maxWT)
(Fig.2). We then selected the trait with the highest genetic correlation
with HCM from each cluster (strain", LVESVi and LVconc) to include
in MTAG together with HCM. Only SNPs included in all meta-analyses
(thatis, HCM and LV traits) were used in MTAG. The coded/noncoded

alleles were aligned for all four studies before MTAG, and multi-allelic
SNPs were removed. All summary statistics refer to the positive strand
of GRCh37 and, as such, ambiguous/palindromic SNPs (having alleles
A/T or C/G) were not excluded. Regression coefficients (beta) and
their s.e. were used as inputs for MTAG. The maxFDR was calculated
as suggested by the MTAG developers’. MaxFDR calculates the type |
errorinthe analyzed dataset for the worst-case scenario. We estimated
thegaininstatistical power by theincrementinthe N . The N for the
HCM GWAS was calculated using the following formula’’:

4
Nefiowas) = — —
cases T Ncontrols

The N for the HCM MTAG was computed by means of the
fold-increase in mean x?, using the following formula’, implemented
inMTAG, where the MTAG N, corresponds to the approximate sample
size needed to achieve the same mean y* value in astandard GWAS:

_ 2 2
Nesiomtac) = Nefiiawas) X (XMTAG,mean = UXGwas,mean — 1)

To explore whether HCM effects estimates derived from MTAG
are accurate, we compared the regression coefficients derived from
MTAG with those derived from GWAS. This was performed for all vari-
antsincludedin MTAG and GWAS, and for asubset of variants reaching
nominal significance (P < 0.001) in either GWAS and/or MTAG (Sup-
plementary Fig. 13). The results of HCM MTAG are presented in Fig. 3,
Supplementary Table 8 and Supplementary Fig. 14.

Genome-wide annotation and gene set enrichment analyses
Genome-wide analyses following MTAG were performed using MAGMA
v.1.08, asimplemented in FUMA", including gene set and tissue expres-
sion analyses. We used Gene Ontology gene sets from the Molecular
Signatures Database (MsigDB, v.6.2) for the gene set analysis and GTEx
v.8 for the tissue specificity analysis. The results of MAGMA analyses
are shown in Supplementary Table 9 (gene set analyses) and Supple-
mentary Table 10 (tissue specificity analyses).

Cardiac cell type heritability enrichment analysis

Gene programs derived from snRNA-seq were used to investigate herit-
ability enrichment in cardiac cell types and states using the sc-linker
framework™. This approach uses snRNA-seq data to generate gene
programs that characterize individual cell types and states. These
programs are then linked to genomic regions and the SNPs that regu-
late them by incorporating Roadmap Enhancer-Gene Linking*®*’ and
Activity-by-Contact models®”". Finally, the disease informativeness of
resulting SNP annotations was tested using stratified LDSC (S-LDSC)*
conditional on broad sets of annotations from the baseline-LD
model****. Cell type and state-specific gene programs were generated
fromsnRNA-seq data of ventricular tissue from12 control participants,
with cell type and state annotations made as part of a larger study of
~-880,000 nuclei (samples from 61 DCM and 12 control participants™).
Cell states that may not represent true biological states (for example,
technical doublets) were excluded from analysis. Results of sc-linker
cardiac cell type heritability enrichment analysis are shown in Sup-
plementary Fig. 15.

Locus-to-gene annotation

A genome-wide significant HCM MTAG locus was assigned where two
variants hadaMTAG P< 5 x 10 8 and were 0.5 cM distance apart, as per-
formed for the HCM GWAS. Prioritization of potential causal genesin
HCM MTAG lociwas performed using OpenTargets V2G mapping® and
FUMA™. Thelead SNP at eachindependent locus was used as input for
OpenTargets V2G using the release of 12 October 2022. Locus-to-gene
mapping with FUMA v.1.3.7 was performed based on (1) position
(within 100 kb), (2) expression quantitative trait loci associations in
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disease-relevant tissues (GTEx v.8 left ventricle, atrial appendage and
skeletal muscle) and (3) chromatin interactions in cardiac tissue (left
ventricle and right ventricle, FDR <107°).

We further annotated genes mapped using OpenTargets and/or
FUMA with their implication in Mendelian cardiomyopathy. Specifi-
cally, we queried the Clinical Genome Resource (ClinGen***®) for genes
associated with any cardiomyopathy phenotype withalevel of evidence
of moderate, strong or definitive and included genes with robust recent
data supporting an association with Mendelian cardiomyopathy?.

Wealso prioritized genes based on RNA expression data from bulk
tissue RNA-seq data in the GTEx*® v.8 dataset accessible at the GTEx
Portal and snRNA-seq data from Chaffin et al.” accessible through the
Broad Institute Single Cell Portal (https://singlecell.broadinstitute.
org/single_cell). Using the GTEx v.8 data, we assessed specificity of LV
expression by computing the ratio of median LV transcripts per million
(TPM) to the median TPM in other tissues excluding atrial appendage
and skeletal muscle and averaging tissue within types (for example, all
arterial tissues, all brain tissues and so on). High and Mid LV expression
specificity were empirically defined as >10-fold and >1.5-fold LV to other
tissues median TPM ratios, respectively. Using snRNA-seq data from
Chaffin et al.””, we report the expression in the cardiomyocyte_1 cell
type using scaled mean expression (relative to each gene’s expression
across all cell types) and percentage of cells expressing. High and Mid
expressionin cardiomyocytes were empirically defined as percentage
expressing cells >80% and 40-80%, respectively. Prioritized genes were
defined as genes mapped using both OpenTargets (top three genes)
and FUMA, and had either (1) High LV-specific expression, (2) High
cardiomyocyte expression or (3) both Mid LV-specific expression and
Mid cardiomyocyte expression.

Lead variants in MTAG and GWAS loci were also annotated using
the Ensembl Variant Effect Predictor (VEP) and lookup of lead vari-
ants and variants in LD (~*> 0.5) in other GWAS was performed using
OpenTargets genetics.

Gene mapping and variant annotation data are shown in Sup-
plementary Table 11 (VEP annotation), Supplementary Table 12
(OpenTargets genes), Supplementary Table 13 (FUMA genes) and Sup-
plementary Table 15 (lookup in other GWAS). Prioritized genes are
illustratedin Fig. 4a.

Transcriptome-wide association study

We used MetaXcan to test the association between genetically pre-
dicted gene expression and HCM using summary results from MTAG
analysis***, Biologically informed MASHR-based prediction models
of gene expression for LV and AA tissue from GTEx v.8 (ref. 56) were
analyzed individually with S-PrediXcan®, and then analyzed together
using S-MultiXcan?*. GWAS MTAG summary statistics were harmo-
nized and imputed to match GTEx v.8 reference variants presentin the
prediction model. To account for multiple testing, TWAS significance
was adjusted for the total number of genes present in S-MultiXcan
analysis (13,558 genes, P=3.7 x 10°°). TWAS results are shown in Sup-
plementary Table 14.

Association of rare LoF variants in prioritized genes with HCM

We assessed the association of rare LoF variants in each of 26 prior-
itized genes (Fig. 4a) withHCM using burden analysis in three primary
cohorts (BRRD, GEL and UKB) followed by fixed-effect meta-analysis.
For BRRD, HCM cases were probands within the bio-resource project
HCM. Controls were all remaining participants within the BRRD pro-
jects excluding those also recruited into the GEL and GEL2 projects
(Genomics England pilot data). For GEL, HCM cases were probands
referred into GEL with a primary clinical diagnosis of HCM. Controls
were probands without any primary or secondary cardiovascular
disease or myopathy. For UKB, HCM cases were identified from
self-reported questionnaires at study recruitment, ICD-10 codes from
clinical admission data and deathregistries, and CMR imaging for the

subset of the cohort who underwent cardiac MRI testing (LV maximum
wall thickness >15 mm). All participants with aortic stenosis were
excluded from UKB cases. Sequencing data were available for only
SVIL inthe Oxford Medical Genetics Laboratory (OMGL), where cases
were clinically diagnosed with HCM and referred for diagnostic panel
testing. The control group for the OMGL analysis consisted of 5,000
white British ancestry and unrelated control participants selected
randomly from the UKB; these participants had normal LV volume
and function and no clinical diagnosis of any cardiomyopathy. The
remaining UKB samples were used as controls for UKB burden analysis.
Genetic variants were identified using next-generation sequencing
(whole-genome sequencing for BRRD, GEL, panel/exome sequenc-
ing for OMGL cases and UKB) and annotated using VEP and LOFTEE
plugin®’. LoF variants were defined as those with the following VEP
terms: stop lost, stop gained, splice donor variant, splice acceptor
variant and frameshift variant. Only variants with a MAF <10*in the
non-Finnish European (NFE) ancestral group of gnomAD v.2.1.1 (ref.
58) were selected. LoF variants present in the Matched Annotation
from NCBI and EMBL-EBI (MANE)/canonical transcript or next best
transcript were retained for the analysis. The proportion of cases and
controls with LoF variants were compared using the Fisher Exact test
foreach ofthe BRRD, GEL and OMGL datasets. UKB LoF burden test was
performed using their REGENIE workflow. We included high-quality
sequenced variants where >90% samples had asequencing depth >10,
and tested genes with aminor allele count of >10. Firth correction was
used to account forinflation resulting from case-controlimbalancein
the UKB. As anegative control, we also performed association testing
of rare (MAF <107*) synonymous variants for each of the 26 prioritized
genes using an identical methodology. Meta-analysis of burden test
results was performed using the IVW method including studies with
no zero counts and estimating standard error using sample counts®’.
The results of LoF and synonymous variant associationwith HCM are
showninSupplementary Table 16 and Fig. 4b. Further results for SVIL
LoF variant analyses are shown in Fig. 4c, Supplementary Fig. 19 and
Supplementary Table 19.

An exploratory exome-wide gene-based burden testing for LoF
variants was also performed, using two MAF thresholds (<10™* and
<107%). For UKB, this exploratory exome-wide analysis was performed
as for the targeted analysis described above. For GEL and BRRD, this
analysis was performed on the corresponding GEL and BRRD servers,
using pre-annotated (VEP) files and filtering for LoF variants with gno-
mAD NFE AF <107, For BRRD, variants were lifted to human genome
build GRCh38 and LOFTEE was used to select high confidence LoF
variants. For OMGL, only rare SVIL variants were available for analysis.
Gene-based rare variant burden analyses followed by meta-analysis
were performed as mentioned in the preceding paragraph. A sample
size weighted meta-analysis was also performed, using the N formula
shown above. Theresults of these exploratory exome-wide gene-based
analyses are shown in Supplementary Tables 17 and 18 (full summary
statistics) and Supplementary Figs. 16-18 (quantile-quantile and Man-
hattan plots).

Locus colocalizationin DCM and HCM

We explored colocalization of HCM and DCM loci using GWAS-PW™.
The genome was split into 1,754 approximately independent regions
and the all-comer HCM meta-analysis results were analyzed with
those of a publicly available DCM GWAS?** using a Bayesian approach.
GWAS-PW fits each locus into one of the four models where model 1
is association in only the first trait, model 2 is association in only the
second trait,model 3 when the two traits colocalize,and model 4 when
the geneticsignals areindependentin the two traits. We considered a
locus toshow colocalization when either trait harbors a genetic signal
with P<1x107° and the GWAS-PW analysis demonstrates a posterior
probability of association for model 3 (PPA3) >0.8. Results of GWAS-PW
are presented in Supplementary Table 20.
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Two-sample MR
We assessed whether increased contractility and blood pressure are
causally linked to increased risk of HCM globally and its obstructive
(oHCM) and non-obstructive (nHCM) forms using two-sample MR. LV
contractility and blood pressure parameters were used as exposure
variables, and HCM, oHCM and nHCM as outcomes. Analyses were
performed using the TwoSampleMR (MRbase) package® (v.0.5.6) in
R (v.4.2.0). Four exposure variables corresponding to measures of
LV contractility were used separately: LVEF as a volumetric marker
of contractility, and global strain (strain®", strain™ and strain'*¢) as
contractility markers based on myocardial tissue deformation. Instru-
ment SNPs for contractility were selected based on the LV trait GWAS
presented here using a P value threshold of <5 x 1078, Only independ-
ent SNPs (using r? < 0.01in the European 1000 Genomes population)
wereincluded. Instrument SNPs for the blood pressure analysis were
selected with a similar approach using a published blood pressure
GWAS¥. The outcome summary statistics were those of the single-trait
HCM case-control meta-analysis (5,900 cases and 68,359 controls). We
also performed a GWAS meta-analysis including datafrom HCMR and
the Canadian HCM cohort (Supplementary Table 1) for nHCM (2,491
casesand 27,109 controls) and oHCM (964 cases and 27,163 controls)
to use as outcomes. For these stratified analyses, o0HCM was defined
asHCMinpresenceof aLVoutflow tract gradient 230 mmHgat rest or
during Valsalva/exercise at any timepoint. All other HCM cases were
considered nHCM. Loci reaching P<5x107% in oHCM and nHCM are
showninSupplementary Table 2 and lookup of all-comer HCM MTAG
lociin oHCM and nHCM are shown in Supplementary Table 8.
Insertions/deletions and palindromic SNPs with intermediate
allele frequencies (MAF > 0.42) were excluded, and other SNPs in the
same locus were included only if P<5x107%. An inverse variance
weighted MR model was used as a primary analysis. We used three
additional methods as sensitivity analyses: weighted median, weighted
mode and MR Egger. Cochran’s Q statistics were calculated to investi-
gate heterogeneity between SNP causal effects using IVW. Evidence of
directional pleiotropy was also assessed using the MR Egger intercept.
Mean F-statistics were calculated to assess the strength of the genetic
instruments used. Leave-one-out analyses were also performed to
ensure the SNP causal effects are not driven by a particular SNP. To
further explore the impact of pleiotropy in the contractility/HCM MR
analysis and to evaluate the consequence of excluding outlier SNPs,
we used the MR pleiotropy residual sum and outlier (MR-PRESSO)
analysis®’. MR-PRESSO consists of three steps: testing for horizontal
pleiotropy (global test), correcting for horizontal pleiotropy using
outlier removal (outlier test) and evaluating differences in the causal
estimate before and after outlier removal (distortion test). The sum-
mary results of MR analyses and sensitivity analyses are shownin Fig. 5
and Supplementary Table 21, with effect plots shown in Supplementary
Fig.20 (contractility) and Supplementary Fig. 22 (blood pressure), and
leave-one-out analyses for the contractility MR in Supplementary
Fig. 21. The MR effects are shown per unit change (percentage for
contractility; mmHg for blood pressure) in Supplementary Table 21
and Supplementary Figs. 20-22, and per s.d. change in Fig. 5. OR per
s.d.increase are calculated as OR = efwxsd;s.d. values are reported in
Supplementary Table 21 and correspond to those in the current UKB
CMR dataset (for contractility) and those reported by Evangelou et al.”
inthe UKB (for blood pressure).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data from the Genome Aggregation Database (gnomAD, v.2.1.1) are
available at https://gnomad.broadinstitute.org. Data from the UKB
can be requested from the UKB Access Management System (https://

bbams.ndph.ox.ac.uk). Data from the GTEx consortium are available
atthe GTEx Portal (https://gtexportal.org). Published snRNA-seq data
are available at the Broad Single Cell Portal (https://singlecell.broad-
institute.org/) and at the Cellxgene tool website (https://cellxgene.
cziscience.com/collections/e75342a8-0f3b-4ec5-8eel-245a23e0f7cb/
private). The Genome assembly GRCh37 can be accessed using https://
www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.13/.
Individual-level data sharing is subject to restrictions imposed by
patient consent and local ethics review boards. Full GWAS summary sta-
tistics of HCM, HCMg g, HCMgprc:, MTAG and ten LV traits are available
onthe GWAS catalog (accession IDs GCST90435254-GCST90435267)
and can be accessed interactively at www.well.ox.ac.uk/hcm.

Code availability
Theanalyses reported in this manuscriptrely on previously published
software, as detailed in Methods and in the Reporting Summary.
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cases and 37,481 controls. No method was applied to predetermine sample size. Such sample size allowed the identification of significant
associations for ALPK3 and SVIL but may have been underpowered for genes with smaller effect sizes.

Data exclusions  Pre-established quality control processes were applied during inclusion (clinical and imaging data) and during analysis (genotypic data).

Replication No replication of GWAS signals was attempted in the absence of a sufficiently powered independent cohort and considering the conventional
significance threshold for GWAS set to P<5e-8 in the meta-analysis.

Randomization  The GWAS used a case-control study design. In the process of selecting appropriate controls, the R package dplyr::sample_n was used to
pseudo-randomly select controls.

Blinding Blinding was not possible in the analysis plan.
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