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Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of all heart failure cases, and its preva-
lence is projected to rise further. Among its heterogeneous subtypes, cardiometabolic HFpEF, which is driven by metabolic 
dysfunction, represents a globally predominant form. Recent advances in preclinical models have highlighted metabolic 
disturbances and systemic inflammation as key contributors to HFpEF pathogenesis. While much attention has focused 
on classical inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the full spectrum 
of upstream inflammatory drivers and the therapeutic strategies targeting inflammation in cardiometabolic HFpEF remain 
incompletely defined. Among emerging candidates, serum amyloid A (SAA) family proteins, highly inducible acute-phase 
proteins, have attracted growing attention due to their elevated levels in chronic metabolic diseases. Here, we summarize 
clinical associations between elevated SAA levels and major cardiometabolic conditions—including obesity, diabetes, meta-
bolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD), and hypertension—and discuss potential 
mechanisms based on preclinical studies. We place particular emphasis on the known and potential pathogenetic role of 
SAA in cardiometabolic HFpEF, where it may contribute to systemic inflammation, endothelial dysfunction, and myocardial 
fibrosis. Overall, this review aims to advance understanding of SAA in HFpEF and cardiometabolic disease, and to support 
translational efforts toward improved diagnosis and treatment.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) is 
a complex clinical syndrome that has emerged as a major 
global health concern, characterized by high morbidity 
and mortality. It affects approximately 3 million people in 
the United States and up to 32 million worldwide, with its 
prevalence expected to rise as the population continues to 
age [126]. In contrast to heart failure with reduced ejection 
fraction (HFrEF), HFpEF remains largely devoid of effective 
evidence-based therapies, and its rising prevalence under-
scores a critical unmet clinical need. Over the past decade, 
low-grade chronic inflammation driven by metabolic comor-
bidities—commonly referred to as meta-inflammation—
has been increasingly recognized as a central contributor 
to HFpEF pathophysiology, highlighting inflammation as a 
promising therapeutic target [137]. A wide range of inflam-
matory mediators—such as interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF-α), and myeloperoxidase (MPO)—
have been implicated in the pathogenesis of HFpEF. These 
molecules not only serve as biomarkers of systemic inflam-
mation but also actively contribute to endothelial dysfunc-
tion, myocardial remodelling, and impaired exercise toler-
ance. While most studies have focused on these cytokines, 
the full spectrum of inflammatory drivers and their transla-
tional relevance in HFpEF has yet to be fully delineated. As 
interest shifts toward less-characterized mediators, acute-
phase proteins such as serum amyloid A (SAA) have gar-
nered renewed attention.

SAA proteins are highly conserved acute-phase reactants 
that respond rapidly to systemic stressors such as infec-
tion, trauma, or malignancy [79]. While levels are typi-
cally < 3 mg/L in healthy individuals, they can rise up to 
1000-fold in acute inflammation and approximately fivefold 
in chronic low-grade inflammation conditions [107]. Emerg-
ing evidence has implicated chronically elevated SAA in the 
pathogenesis of several cardiometabolic diseases, including 

obesity, type 2 diabetes mellitus (T2DM), MASLD and 
hypertension [18, 69, 105, 125, 168]. These metabolic dis-
orders commonly coexist in individuals with the cardio-
metabolic phenotype of HFpEF [62, 137, 159], raising the 
possibility that SAA contributes to HFpEF pathogenesis. 
Indeed, recent clinical studies have reported increased cir-
culating SAA1 levels in patients with HFpEF [35, 132]. It 
is worth noting that HFpEF is still predominant in elderly, 
and aging itself exacerbates the state of chronic low-grade 
inflammation through a mechanism known as inflammaging 
[96]. SAA levels have been shown to increase significantly 
with age [84]. This aging-related inflammatory burden may 
act synergistically with metabolic inflammation to promote 
the development of HFpEF, in which SAA could play an 
important role.

However, direct evidence supporting a causal or mecha-
nistic role for SAA in human HFpEF remains limited. In this 
review, we examine current knowledge regarding the role of 
SAA in cardiometabolic diseases and explore its potential 
contribution to HFpEF pathophysiology. We also discuss the 
diagnostic and therapeutic implications of targeting SAA in 
this increasingly prevalent condition.

SAA subtypes, receptors and biological 
function

The biological function of SAA is mediated by its molecu-
lar structure, isoform diversity, and receptor interactions. 
SAA proteins constitute a family of small, highly con-
served acute-phase proteins comprising 103–104 amino 
acids with strong sequence homology across vertebrate 
species [155]. In humans and mice, the SAA gene clus-
ter is located on chromosome 11p and chromosome 
7, respectively [140]. The family includes four genes 
(SAA1–SAA4), among which SAA1 and SAA2 encode 
the inducible acute-phase isoforms that are markedly 
upregulated in response to inflammatory stimuli [55]. 
Additionally, SAA1 directly binds to cholesterol and sat-
urated fatty acids, implicating a regulatory role in lipid 
trafficking and lipotoxicity. Although SAA1 and SAA2 
share over 93% sequence homology [19], subtle amino 
acid differences may underlie functional divergence. Both 
are strongly induced by cytokines (IL-6, IL-1β, TNF-α), 
but SAA1 shows stronger upregulation in monocytes and 
macrophages following LPS or steroid stimulation [72]. 
Both isoforms engage common receptors including FPR2, 
TLR2/4, and SR-B1, but direct comparisons of their bind-
ing affinities are lacking. Evidence more consistently 
links SAA1 to activation of pro-inflammatory signaling 
and to chemotactic or lipid metabolic effects [6, 46, 58, 
69], whereas the precise roles of SAA2 remain less well 
defined. Collectively, most experimental studies have 
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focused on SAA1 or mixed SAA1/2 preparations, with 
relatively few dissecting SAA2-specific functions. Unlike 
SAA1 and SAA2, the SAA3 gene has become a non-
functional pseudogene in humans and does not produce 
a biologically active protein [155]. In mice, Saa3 is more 
divergent than Saa1 and Saa2 and is primarily expressed 
extrahepatically, being strongly inducible in adipocytes 
and macrophages under inflammatory conditions [108, 
134]. Its expression has also been reported in lungs, intes-
tines, and kidneys [110, 127]. SAA4 is a constitutively 
expressed isoform of the SAA family, mainly synthesized 
in the liver and largely unresponsive to inflammation [27, 
155]. It has been implicated in High-density lipoproteins 
(HDL) remodeling, lipid metabolism [28], and possibly 
thrombotic risk [42], although its precise biological func-
tions remain poorly defined. During acute inflammation, 
SAA is primarily synthesized by hepatocytes. In contrast, 
under chronic inflammatory conditions, extrahepatic pro-
duction occurs in adipose tissue, intestinal epithelial cells, 
and macrophages within inflamed tissues [32]. In accord-
ance with scientific nomenclature standards, “SAA” refers 

to the human proteins in this review, while “Saa” denotes 
their murine counterparts.

SAA exerts its biological effects through interaction 
with multiple cell surface receptors, including formyl pep-
tide receptor-like 1 and 2 (FPRL1/2), toll-like receptor 2 
and 4 (TLR2, TLR4), receptor for advanced glycation end 
products (RAGE), lectin-like oxidized low-density lipopro-
tein receptor-1 (LOX-1), scavenger receptor class B type I 
(SR-BI; CLA-1 in mice), and selenoprotein S (SELS, Tanis 
in animal models) [32]. These receptors mediate diverse 
downstream signaling cascades (Fig. 1). In humans, CLA-1 
and its murine ortholog SR-BI mediate SAA-induced cho-
lesterol efflux and activate extracellular signal-regulated 
kinase (ERK)and p38 mitogen-activated protein kinase 
(p38/MAPK) despite their short intracellular domains [7, 
8, 14]. In macrophages, SR-BI also mediates the uptake of 
SAA, leading to intracellular processing and formation of 
extracellular amyloid A fibrils [76]. FPRL1 and FPRL2, as 
G protein-coupled chemotactic receptors, activate MAPK 
and nuclear factor kappa B (NF-κB) pathways upon SAA 
binding, resulting in the release of proinflammatory media-
tors such as TNF-α, interleukin-8 (IL-8), and monocyte 

Fig. 1   SAA-driven signaling 
and biological functions. This 
figure summarizes the receptor-
mediated signaling landscape 
and functional outputs of 
serum amyloid A (SAA). The 
central layer depicts SAA as a 
pleiotropic inflammatory media-
tor that interacts with multiple 
cell-surface receptors, including 
SRB1/CLA-1, FPRL1/2, SELS 
(Tanis), RAGE, TLR2/4, and 
LOX1. These interactions 
activate distinct intracellular 
pathways, resulting in the 
production of proinflammatory 
cytokines (e.g., IL-1β, IL-6, 
TNF-α, MCP-1), stress-related 
mediators (e.g., HO-1, M-CSF), 
and alterations in lipid handling 
(e.g., impaired cholesterol 
efflux). The outer ring catego-
rizes these downstream effects 
into three major biological 
domains: lipid metabolism, 
immune cell recruitment and 
inflammatory amplification. 
Together, this schematic high-
lights the diverse and multifac-
eted roles of SAA in shaping 
inflammatory and metabolic 
responses
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chemotactic protein-1 (MCP-1) [1, 24, 47, 57, 87, 89, 95, 
147]. SAA also activates TLR2 and TLR4, which induce 
phosphorylation of ERK and p38/MAPK and upregu-
late cytokines, including IL-1β, TNF-α, interleukin-12 
subunit p40(IL-12p40), interleukin-1 receptor antagonist 
(IL-1ra), and IL-10 [22], as well as enhanced nitric oxide 
(NO) production [135]. TLR2 activation additionally pro-
motes expression of Interleukin-23 subunit p19(IL-23p19) 
[58] and Granulocyte colony-stimulating factor (G-CSF) 
[59]. Through engagement of the AGE–RAGE axis, SAA 
enhances the expression of IL-6, heme oxygenase-1 (HO-1), 
and macrophage colony-stimulating factor (M-CSF), while 
binding to LOX-1 further amplifies NF-κB-mediated IL-6 
and TNF-α production [75, 94, 130, 166].

Given its ability to engage multiple receptors, SAA can 
simultaneously activate parallel inflammatory and meta-
bolic signaling networks. Receptor-mediated processes—
such as chemotaxis and activation of ERK, p38 MAPK, and 
NF-κB—are further modulated by the surrounding tissue-
specific cytokine environment. Collectively, SAA plays 
multifaceted roles in host defense, immune cell recruitment, 
lipid metabolism, and inflammatory amplification.

SAA in cardiometabolic diseases

Obesity

SAA expression is closely linked to obesity, one of the key 
cardiometabolic conditions in which its pathophysiological 
roles have been most extensively studied. The major clini-
cal associations and mechanistic roles of SAA in key car-
diometabolic diseases are summarized in Table 1. Several 
studies have demonstrated that pro-inflammatory cytokines 
such as IL-1β, IL-6, and TNF-α can significantly upregulate 
SAA1 and SAA2 expression in adipose tissue [122], and 
both SAA1 and SAA2 are markedly elevated in subcutane-
ous white adipose tissue (WAT) of overweight and obese 
individuals [67, 143]. Quantitatively, obese individuals 
exhibit approximately a six-fold increase in SAA expres-
sion within subcutaneous WAT compared to lean subjects 
[124]. Circulating SAA levels in obese populations strongly 
correlate with body mass index (BMI), total fat mass, and 
the transcript levels of SAA1 and SAA2 in WAT [86, 124, 
177]. Notably, weight loss—achieved through dietary or 
surgical interventions—consistently reduces both circulat-
ing and adipose tissue–derived SAA levels [15, 116, 177]. 
These reductions are frequently accompanied by declines 
in other inflammatory markers, such as monocyte MCP-1 
and C-reactive protein (CRP) [66]. Despite these associa-
tions, the relative adipose contributions to circulating SAA 
levels in obesity remain unclear, as does SAA’s exact role 

in chronic adipose inflammation. Nonetheless, current evi-
dence supports its function as a proinflammatory adipokine.

In murine models, Saa3 is selectively expressed in adi-
pocytes and macrophages—two key cell types involved in 
obesity-associated inflammation [10, 108, 131]—and its 
expression is consistently elevated in the adipose tissue of 
obese mice [98, 145]. Supporting these findings, in vitro 
studies have demonstrated that mRNA and protein levels 
in adipocytes are upregulated by various metabolic and 
inflammatory factors, including elevated glucose, fatty 
acids, and cytokines such as TNF-α, IL-1β, and LPS [31, 
98, 144, 170]. Nevertheless, functional data from Saa gene 
knockout models have shown variable outcomes. One study 
reported that selective deletion of extrahepatic Saa3 attenu-
ated adipose tissue inflammation and conferred resistance 
to high-fat diet-induced obesity [33], whereas another study 
found that Saa3-deficient mice exhibited greater weight gain 
under similar conditions [5]. Furthermore, triple-knockout 
mice lacking Saa1, Saa2, and Saa3 showed no significant 
differences in obesity development or adipose inflamma-
tion compared to wild-type controls [68]. These divergent 
findings may reflect differences in genetic background, gut 
microbiota composition, dietary regimen, or the specific 
genes targeted for deletion.

Additional studies have shown that SAA expression 
positively correlates with adipocyte size in obese indi-
viduals [123]. In vitro silencing of Saa3 in preadipocytes 
impairs adipogenesis and leads to smaller fat depots when 
implanted into nude mice [156]. Antisense oligonucleotide 
(ASO)–mediated knockdown of Saa similarly reduces adi-
pose tissue expansion and inflammation in murine models 
[29]. Elevated Saa3 expression in visceral adipose tissue has 
also been associated with increased macrophage infiltration 
and a shift toward a proinflammatory cytokine milieu [134]. 
In this inflammatory context, macrophage-derived cytokines 
enhance SAA expression in adipocytes [123], while SAA, in 
turn, stimulates macrophages to produce IL-6, IL-8, TNF-α, 
and MCP-1 [167]. Given the central role of macrophages in 
coordinating adipose inflammation, SAA likely serves as 
a key modulator of macrophage–adipocyte crosstalk, con-
tributing to the persistence of low-grade inflammation in 
obesity. It is important to note that much of the mechanis-
tic insight derives from murine models investigating Saa3, 
which is a pseudogene in humans. While the phenotypes and 
signaling pathways identified in mouse Saa3 models may 
inform hypotheses regarding SAA1/2 function in human 
adipose tissue, these findings require validation in human-
relevant systems.

Diabetes

Beyond its link to obesity, SAA has been implicated in 
the pathogenesis of T2DM [37, 51, 154]. In one study, 
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omental adipose tissue from patients with T2DM exhibited 
a threefold increase in SAA mRNA expression compared 
to non-diabetic controls, and expression levels correlated 
closely with fasting glucose concentrations [133]. A large 
population-based study of 756 men aged over 70 further 
demonstrated a significant association between serum SAA 
levels and diabetic status [60]. In support of this association, 
several antidiabetic agents—including metformin, glipizide, 
rosiglitazone, insulin, and acarbose—have been shown to 
reduce circulating SAA levels in individuals with T2DM 
[37, 38, 167]. However, given that most individuals with 
T2DM are also obese, disentangling the contributions of 
SAA from adiposity remains challenging. Notably, some 
studies support this possibility: in one cohort of individuals 
with T2DM and BMI-matched healthy controls, SAA levels 
remained significantly elevated in the diabetic group despite 
similar BMI (~ 24) [99]. Another study of 134 patients with 
T2DM reported persistent associations between SAA lev-
els and HbA1c and HOMA-IR after adjusting for age, sex, 
and BMI [91]. Moreover, treatment of overweight or obese 
individuals with rosiglitazone for 12 weeks led to a 37% 
reduction in circulating SAA levels without changes in body 
weight, accompanied by decreased SAA secretion from sub-
cutaneous adipose tissue explants [167]. Nevertheless, not 
all studies have reported comparable findings; for instance, 
one investigation found no difference in SAA levels between 
insulin-sensitive individuals and patients with T2DM [121]. 
Thus, while SAA closely associates with T2DM, its potential 
role as an independent contributor to disease pathophysiol-
ogy remains uncertain.

Mechanistic insights from experimental models support 
this clinical link. In murine models, high-fat diet (HFD) 
feeding leads to early upregulation of Saa3 in adipose tissue, 
followed by increased hepatic expression of Saa1 and Saa2, 
in parallel with the development of insulin resistance and 
rising serum Saa levels [136]. Early studies demonstrated 
that recombinant SAA (rSAA) significantly reduced GLUT4 
mRNA expression during preadipocyte differentiation lead-
ing to impaired glucose transport and attenuating insulin 
responsiveness [43]. Subsequent work showed that in palmi-
tate- or HFD-induced models, Saa1 upregulation inhibited 
IRS-1 signaling via NF-κB activation, contributing to insulin 
resistance [161]. Receptor-level evidence further supports 
these effects: overexpression of the SAA receptor Tanis in 
hepatocytes impairs insulin-stimulated glucose uptake and 
glycogen synthesis [73], while SELS expression in adipose 
tissue correlates positively with glycemic control in humans 
with T2DM [169]. Together, these findings indicate that 
SAA promotes insulin resistance through receptor-mediated 
mechanisms, most likely involving NF-κB-driven disruption 
of the IRS-1/PI3K/Akt signaling cascade, a hypothesis that 
requires validation in clinical settings to establish its trans-
lational relevance.

Beyond diet-induced obesity models, evidence from 
genetic and chemically induced diabetes models also impli-
cates SAA in diabetic pathophysiology. Leptin-deficient ob/
ob mice displayed elevated Saa3 and Saa4 mRNA in adipose 
tissue, while Saa3 upregulation in adipose tissue was also 
observed in streptozotocin (STZ)-induced diabetes [98, 145]. 
In db/db mice, serum Saa concentrations were markedly 
increased, paralleling lipid accumulation across multiple 
organs [101]. Collectively, these findings suggest that SAA 
elevation is not restricted to obesity-driven forms but may 
act as a more general inflammatory mediator in diabetes.

NAFLD/MASLD

Nonalcoholic fatty liver disease (NAFLD), recently rede-
fined as metabolic dysfunction–associated steatotic liver 
disease (MASLD), characterized by triglyceride accu-
mulation in hepatocytes, can progress to steatohepatitis 
(NASH/MASH) and hepatic fibrosis. Clinical studies have 
shown that serum SAA levels are elevated two to threefold 
in patients with NASH compared to age-matched healthy 
controls [173], a finding corroborated by similar increases 
in Saa expression in murine models of NAFLD [69, 92]. 
Despite these associations, the clinical utility of SAA as a 
biomarker for NAFLD remains limited due to insufficient 
specificity. Nonetheless, recent findings have begun to elu-
cidate its potential mechanistic role. Preclinical data sug-
gest that genetic deletion or hepatic knockdown of Saa1/2 
enhances energy expenditure and attenuates high-fat diet 
(HFD)-induced steatosis, metabolic dysfunction, and hepatic 
inflammation. These protective effects have been partially 
attributed to suppression of TLR4-NF-κB signalling, a path-
way implicated in hepatic lipid accumulation [69]. Beyond 
lipid metabolism, SAA1 has also been implicated in hepato-
cyte–platelet interactions. In one murine study, increased 
hepatocyte Saa1 expression promoted intrahepatic platelet 
adhesion and activation, thereby exacerbating liver inflam-
mation in NAFLD [92]. In parallel, hepatic secretion of Saa1 
mediated by SURF4 was shown to activate hepatic stellate 
cells (HSCs), contributing to fibrogenesis in a mouse model 
of liver fibrosis [158]. Additionally, SAA has been proposed 
as a biomarker of early-stage fibrosis in certain liver diseases 
[39]. Further evidence of Saa’s involvement in NAFLD pro-
gression comes from studies in hypercholesterolemic mice 
lacking IL-1α or IL-1β, which are key cytokines required 
for the transition from steatosis to NASH and fibrosis [148]. 
Given that IL-1β is a potent inducer of hepatic SAA expres-
sion, these findings suggest that SAA may act as a down-
stream effector of IL-1β-mediated hepatic injury. Although 
a variety of drugs and therapeutic approaches targeting FXR 
agonists, GLP-1 receptor agonists, or PPAR agonists are 
implicated in treatment of NASH, whether and how these 
treatments affect SAA levels remains to be further explored.
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Hypertension

Beyond its role in metabolic disorders, SAA has been 
increasingly implicated in chronic inflammation. Multiple 
cross-sectional and longitudinal studies support an asso-
ciation between systemic inflammation and elevated blood 
pressure, potentially mediated by imbalances between 
vasoconstrictors and vasodilators, enhanced thrombogenic-
ity, and direct vascular effects of inflammatory mediators 
[48]. As a result, low-grade inflammation has emerged as a 
contributor to the pathogenesis of hypertension, and target-
ing inflammatory pathways may hold therapeutic potential 
[176]. In both a multicenter cohort of approximately 1000 
individuals with hyperlipidemia and a separate large cohort 
of newly diagnosed hypertensive patients without diabetes, 
systolic blood pressure (SBP) was independently associated 
with circulating levels of SAA [153, 157]. Notably, 6 months 
of angiotensin receptor blocker (ARB) therapy significantly 
reduced circulating SAA concentrations [80]. In another 
study of hypertensive patients with comorbid diabetes, SAA 
levels were inversely correlated with the small artery media-
to-lumen ratio, suggesting a link between elevated SAA and 
adverse microvascular remodeling [146].

Mechanistic insights from in vitro studies further explore 
the potential mechanism of SAA in hypertension. SAA may 
impair vascular homeostasis by simultaneously suppress-
ing vasodilatory signaling and augmenting pro-constrictive 
pathways through its inflammatory actions. In human aortic 
endothelial cells (HAECs), SAA reduces NO bioavailability, 
likely via enhanced superoxide generation [163]. Consist-
ent findings have been reported in porcine endothelial cells, 
where SAA downregulated eNOS expression and impaired 
NO production through activation of c-Jun N-terminal 
kinase (JNK), ERK1/2, and NF-κB signaling pathways 
[160]. Although direct evidence linking SAA to vasocon-
strictors such as endothelin-1 (ET-1) is limited, it is well 
established that inflammatory cytokines—including IL-1β 
[171], TNF-α [64], and IL-6 [165]—stimulate ET-1 expres-
sion. Given that SAA potently induces these cytokines, it 
is plausible that SAA indirectly promotes vasoconstrictor 
upregulation via inflammation-driven ET-1 production. 
Together, these findings suggest that SAA may disrupt vas-
cular homeostasis by shifting the balance from vasodilation 
toward vasoconstriction through both direct suppression of 
NO signaling and indirect upregulation of ET-1 via inflam-
matory mediators.

In addition to its functional effects on vascular tone, SAA 
may also promote vascular stiffness and structural remod-
eling. In an in vitro study using rat aortic smooth muscle 
cells (RASMCs), recombinant SAA induced a phenotypic 
switch from a contractile to a synthetic state, characterized 
by reduced expression of α-SMA and SM22α, and a dose-
dependent increase in the mRNA expression of extracellular 

matrix (ECM) synthesis-related markers, including elastin, 
collagen I, collagen III, matrix metalloproteinase (MMP2), 
and MMP9 [175]. These phenotypic changes were accom-
panied by increased cell proliferation and migration, medi-
ated through p38 MAPK signaling. In line with this, another 
study demonstrated that Saa1 promotes MMP expression 
both in vascular smooth muscle cells and in macrophages 
[162]. Furthermore, SAA was shown to activate TLR2 
signaling, upregulate MMP9, and downregulate tropoelas-
tin expression in RASMCs, thereby impairing elastin fiber 
formation and contributing to extracellular matrix remod-
eling [139]. Primary hypertension is also closely linked to 
atherosclerosis (AS), and these conditions may act syner-
gistically to perpetuate vascular injury. Emerging data sug-
gest that SAA contributes to atherogenesis. SAA mRNA 
and protein have been detected in atherosclerotic lesions 
in both humans and mice [109, 117]. In murine models, 
lentiviral overexpression of Saa1 in ApoE−/− mice resulted 
in persistent Saa elevation, increased leukocyte infiltration, 
and accelerated plaque development [36]. Even transient Saa 
elevations were sufficient to enhance atherosclerosis in simi-
lar models [150]. Conversely, genetic deletion of Saa1 and 
Saa2 in LDLR−/− mice significantly reduced aortic lesion 
area [78]. In ApoE−/− mice lacking Saa1and Saa2, additional 
suppression of Saa3 using antisense oligonucleotides further 
attenuated plaque formation, compared to Saa-sufficient con-
trols [151]. Although the precise mechanisms remain incom-
pletely defined, proposed pathways include vascular inflam-
mation, endothelial dysfunction, impaired HDL function, 
and release of lipid-free or lipid-poor SAA isoforms [141]. 
SAA has also been shown to promote foam cell formation 
via LOX-1-mediated activation of the JNK/NF-κB pathway 
in macrophages [88].

SAA and HFpEF

Clinical evidence linking SAA levels to HFpEF

SAA is a prototypical acute reactant that is markedly upreg-
ulated during acute inflammation. Although its elevation 
is more modest in chronic metabolic disorders, SAA may 
still exert important biological effects in such contexts. 
HFpEF, a syndrome characterized by systemic low-grade 
inflammation, is particularly relevant in this regard. Early 
studies in newly diagnosed patients with primary hyper-
tension reported that elevated circulating SAA levels were 
associated with concentric left ventricular remodeling 
[153]. More recent investigations have identified positive 
correlations between SAA1 levels and echocardiographic 
measures of cardiac structure, including interventricular 
septal thickness and posterior wall thickness particularly in 
patients with resistant hypertension [172]. Among women 
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with HFpEF and clinical signs of ischemia, 21% exhibited 
serum SAA concentrations exceeding 1.0 mg/dL, a thresh-
old considered abnormally high [2]. Elevated plasma SAA1 
levels have also been reported in HFpEF patients regardless 
of the presence of coronary microvascular dysfunction or 
atrial fibrillation [35]. Notably, elevated SAA1 concentra-
tions observed in patients with chronic HFpEF, compared to 
those with Hypertrophic Cardiomyopathy (HCM), may help 
identify individuals with a more advanced or progressive 
disease phenotype [20]. In a hierarchical clustering analysis 
of HFpEF patients, three distinct phenotypic subgroups were 
identified, with SAA1 levels significantly elevated in both 
the inflammatory cluster and the obesity/high-CRP cluster 
[132]. Taken together, the available data—summarized in 
Table 2—indicate that SAA is frequently elevated in a subset 
of HFpEF patients and, as part of the systemic inflammatory 
milieu, may contribute to disease progression.

Despite these associations, current human studies are 
constrained by small sample sizes, predominantly cross-
sectional designs, and substantial heterogeneity in comor-
bidities and demographics. Moreover, variability in SAA 
quantification methods affects comparability across studies. 
These limitations highlight the need for prospective cohort 
and interventional studies that incorporate serial SAA 
measurements to better define its role in HFpEF onset and 
progression. Although direct causal evidence is limited, its 
established pro-inflammatory properties suggest potential 
roles involving inflammation, endothelial dysfunction, and 
myocardial fibrosis in HFpEF.

Potential pathogenetic role of SAA 
in cardiometabolic HFpEF

Inflammation‑induced endothelial dysfunction

HFpEF is increasingly recognized as a systemic disorder 
in which metabolic-related immune and vascular dysfunc-
tion plays a central pathogenic role [4, 9, 97, 102]. In indi-
viduals with metabolic comorbidities such as obesity, type 
2 diabetes, and metabolic syndrome, chronic low-grade 
inflammation and endothelial impairment synergistically 
promote coronary microvascular rarefaction and impair NO-
dependent vasodilation [102]. These vascular changes com-
promise myocardial perfusion and oxygen delivery, foster-
ing a state of mechano-energetic uncoupling. Concurrently, 
cardiomyocyte metabolic flexibility is diminished, with a 
shift from fatty acid oxidation toward less efficient glucose 
utilization, mitochondrial dysfunction, and accumulation of 
toxic lipid intermediates [112]. Within this pathophysiologi-
cal landscape, SAA may serve as a mediator linking meta-
bolic inflammation to microvascular and myocardial dys-
function. As an acute-phase protein markedly upregulated 
in metabolic disorders, SAA can act on endothelial cells, 

vascular smooth muscle cells, and infiltrating immune cells 
to enhance pro-inflammatory signaling, oxidative stress, and 
extracellular matrix remodeling.

Among these processes, endothelial dysfunction rep-
resents a pivotal determinant of vascular pathology. In 
HFpEF, metabolic stress-induced SAA1 may contribute to 
endothelial dysfunction by directly or indirectly enhancing 
the expression of vascular adhesion molecules. Experimen-
tal evidence demonstrates that SAA stimulation markedly 
upregulates the expression of adhesion molecules in vascular 
endothelial cells, including vascular cell adhesion molecule 
1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), 
and E-selectin (SELE) [21, 82, 83]. In addition, as illustrated 
in Fig. 1, SAA induces the production of pro-inflammatory 
cytokines such as IL-6 and TNF-α, which are consist-
ently elevated in patients with HFpEF and further augment 
endothelial adhesion molecule expression. Increased adhe-
sion molecules not only promote monocyte recruitment but 
also reduce NO bioavailability and enhance reactive oxygen 
species (ROS) production [120] (Fig. 2, panel a). Together, 
these alterations accelerate endothelial dysfunction and drive 
disease progression. Moreover, SAA and its downstream 
inflammatory mediators may exacerbate systemic and car-
diac inflammation in HFpEF and induce iNOS expression in 
cardiomyocytes, ultimately impairing the unfolded protein 
response (UPR) and promoting cytosolic accumulation of 
misfolded proteins [120] (Fig. 2, panel b).

Beyond promoting the expression of endothelial adhesion 
molecules, SAA1 may exacerbate endothelial dysfunction 
in HFpEF through its adverse effects on HDL functional-
ity. During inflammation, SAA can constitute up to 80% of 
HDL’s apolipoprotein content. In HFpEF patients, elevated 
circulating SAA may alter HDL composition, diminish its 
anti-inflammatory and antioxidant capacity [23, 54, 138, 
152]. Mechanistically, SAA-enriched HDL promotes vas-
cular inflammation via TLR2 and TLR4 activation in vascu-
lar smooth muscle cells, which induces MCP-1 production 
[138]. Moreover, it may contribute to endothelial injury by 
reducing NO bioavailability and increasing reactive oxygen 
species (ROS) production [174] (Fig. 2, panel a). Together 
with the upregulation of adhesion molecules, these effects 
may converge to accelerate vascular dysfunction in HFpEF.

Persistent low-grade inflammation is considered a major 
driver of immune dysregulation in HFpEF, facilitating aber-
rant recruitment and infiltration of immune cells. Metabolic 
stress-induced SAA1 may further exert chemotactic effects 
via receptors such as FPRL1 and CLA-1, thereby inducing 
endothelial cells to secrete a broad spectrum of chemokines, 
including C–C motif chemokine ligand 2(CCL2/MCP-1), 
CCL5, CXCL1–3, CXCL8 and CXCL10 [82, 89, 90, 114]. 
MCP-1 promotes the infiltration of monocytes and mac-
rophages into inflamed tissues, amplifying local immune 
responses and fostering myocardial fibrosis [34, 45] (Fig. 2, 
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panel c). Notably, patients with HFpEF exhibit elevated 
circulating MCP-1 levels and increased numbers of pro-
inflammatory monocytes, with myocardial biopsies reveal-
ing marked infiltration of activated macrophages and mono-
cytes [45, 52, 63]. These observations suggest that SAA1, 
through the induction of chemokines such as MCP-1, may 
contribute to immune cell activation and maladaptive car-
diac remodelling in HFpEF.

Induction of myocardial fibrosis

The pathophysiology of HFpEF involves complex, multi-
organ interactions, among which myocardial fibrosis plays 

a central role by contributing to diastolic dysfunction and 
increased myocardial stiffness [85]. In patients with HFpEF, 
excessive ECM remodeling, which is characterized by col-
lagen accumulation, cross-linking, and reduced myocardial 
compliance, correlates strongly with echocardiographic and 
hemodynamic indices of diastolic dysfunction [41, 74, 100]. 
As depicted in Fig. 1, inflammatory mediators such as IL-1, 
IL-6, and TNF-α-activated downstream of SAA-receptor 
signaling—are closely linked to profibrotic signaling cas-
cades in HFpEF [103, 115]. Beyond cytokine-driven inflam-
mation, SAA has been shown to directly influence fibroblast 
activation and proliferation. SAA stimulates the proliferation 
of murine cardiac fibroblasts in vitro [56]. In vivo, genetic 

Fig. 2   Speculated molecular pathways involving SAA in HFpEF. 
This figure illustrates the hypothesized mechanisms by which SAA 
contributes to the development of HFpEF. Both hemodynamic 
stress (e.g., hypertension) and metabolic load (e.g., obesity, dia-
betes, NAFLD) can upregulate circulating SAA levels. A central 
mechanism involves the induction of vascular inflammation through 
the upregulation of endothelial adhesion molecules (e.g., VCAM1, 
ICAM1) and proinflammatory cytokines (e.g., TNF-α, IL-6, GM-
CSF). a Monocyte recruitment via VCAM1 and ICAM1, along with 
SAA-enriched HDL, contributes to reduced nitric oxide (NO) bioa-
vailability and increased reactive oxygen species (ROS) production in 
endothelial cells. Myeloperoxidase (MPO) released by activated mac-
rophages further amplifies oxidative stress and endothelial dysfunc-
tion. Diminished NO levels attenuate the activity of soluble guanylate 
cyclase (sGC) and protein kinase G (PKG), leading to titin hypophos-

phorylation, while elevated ROS induces disulfide bond formation 
within titin. Both modifications increase cardiomyocyte stiffness 
(purple). b SAA-induced inflammatory cytokines promote systemic 
inflammation and may upregulate inducible nitric oxide synthase 
(iNOS) expression in cardiomyocytes. This suppresses the activation 
of IRE1α, reduces levels of spliced XBP1, and disrupts the adaptive 
unfolded protein response (UPR), thereby promoting proteostatic 
stress (blue). c Furthermore, monocytes infiltrate the myocardium and 
differentiate into macrophages, which secrete profibrotic mediators 
such as transforming growth factor-β (TGF-β) and secreted protein 
acidic and rich in cysteine (SPARC). These mediators activate fibro-
blasts and promote collagen synthesis, contributing to extracellular 
matrix remodeling (gold). This figure integrates current evidence and 
hypothetical mechanisms to highlight the multifaceted role of SAA in 
HFpEF pathogenesis
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deletion of Saa1 has been reported to decrease the expres-
sion of collagen I, collagen IV, and fibronectin in pressure 
overload preclinical models, while Saa1 silencing mitigated 
the transformation of cardiac fibroblasts into myofibroblasts 
following TGF-β stimulation [164]. These findings suggest 
that SAA may modulate cardiac fibrogenesis in HFpEF 
through both inflammatory and direct cellular mechanisms, 
although its precise mechanistic role in myocardial fibrosis 
remains to be elucidated.

SAA in aging‑ and CKD‑associated HFpEF

Multiple pathophysiological factors contribute to HFpEF, 
with aging playing an important role [13, 50]. Exploring 
molecular insights into age-related changes in myocardial 
function, a key factor influencing global cardiovascular 
reserve. Aging is associated with a systemic pro-inflamma-
tory state, termed “inflammaging,” which can impair the 
function of multiple organs even in the absence of specific 
disease [44]. Indeed, several cross-sectional studies have 
demonstrated that advancing age correlates with elevated 
circulating levels of inflammatory markers, including TNF-
α, IL-6, IL-18, and monocyte chemoattractant protein-1 
[25, 113, 119]. In addition, one research indicated that 
SAA levels have been shown to rise with age even in the 
absence of overt infection, potentially reflecting a chronic 
inflammatory state [84]. In another study, levels of the 
inflammatory marker SAA increased significantly with 
age in humans or mice without metabolic syndrome [40]. 
Elevated SAA in aging as well as in metabolic syndrome, 
may trigger coronary microvascular endothelial dysfunc-
tion through the induction of inflammatory cytokines and 
adhesion molecules. This process ultimately promotes inter-
stitial fibrosis and increases cardiomyocyte stiffness, lead-
ing to enhanced left ventricular diastolic stiffness and the 
onset of heart failure. Cardiometabolic HFpEF is frequently 
accompanied by metabolic comorbidities such as obesity, 
diabetes, MASLD—conditions that are well-recognized 
drivers of accelerated cardiovascular aging. Consequently, 
cardiometabolic HFpEF can be regarded as a paradigm of 
inflammation-driven cardiac aging. Within this framework, 
SAA may serve as a common mechanistic contributor across 
these two HFpEF phenotypes.

CKD-associated HFpEF is strongly linked to systemic 
inflammation, uremic toxin accumulation, oxidative stress, 
and profound endothelial dysfunction. In this context, CKD 
patients often exhibit markedly elevated circulating SAA 
levels [26, 65, 71, 142], and a recent meta-analysis dem-
onstrated a positive, linear association between SAA levels 
and the risks of all-cause and cardiovascular mortality in this 
population [93]. Diabetic nephropathy, the leading cause of 
CKD worldwide, highlights this association. An immuno-
histochemical study demonstrated widespread SAA protein 

deposition in the glomeruli and tubulointerstitium of both 
diabetic nephropathy patients and mouse models [3]. Podo-
cytes were further identified as potential responder cells in 
SAA-driven renal inflammation. Experimental data also sup-
port a pathogenic role of SAA, as ApoE−/− mice exposed to 
SAA developed renal injury within 4 weeks, characterized 
by increased plasma urea, urinary protein, oxidized lipids, 
urinary kidney injury molecule (KIM)-1, and elevated 
cytokines and chemokines in kidney tissue compared with 
controls [18]. Beyond renal injury, SAA also impairs vas-
cular homeostasis by inducing aortic endothelial dysfunc-
tion, as evidenced by upregulation of VCAM-1 and MCP-1 
expression and suppression of cyclic guanosine monophos-
phate (cGMP) signaling [18]. By concurrently promoting 
renal inflammation and vascular dysfunction, SAA emerges 
as a potential pathogenic mediator linking CKD and CKD-
associated HFpEF.

Clinical applications targeting SAA 
in cardiometabolic diseases

SAA levels rise rapidly in response to infection or trauma 
and are considered a highly sensitive marker of acute inflam-
mation [16, 70, 107, 116]. While SAA is widely used as 
a general inflammatory marker in murine studies, CRP 
remains the more commonly employed biomarker in human 
clinical research. This is partly attributable to technical chal-
lenges associated with SAA, including issues related to puri-
fication, antibody development, assay standardization, and 
limited analytical sensitivity. It also underscores the need 
for caution when extrapolating preclinical findings involving 
SAA to human HFpEF. Notably, emerging evidence sug-
gests that circulating SAA may outperform high-sensitivity 
CRP (hsCRP) in predicting cardiovascular events [30, 70, 
77]. In a prospective cohort of 705 women undergoing coro-
nary angiography, elevated plasma SAA was independently 
associated with adverse cardiovascular outcomes—includ-
ing nonfatal myocardial infarction, stroke, heart failure, and 
thrombosis—over 3 years [70]. Similar findings have been 
reported in postmenopausal women and in patients with 
suspected or confirmed coronary artery disease (CAD) 
[129, 149]. Although SAA1 levels are elevated in HFpEF 
patients, whether SAA1 levels offer incremental prognos-
tic value beyond established markers in HFpEF remains an 
open question.

Therapeutically, targeting SAA represents a promis-
ing strategy to modulate inflammation in cardiometabolic 
disease (Fig. 3). As a hepatocyte-derived acute-phase pro-
tein primarily regulated by IL-6, IL-1β, and TNF-α, SAA 
expression can be indirectly suppressed by anti-inflamma-
tory therapies. Tocilizumab, an IL-6 receptor antagonist, 
has been shown to reduce circulating SAA levels and has 
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been employed in amyloidosis and rheumatoid arthritis [53, 
61, 118]. More broadly, the CANTOS trial established that 
IL-1β blockade canakinumab can reduce cardiovascular 
events by dampening systemic inflammation [128], sup-
porting the therapeutic value of anti-cytokine strategies. In 
parallel, direct inhibition of SAA signaling—such as via 
FPRL1 antagonism—has shown anti-inflammatory and 
vasoprotective effects in preclinical studies [17]. RNA-based 
approaches, including ASO, have shown promise in target-
ing SAA isoforms and may offer tissue-specific modulation 
[81, 151]. Beyond pharmacological approaches, Lifestyle 
interventions—including weight loss, exercise, and dietary 
modification—also lower SAA indirectly by mitigating 
upstream metabolic triggers such as insulin resistance and 
adiposity.

Clinical studies suggest that some antidiabetic agents 
lower serum SAA levels in patients with T2DM, yet the 
extent to which this effect is independent of glycemic regu-
lation remains unclear. One study reported rosiglitazone sig-
nificantly reduced serum SAA levels as early as 2 weeks into 
treatment, and this reduction was sustained over 12 weeks. 
In this study, the change in SAA levels after 12 weeks was 
significantly correlated with changes in fasting glucose 
levels [104]. This association may be explained by the fact 
that reductions in fasting blood glucose are relatively mod-
est during the initial 2–4 weeks of rosiglitazone treatment, 
whereas stable glycemic control is typically achieved only 
after 8–12 weeks. Therefore, the early decline in SAA can-
not be simply interpreted as a consequence of improved 

glycemic control. However, another study demonstrated 
that low-dose rosiglitazone (2 mg) exerted a marked anti-
inflammatory effect over 6 weeks in T2DM patients, reduc-
ing SAA levels by 29% while increasing adiponectin and 
decreasing resistin levels, without any detectable changes 
in plasma glucose, free fatty acids (FFA), or insulin con-
centrations [49]. This effect may be attributable to the fact 
that SAA1 and SAA2 are potential downstream targets of 
peroxisome proliferator-activated receptor gamma (PPARγ) 
[167]. Similarly, in non-diabetic patients with symptomatic 
carotid stenosis, rosiglitazone treatment (4 mg) for 4 weeks 
significantly reduced serum SAA levels by 33%, without 
altering glucose or insulin levels [111]. These findings 
strengthen the rationale for considering SAA as a poten-
tial direct therapeutic target in diabetes, rather than merely 
a downstream marker of improved glucose metabolism. 
Recent years have witnessed growing interest in the pleio-
tropic effects of GLP-1RAs and SGLT2 inhibitors. Beyond 
improving glycemic control, these drugs have been shown to 
alleviate diabetic complications and cardiovascular disease 
by reducing inflammation and oxidative stress [12, 106]. To 
date, direct clinical evidence demonstrating modulation of 
SAA levels or activity by these drug classes remains limited. 
However, in ApoE−/− mice fed a Western diet for 20 weeks, 
oral treatment with empagliflozin for 8 weeks significantly 
reduced the area of atherosclerotic plaques in the aortic arch 
and valve, and also significantly decreased circulating Saa 
levels from 24.5 ± 3.6 μg/ml to 16.2 ± 3.9 μg/ml [55]. While 
no direct preclinical evidence currently demonstrates that 

Fig. 3   Illustrative depiction summarizing the role of SAA in car-
diometabolic diseases and potential therapeutic strategies. SAA is 
elevated in metabolic conditions such as obesity, type 2 diabetes, 
NAFLD, hypertension, and HFpEF, all of which are characterized by 
chronic low-grade inflammation. In this context, SAA may serve both 
as a biomarker and as a mediator of disease progression. Therapeutic 
strategies targeting SAA include: (1) Direct inhibition of SAA pro-
duction and signaling, such as through antisense oligonucleotides for 

suppressing its synthesis and FPRL1 antagonists for blocking SAA-
mediated signaling pathways; (2) Inhibition of upstream cytokines 
involved in SAA induction, including IL-6 (e.g., tocilizumab) and 
IL-1β (e.g., canakinumab); (3) Pharmacological agents with indirect 
anti-inflammatory effects, including antidiabetic drugs (e.g., rosigli-
tazone, SGLT2 inhibitors) and angiotensin receptor blockers (ARBs); 
(4) Lifestyle interventions (e.g., weight loss, dietary modifications) 
that may reduce systemic inflammation and SAA levels
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GLP-1RAs reduce circulating SAA, both animal studies and 
clinical data indicate their ability to suppress proinflamma-
tory cytokines such as IL-6, TNF-α, and IL-1β [11]. These 
cytokines are potent inducers of SAA in hepatic and adipose 
tissues, suggesting that GLP-1RAs may theoretically modu-
late SAA expression. Future preclinical and clinical inves-
tigations related to GLP-1RAs and SGLT2 inhibitors are 
warranted to monitor less-studied inflammatory mediators 
such as SAA, which could broaden therapeutic strategies 
targeting SAA in cardiometabolic diseases.

Conclusion and future perspectives

SAA has emerged as a promising inflammatory biomarker 
and potential driver in cardiometabolic HFpEF. However, 
key mechanistic gaps remain. We highlight four high-
priority areas for future investigation. First, clarifying 
whether SAA is a causal driver or merely a bystander in 
HFpEF will require prospective cohorts with serial SAA 
measurements and Mendelian randomization analyses, 
complemented by cardiac tissue profiling using spatial 
transcriptomics or proteomics. Second, the downstream 
signaling pathways of SAA remain poorly understood. Sin-
gle-cell or spatial omics, combined with cell-specific gene 
editing in mouse models, could help define receptor–cell 
interactions in cardiomyocytes, fibroblasts, and endothe-
lial cells. Third, given HFpEF heterogeneity, future trials 
should stratify patients based on comorbidity clusters and 
inflammatory profiles through multicenter cohorts, inte-
grating multi-omics data to refine patient classification. 
Fourth, standardization across all stages of SAA meas-
urement—from sampling to interpretation—is essential 
for clinical application. This requires reference materi-
als, harmonized platforms, validated ranges, and strong 

quality control, following models established for CRP and 
NT-proBNP. To accelerate progress, early-phase interven-
tions—such as SAA-neutralizing antisense oligonucleo-
tides in well-characterized HFpEF subgroups—should 
be prioritized. These priorities, together with other unre-
solved issues, are summarized in Table 3. Moving forward, 
a coordinated research agenda that bridges mechanistic 
discovery and early clinical translation is urgently needed 
to realize the full diagnostic and therapeutic potential of 
SAA in HFpEF.

Acknowledgements  All figures were created in BioRender [Gabriele 
G. Schiattarella (2025) https://​BioRe​nder.​com].

Author contributions  Luo Liu: Writing—original draft, Writing—
review & editing, Visualization, Investigation, Conceptualization. Ron-
gling Wang: Conceptualization, Writing—review & editing. Stefano 
Strocchi: Writing—review & editing. Tolga Eroglu: Writing—review 
& editing. Natasha Nambiar: Writing—review & editing. Sarah V. Lié-
vano Contreras: Writing—review & editing. Saskia A. Diezel: Writ-
ing—review & editing. Gabriele G. Schiattarella: Writing—review & 
editing, Project administration, Funding acquisition, Supervision. All 
authors read and approved the final manuscript.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This work was supported by the following grants: DZHK (Ger-
man Centre for Cardiovascular Research—81X3100210; 81X2100282), 
the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation—SFB-1470-A02 and SFB-1470-Z01), the European Research 
Council—ERC StG 101078307 and HI-TAC (Helmholtz Institute for 
Translational AngioCardiScience) to G.G.S. China Scholarship Coun-
cil (CSC, No. 202208530007) to L.L. HI-TAC Early Career Investigator 
Grant—7.11442HIEC2401 to R.W.

Data availability  No data was used for the research described in the 
article.

Declarations 

Conflict of interest  The authors declare no competing interests.

Table 3   Key mechanistic and translational gaps in understanding SAA in HFpEF

Unresolved questions

1. What is the spatial distribution of SAA in cardiac tissue, including its localization to cardiomyocytes, endothelial cells, and fibroblasts?
2. Which specific receptors mediate SAA signaling across different cardiac cell types, and how do their downstream pathways differ?
3. Does SAA exert cell-type–specific effects on endothelial cells, fibroblasts, and cardiomyocytes in the context of HFpEF?
4. Through which molecular mechanisms does SAA contribute to extracellular matrix remodeling and fibroblast activation in the myocardium?
5. How does SAA-enriched HDL alter endothelial function and vasoprotective properties in cardiometabolic HFpEF?
6. Is SAA an initiating factor in HFpEF pathogenesis or a secondary amplifier of existing inflammatory pathways?
7. Can the inclusion of SAA in a multimarker panel improve risk stratification and prognostic accuracy in cardiometabolic HFpEF?
8. Do rising SAA levels precede clinical progression of HFpEF, and can they serve as an early biomarker of disease development?
9. Is SAA similarly elevated in non-cardiometabolic HFpEF subtypes such as those associated with aging, coronary artery disease (CAD), or 

pulmonary hypertension (pHTN)?
10. Can therapeutic targeting of SAA (e.g., antisense oligonucleotides, receptor antagonists) reduce myocardial inflammation and improve 

cardiac function in HFpEF?
11. Do SGLT2 inhibitors modulate SAA expression in HFpEF, and does this contribute to their observed anti-inflammatory and cardioprotective 

benefits?
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