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Distinct transcriptomic and epigenomic 
responses of mature oligodendrocytes 
during disease progression in a mouse model 
of multiple sclerosis
 

Chao Zheng1,4, Bastien Hervé    1,4, Mandy Meijer1,2, 
Leslie Ann Rubio Rodríguez-Kirby1, André Ortlieb Guerreiro Cacais    3, 
Petra Kukanja    1, Mukund Kabbe1, Tony Jimenez-Beristain    1, Tomas Olsson3, 
Eneritz Agirre    1 & Gonçalo Castelo-Branco    1 

Multiple sclerosis (MS) is a chronic autoimmune disease that targets mature 
oligodendrocytes (MOLs) and their myelin. MOLs are heterogeneous 
and can transition to immune-like states in MS. However, the dynamics 
of this process remain unclear. Here, we used single-cell multiome 
assay for transposase-accessible chromatin and RNA sequencing 
targeting oligodendroglia (OLG) from the experimental autoimmune 
encephalomyelitis (EAE) MS mouse model at multiple disease stages. We 
found that immune OLG states appear at early disease stages and persist to 
late stages, which can be consistent with epigenetic memory of previous 
neuroinflammation. Transcription factor activity suggested immunosup
pression in OLG at early disease stages. Different MOLs exhibit differential 
responsiveness to EAE, with MOL2 exhibiting a stronger transcriptional 
immune response than MOL5/MOL6, and showed divergent responses at 
the epigenetic level during disease evolution. Our single-cell multiomic 
resource highlights dynamic and subtype-specific responses of OLG to EAE, 
which might be amenable to modulation in MS.

Multiple sclerosis (MS) is an inflammatory autoimmune disease of 
the central nervous system (CNS)1. Oligodendrocytes (OLs) are the 
myelinating cells of the CNS, and their precursor cells (OL precursor 
cells (OPCs)) are present throughout the developing and adult CNS and 
are capable of differentiating into myelinating mature OLs (MOLs)2. MS 
has been generally viewed as primarily driven by T cells and B cells3. 
However, recent studies revealed the expression of immunomodula-
tory molecules in oligodendroglia (OLG) not only in MS but also in 

Alzheimer’s disease and aging4–8. These findings indicate the potential 
role of OLG in the modulation of immune responses within the CNS.

Single-cell/nucleus RNA sequencing (scRNA-seq) has been 
applied to reveal specific MOLs/OPC subpopulations in MS and 
experimental autoimmune encephalomyelitis (EAE)4,9,10. Assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) is a 
high-throughput sequencing technique for assessing genome-wide 
chromatin accessibility11 and provides information on regions with 
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disease-associated OLG states at peak EAE are characterized by chromatin 
accessibility and the expression of immune genes4,13, we investigated 
whether the observed transitions were driven by their immune status. We 
subsetted and reclustered OPCs and MOLs to identify those expressing 
immune-related genes13 (Fig. 2a and Methods). Immune OLG (imOLG) 
were hardly observed in CFA-Ctrl mice, but were found in mice with EAE, 
with a higher percentage present at the peak stage than in the early and 
late stages (early stage 26.80%, peak stage 66.91% and late stage 32.41%; 
Fig. 2c). Chromatin accessibility at the promoter/gene body of the same 
immune genes identified a lower number of imOLG than by immune 
gene expression (early 14.69%, peak stage 37.71% and late stage 17.81%; 
Fig. 2b,d). This is most likely due to some OLG from CFA-Ctrl and Naive-Ctrl 
animals exhibiting already primed chromatin accessibility in immune 
gene loci but with low or no expression4,13, which made the cutoff value of 
immune status depicted from gene chromatin accessibility higher than 
from expression. Thus, our data indicate that the transition of both OPCs 
and MOLs to immune-like states at epigenomic and transcriptional levels 
occurs at early stages of EAE, when lesions are just starting to develop, 
and persists at late stages, despite resolving inflammation.

OLG MHC class I/MHC class II chromatin accessibility persists 
in late EAE
The expression and chromatin accessibility of some major histocompat-
ibility complex (MHC) class I- and MHC class II-related genes were previ-
ously shown to be increased in EAE-specific OLG at peak stages of EAE4,13. 
Here, we found that, overall, the expression level of MHC class II genes 
was lower than that of MHC class I genes (Extended Data Fig. 2a). Notably, 
the expression of β-chain of MHC class I molecules (B2m), histocompat-
ibility 2, K region locus 1 (H2-K1) and NLR family CARD domain-containing 
5 (Nlrc5) was increased in EAE OLG at early stages (Fig. 2e and 
Extended Data Fig. 2a,b). We identified MOL1, MOL2 and MOL5/MOL6 
mature OLG subpopulations (Fig. 3a and Extended Data Fig. 3a–d). We 
observed that the increase in expression of MHC class I and MHC class 
II genes at early stages was more expressive in OPCs than in MOL2 and 
MOL5/MOL6 (Extended Data Fig. 2b). The chromatin of some of the 
MHC class I genomic loci was accessible in OLG from CFA-Ctrl animals 
and exhibited a further increase in the early stages of EAE (Fig. 2e and 
Extended Data Fig. 2a,b). By contrast, MHC class II genes had no or low 
expression in OLG from CFA-Ctrl mice and showed increased expression 
and chromatin accessibility in OPCs at early stages of EAE, but only at 
the peak stage for MOLs (Fig. 2e and Extended Data Fig. 2a–c). A few 
MHC class I genes such as B2m, histocompatibility 2, D region locus 1 
(H2-D1) and H2-K1 remained highly expressed at late EAE stages, while 
the expression of most other MHC class I and MHC class II genes was 
notably downregulated compared to at the peak stage. Nevertheless, 
chromatin accessibility at the promoter/gene body of both MHC class 
I and MHC class II genes remained high at the late stage (Fig. 2e and 
Extended Data Fig. 2a–c). Thus, OLG exhibit persistent chromatin acces-
sibility of specific immune genes at late stages of EAE. Because inflamma-
tion is decreased at these stages, this chromatin accessibility persistence 
in OLG might result from either epigenetic memory of peak immune-like 
states or from a mild inflammatory environment at late stages.

IFNγ induces epigenetic memory in neonatal OPCs
To investigate whether a possible immune epigenetic memory in 
OPCs enhances immune characteristics after re-exposure to inflam-
matory stimuli, we treated primary mouse neonatal OPCs and the 
mouse OLG precursor cell line Oli-neu18 with IFNγ, either once or 
twice with a 96-h interval without IFNγ between treatments (Fig. 2f 
and Extended Data Fig. 3e). RNA-seq and ATAC-seq were conducted 
24 h after the first or second IFNγ treatment. We observed that there 
was a large number of genes for which chromatin accessibility around 
their transcription start sites (TSSs; Supplementary Table 1) and their 
potential enhancers (Supplementary Table 1) was maintained or kept at 
a relatively higher level, in the absence of IFNγ for 96 h, after treatment 

open chromatin, which is required for gene expression12. By applying 
single-cell ATAC-seq (scATAC-seq) in combination with scRNA-seq 
independently, we previously found that a cohort of immune genes 
exhibit open chromatin in both control animals and in animals with 
EAE at peak disease, while their expression only increases in the context 
of EAE13. These studies were conducted with samples from single time 
points, at the peak of the disease in mouse EAE and from the late stage 
of disease in human postmortem MS tissue. Thus, the dynamics of OLG 
throughout the disease process have not been explored.

Here, we investigate the epigenomic and transcriptional dynam-
ics of OPCs and MOLs over the course of EAE. We applied simultane-
ous single-cell multiome ATAC-seq and RNA-seq to OLG sorted by 
fluorescence-activated cell sorting (FACS) from male and female mice 
with EAE at three distinct time points: early, peak and late stages. At the 
early stage of EAE, a subset of genes involved in antigen presentation 
showed increased expression and chromatin accessibility in OPCs and 
MOLs, indicating that the induction of an immune-like state in OLG 
occurs before the formation of fully developed lesions. Moreover, chro-
matin accessibility at these genes remained highly open at the late stage 
of EAE, indicating either partial maintenance or an epigenetic memory 
of this immune-like state. Furthermore, specific MOL subtypes acquire 
different patterns of change in genes related to the immune response 
at both expression and chromatin accessibility levels over the course of 
disease. We observed that white matter-enriched14 MOL2 showed higher 
immune signatures than MOL5/MOL6, which in turn exhibited induc-
tion of chromatin accessibility in genes with regenerative pathways, 
particularly in the late stage. Our study provides a resource available for 
browsing at the University of California, Santa Cruz, Cell Browser and 
Genome Browser15 (https://olg-dyn-eae-multiome.cells.ucsc.edu) and a 
deeper understanding of OLG dynamics in the inflammatory demyelina-
tion mouse model of MS, offering insights into these cell populations 
as potential targets for immune modulation and myelin regeneration.

Results
Single-cell multiome analysis of OLG at different EAE stages
We induced EAE in Sox10:cre-RCE:loxP (enhanced green fluorescent 
protein (eGFP)) transgenic mice16,17 with injection of emulsion contain-
ing the MOG35–55 immunogenic peptide in complete Freund’s adjuvant 
(CFA), followed by intraperitoneal injection of pertussis toxin. Spinal 
cord tissues from male and female mice induced with EAE were collected 
at three different stages: (1) early stage (days 8–9 after injection), (2) 
peak stage (days 14–15) and (3) late/chronic stage (days 37–40; Fig. 1a,b). 
Spinal cord samples from CFA-treated control (CFA-Ctrl) mice were also 
collected from the same stages, alongside spinal cord tissues from non-
induced naive untreated control (Naive-Ctrl) mice. OLG were enriched 
based on eGFP by sorting by FACS (Extended Data Fig. 1a), after which 
we performed single-cell multiome RNA-seq and ATAC-seq (Fig. 1a). 
After sample-specific quality control filtering (Extended Data Fig. 1b 
and Methods), we obtained 156,205 cells. Louvain clustering was per-
formed on the scRNA-seq (Extended Data Fig. 1c,e) and scATAC-seq 
datasets (Extended Data Fig. 1d,f). Neighbors’ graphs from both modali-
ties were overlapped to generate a new joined projection (Fig. 1c–f 
and Extended Data Fig. 1g,h), annotated by cell type with marker gene 
expression and chromatin accessibility (Fig. 1g and Methods). As 
expected from the lineage tracing strategy, most of the cells were MOLs, 
OPCs and committed OL precursors. Nevertheless, other populations, 
in particular astrocytes and microglia, were also captured (Fig. 1c–e).

Immune OLG states emerge early and persist in late EAE
We observed that a subset of MOLs transitioned to transcriptional/
epigenomic states distinct from CFA-Ctrl at early stages of EAE, when 
lesions are just starting to develop (Fig. 1f and Extended Data Fig. 1e,f). 
Moreover, a minority of MOLs retained peak-stage-like profiles at late 
stages, while most MOLs transitioned to CFA-Ctrl-like states, suggesting 
a return to homeostasis (Fig. 1f and Extended Data Fig. 1e,f). Because 
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Fig. 1 | Single-cell multiome (RNA-seq + ATAC-seq) analysis of OLG in an EAE 
mouse model of MS. a, Schematic of the methodology used in animal model 
establishment and multiome sequencing (image created using BioRender); blue 
dots, Naive-Ctrl; green dots, CFA-Ctrl; yellow dots, EAE early stage; red dots, EAE 
peak stage; brown dots, EAE late stage. b, Clinical scores of the mice used in the 
study (EAE: 38 mice in 19 multiome experiments, CFA-Ctrl n = 9; data are shown 
as mean ± s.d.). For EAE from peak and late stages, only mice that had reached 
a score of 3 were used in this study. c,d, Uniform manifold approximation and 

projection (UMAP) of cells profiled with simultaneous scRNA-seq (c) and scATAC-
seq (d). Cell types are identified according to marker genes; Ast, astrocytes; 
Epen, ependymal cells; MG, microglia; COP, committed OL precursor. e, Joint 
UMAP from the weighted nearest neighbors graph of scRNA-seq and scATAC-seq 
modalities colored by cell type. f, Joint UMAP with cells colored by conditions on 
top of a UMAP with all cells (in gray). g, Normalized chromatin accessibility (left) 
and log2 expression (right) of representative marker genes of each cell type.
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with this cytokine. Many of these genes, such as H2-Ab1, H2-K1 and 
H2-D1, retained chromatin accessibility in OPC populations but also in 
MOL populations in late-stage EAE (Fig. 2e and Extended Data Fig. 2b), 
suggesting epigenetic memory in this MS model. Moreover, some of 
these genes also exhibited a further increase in chromatin accessibility 
after the second IFNγ treatment (Fig. 2g,h and Supplementary Table 1). 
One of the possible functional outcomes of this epigenetic memory 
could be increased expression of these genes after a second bout of 
neuroinflammation. Indeed, a specific subset of the genes presenting 
unaltered chromatin accessibility around the TSS and/or enhancers 
exhibited elevated expression in OPCs after exposure to the second 
dose of IFNγ compared to OPCs after one dose of IFNγ treatment 
(Fig. 2g,h and Supplementary Table 1). Moreover, in the Oli-neu cell 
line, quantitative PCR with reverse transcription (RT–qPCR) analy-
sis revealed increased expression of specific genes within the MHC 
pathway, such as Nlcr5, H2-D1, H2-Ab1, H2-Aa, B2m and class II MHC 
transactivator (Ciita), when comparing the two IFNγ treatments to 
a single IFNγ treatment (Extended Data Fig. 3e). These results from 
cultured neonatal OPCs suggest that OPCs might retain, at the level of 
chromatin accessibility, epigenetic memory of a previous neuroinflam-
matory insult, which might make them more prone to transcriptionally 
reactivate an immunological profile. However, additional studies are 
needed to determine whether a similar epigenetic memory phenom-
enon occurs in adult OPCs and MOLs, given their distinct transcriptomic 
and epigenomic profiles.

RNAscope confirms imOLG across EAE stages
Our multiome data suggested that imOLG are present not only at the 
peak stage but also at the early and late stages of EAE. We thus used 
RNAscope in situ hybridization (ISH) to understand where these imOLG 
were located relative to EAE lesions. We defined lesions as white mat-
ter regions with a high number of cells due to inflammatory infiltrates 
(Extended Data Fig. 3f). Consistent with the multiome results, the MHC 
class II+ OLG (Sox10+H2-Ab1+) were observed in EAE spinal cord sections 
from the peak stage but also in early and late stages, albeit in different 
proportions (Fig. 2i,j and quantification in the Methods). There was no 
significant difference in the percentages of imOLG between lesion and 
nonlesion areas for all three stages (Fig. 2j; P > 0.05). Consistent with 
previous observations4, we confirmed the presence of imOLG at the 
protein level by immunostaining against MHC class II (I-A/I-E), along 
with SOX10 (GFP; Extended Data Fig. 3g). Together, our data indicate 
that MHC class I and MHC class II genes maintain latent transcriptional 
and epigenetic states in OLG at late EAE stages, which may result in 
immune gene expression when facing recurrent inflammatory stimuli 
and contribute to the chronic persistent disease state.

Stronger immune transcriptional responsiveness of MOL2
MOLs have recently been shown to be heterogeneous, with spe-
cific populations exhibiting regional preferences and different 

susceptibility to spinal cord injury4,7,13,14,19,20. Based on distinct gene 
expression profiles within OLG, we could further subdivide OPCs 
into three (OPC-α–OPC-γ), MOL2 into five (MOL2-α–MOL2-ε) and 
MOL5/MOL6 into ten cell states/subpopulations (MOL5/MOL6-α–
MOL5/MOL6-κ; Fig. 3a and Extended Data Fig. 4a). Interestingly, most 
of these states display prevalence toward specific EAE time points 
(Fig. 3a–c) and present specific expression of gene modules (Meth-
ods, Extended Data Fig. 4b and Supplementary Table 2). Overall, we 
observed a higher proportion of MOL2 at the peak and late stages 
of EAE than CFA-Ctrl and early-stage EAE (Fig. 3b–d). This increase 
could arise from conversion of MOL5/MOL6 into MOL2, being more 
resilient to the neuroinflammatory environment, and/or preferen-
tial differentiation of OPCs into MOL2 in the context of EAE. We then 
investigated whether any of these MOL populations were more prone 
to transition into immune-like states in EAE. In total, 38.35% of MOL2 
were identified as imOLG, whereas only 18.75% of MOL5/MOL6 under-
went this transition (Fig. 3e and Extended Data Fig. 4d), indicating 
that MOL2 has higher immune responsiveness. Within the identified 
immune-related genes, some were more enriched in specific MOL 
populations, whereas others, involved, for instance, in cytokine and 
T cell immune responses, showed similar expression levels among all 
MOLs (Fig. 3f and Extended Data Fig. 4c). Overall, our results suggest 
that MOL2 exhibit a stronger immune response to the neuroinflamma-
tory environment than MOL5/MOL6 and may play a more important 
role in disease progress.

Damage-associated transcriptional responses in OLG
In addition to the immune response, the disease-associated profile of 
OLG can also include a damage-associated response, which is related 
to apoptosis and survival mechanisms8,21. We found that the major-
ity of OLG at the peak stage expressed high levels of both damage- 
and IFN-associated genes, whereas a subset of cells from the early 
and late stages expressed either damage- or IFN-associated profiles 
(Fig. 3g,h). By contrast, chromatin accessibility showed a stronger 
specificity in either damage- or IFN-associated genes (Fig. 3i), suggest-
ing that the chromatin accessibility of these IFN- or damage-associated 
genes was already reduced at the peak stage, despite their transcrip-
tion. A higher percentage of MOL2 displayed both damage- and 
IFN-associated profiles than MOL5/MOL6 at peak and late stages 
(Extended Data Fig. 4e). At the late stage, a greater proportion of 
MOL2 exhibited a damage-associated profile, whereas MOL5/MOL6 
showed a higher prevalence of IFN-associated profiles. Additionally, 
we identified a subset of OPCs at the late stage that did not express 
either damage- or IFN-associated profiles (Fig. 3f,g), suggesting that 
these OPCs may have a nondisease phenotype and could potentially 
contribute to remyelination at the chronic stage of disease. Similar to 
immune-related genes, fewer damage- and IFN-associated OLG were 
identified by chromatin accessibility than gene expression (Fig. 3h,i 
and Extended Data Fig. 4e,f).

Fig. 2 | Transition to the imOLG states occurs at early stages of EAE and 
persists at late stages, consistent with epigenetic memory at a chromatin 
accessibility level. a,b, Joint UMAP with OLG from CFA-Ctrl mice and mice with 
EAE. Projection of cells with immune status (red) and nonimmune status (green) 
identified by gene expression (a) and chromatin accessibility (b). c,d, Circos 
plots showing the number of cells with (red) or without (green) immune status 
identified by gene expression (c) and chromatin accessibility (d; downsampled 
by time point). e, Heat maps of the expression (top) and chromatin accessibility 
(CA; bottom) of MHC class I (top) and MHC class II (bottom) genes at different 
stages. The black column on the right represents the gene raw counts.  
f, Schematic of the 1×/2× IFNγ treatment experiment on mouse primary OPCs. 
Arrows represent the time points of sample collection (image created using 
BioRender). g,h, Heat maps showing normalized gene expression (top) and 
chromatin accessibility signal in 1-kb windows around the TSS (bottom; g) at 
defined enhancer regions (Methods) in the same 1-kb windows (bottom; h) in 

mouse primary OPCs with the first and second doses of IFNγ. Genes plotted 
were upregulated following IFNγ treatment compared to control treatment 
(P < 0.05 and false discovery rate (FDR) < 0.05) and showed no changes in 
chromatin accessibility signal after the first treatment with IFNγ in the absence 
of this cytokine for 96 h (P > 0.05 and FDR > 0.05). Genes that were significantly 
upregulated following the second dose of IFNγ compared to the first dose of 
IFNγ are marked with an asterisk (*; P < 0.05 and FDR < 0.05), while the remaining 
genes presented P < 0.05 in this comparison. i, RNAscope ISH from early-, peak- 
and late-stage EAE mice marked with probes for Sox10 (OLG) and H2-Ab1 (MHC 
class II). j, Quantification of the percentages of Sox10+H2-Ab1+ cells out of Sox10+ 
cells in lesion and nonlesion areas. Statistical analyses were performed using a 
two-way ANOVA with a Tukey’s multiple comparisons test and adjusted P values; 
NS, P > 0.05; ****P < 0.0001; data are shown as mean ± s.d.; n = 3 independent 
experiments per condition.
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Fig. 3 | Differential immune and damage-associated transcriptional 
responses to EAE of MOL2 and MOL5/MOL6. a,b, Joint UMAP of OLG 
populations colored by cell subtypes (a) and time points (b). c, Bar plot of cell 
proportions from different time points in each OLG cell subtype. d, Circos 
plot showing the number of cells from different time points in OLG cell types 
(downsampled by time point). e, Circos plot showing the number of cells 
with (red) or without (green) immune status for each OLG cell type. f, Scaled 

expression level of immune response-related genes grouped by function in OLG 
cell subtypes. g, Scaled expression level of damage-associated response-related 
genes in OLG cell subtypes. h,i, Circos plots showing the number of cells with 
(black) or without (green) damage- and IFN-associated profiles, only IFN-
associated profiles (blue) or only damage-associated profiles (gray) for OLG from 
different time points at gene expression (h) and chromatin accessibility (i) levels 
(downsampled by time point).
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Fig. 4 | Increase of cholesterol biosynthetic processes in MOL5/MOL6 at 
early stages of EAE. a,b, Heat maps of differentially expressed genes (DESeq2 
Wald test and Benjamini–Hochberg multiple testing correction with a log2 (fold 
change) (log2 (FC)) of >1 and adjusted P value of <0.01; brown) between different 
time points in MOL5/MOL6 (a) and MOL2 (b), chromatin accessibility at 
promoters and gene bodies (purple) and chromatin accessibility at enhancer 
regions (green) of the same gene. The black column on the right represents the 
raw gene counts. The line plots represent the mean of the normalized and scaled 

gene expression (line in brown), chromatin accessibility at the promoter and 
gene bodies (line in purple) and chromatin accessibility at enhancer regions 
(line in green) of genes in different groups. The color band associated with a line 
represents the standard deviation of the mean. Differentially expressed genes 
and associated GOs are shown in Supplementary Table 3 and 4. c, Normalized 
chromatin accessibility (left of each gene panel) and log2 expression (right of 
each gene panel) of genes related to the cholesterol biosynthetic process (Scd1, 
Idi1, Dhcr24 and Fdft1) in MOL5/MOL6 (left) and MOL2 (right).
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Distinct transcriptional response of MOL2 and MOL5/MOL6 in 
EAE
To explore whether other biological processes were dynamically modu-
lated in OLG during the course of EAE, we performed differential gene 
expression analysis across the different stages in different OLG cell 
types (Methods). The differentially expressed genes were divided into 
Type 1 (high expression in CFA-Ctrl), Type 2 (high expression at the 
early stage), Type 3 (high expression at the peak stage) and Type IV 
(high expression at the late stage) main types and also subtypes (high 
expression in a main type associated with high expression in a second-
ary type; Fig. 4a,b and Extended Data Fig. 5a).

In OPCs, we observed an increase in IFN and cytokine signaling at 
early and peak stages (secondary subtype division Type 2–Type 3), and, 
as expected, genes related to antigen processing cross-presentation 
were increased in expression at the peak stage (Type 3), followed 
by a notable reduction at the late stage (Extended Data Fig. 5a and 
Supplementary Tables 3 and 4). Furthermore, genes related to neuronal 
system and development, albeit not significant in Gene Ontology (GO) 
terms, such as doublecortin (Dcx) and glutamate receptor-interacting 
protein 1 (Grip1), were upregulated at the late stage (Type 4) in OPCs 
(Extended Data Fig. 5a and Supplementary Tables 3 and 4). OPCs 
showed a drastic reduction of immune-associated cells at the gene 
expression level and, to some extent, at the chromatin level at the late 
stage of EAE compared to all other time points and MOL populations 
(Extended Data Fig. 5b,c). However, many of these genes retained 
chromatin accessibility, suggesting that they retain the epigenetic 
potential to initiate their transcription.

Consistent with OPCs, the differentially expressed genes of 
MOL5/MOL6 were also divided into four distinct types and sub-
types (Fig. 4a). Most of the genes with high expression at the peak 
stage (Type 3) in MOL5/MOL6 were immune related, such as anti-
gen processing/cross-presentation (Psmb8, Psmb9 and Tap1), but 
their expression decreased drastically at the late stage (Fig. 4a and 
Supplementary Tables 3 and 4). We observed an increase of interleukin 
signaling genes in MOL5/MOL6 (Type 2) at the early stage (Fig. 4a and 
Supplementary Tables 3 and 4). We found an increase in cholesterol 
biosynthetic process-related genes at early stages (Type 2 subtype 1), 
such as stearoyl-CoA desaturase-1 (Scd1), isopentenyl-diphosphate-δ 
isomerase 1 (Idi1), 24-dehydrocholesterol reductase (Dhcr24), 
farnesyl-diphosphate farnesyltransferase 1 (Fdft1), squalene epoxidase 
(Sqle), farnesyl-diphosphate synthase (Fdps) and methylsterol monoox-
ygenase 1 (Msmo1) in MOL5/MOL6. This increase in cholesterol-related 
pathway genes was also found in early stages (Type 2 subtype 1) in 
OPCs (Fig. 4a,c and Supplementary Tables 3 and 4). The formation of 
the myelin sheath necessitates highly coordinated levels of fatty acid 
and lipid synthesis process-related genes22. MOLs have been recently 
shown to be able to contribute in some extent to remyelination23–26. 
The increase in expression of cholesterol biosynthesis-related genes 
at the initial stage could suggest a form of preliminary remyelination 
adaptation to the very first cues given by EAE-driven demyelination 
(Extended Data Fig. 5d). At the late stage (Type 4), we observed the 
increased expression of genes in MOL5/MOL6 involved in extracellular 

matrix degradation and collagen chain trimerization, suggesting simul-
taneous matrix degradation and synthesis for tissue repair during 
chronic phases of the disease. We also observed increased expression 
of genes involved in the RHO GTPase cycle in MOL5/MOL6 at a sec-
ondary subtype division at late and early stages (Type 4 subtype 2),  
such as STEAP3 metalloreductase (Steap3) and copine 8 (Cpne8; 
Supplementary Tables 3 and 4) involved in actin cytoskeleton and 
microtubule processes, which play a role in myelination27, further sug-
gesting that MOL5/MOL6 might activate gene regulatory programs 
associated with regeneration during these stages.

We also identified four groups and subgroups of genes with 
differential expression between different time points for MOL2 
(Fig. 4b). Similar to MOL5/MOL6, we found that cholesterol bio-
synthetic process-related genes also had a transitory increase in 
MOL2 at early-stage EAE compared to later stages (Fig. 4b,c and 
Supplementary Tables 3 and 4). Many genes with high expression 
in MOL2 at the peak stage were immune-related genes (Type 3, such 
as Tap1, histocompatibility 2, T region locus 23 (H2-T23), integrin 
subunit-α 9 (Itga9) and Psmb8, which is consistent with the exacer-
bated immune response and higher number of imOLG at the peak 
stage (Fig. 4b and Supplementary Tables 3 and 4). Interestingly, we 
also found that genes related to development and axon guidance, dif-
ferent from Type 1 genes, exhibited high expression in MOL2 at the late 
stage, such as plexin A4 (Plxna4), but also semaphorin 3B (Sema3b), 
EPH receptor (Ephb2 and Epha10) and ankyrin 1 (Ank1; Fig. 4b and 
Supplementary Tables 3 and 4). In summary, our multiome data indi-
cate that MOL2 initiate, as MOL5/MOL6, a cholesterol biosynthesis 
program in response to the arising neuroinflammatory environment 
but transition to an immune-like state during the course of EAE.

We then explored expression differences between MOL2 and 
MOL5/MOL6 at each time point (Methods and Supplementary Table 5). 
At the peak stage of EAE, we identified 352 genes with increased expres-
sion in MOL2 compared to MOL5/MOL6 (Extended Data Fig. 5e), many 
of which were associated with immune responses and apoptotic pro-
cesses, including Ciita, Gbp5, Jun and death-associated protein (Dap; 
Supplementary Tables 5 and 6). This finding supports that MOL2 
exhibit a stronger immune profile than MOL5/MOL6. For MOL5/MOL6, 
we observed 80 genes with increased expression across different time 
points (Extended Data Fig. 5f). Among these, we identified several 
genes related to the neuronal system but also cell development, such 
as meis homeobox 2 (Meis2), neuroligin 3 (Nlgn3) and Sema6a, at early 
stages (Supplementary Tables 5 and 6).

Increased MOL chromatin accessibility at immune genes  
in EAE
Differences between MOL2 and MOL5/MOL6 at the transcriptional 
level might correlate with changes at the epigenetic level. We thus 
compared the list of genes with differential chromatin accessibility 
at promoter/gene body regions and genes with differential expres-
sion across different stages and found that multiple genes showed 
notable changes in both expression and chromatin accessibility 
(Fig. 5a and Supplementary Table 7). Most were immune related (Fig. 5b, 

Fig. 5 | Stronger epigenetic immune response at the chromatin accessibility 
level in MOL2 than in MOL5/MOL6. a, Venn diagram showing the number of 
genes with differential expression and/or differential chromatin accessibility 
among different disease stages (DESeq2 Wald test and Benjamini–Hochberg 
multiple testing correction with a log2 (FC) of >1 and adjusted P value of <0.01) 
in MOL2 (top) and MOL5/MOL6 (bottom). b, Top GO pathways by biological 
process terms (Fisher exact test and multiple testing correction using FDR with 
an adjusted P value of <0.05) for genes with both differential expression and 
differential chromatin accessibility in MOL2 (top) and MOL5/MOL6 (bottom) 
among different disease stages. c,d, Heat maps of differential chromatin 
accessibility at promoters and gene bodies (DESeq2 Wald test and Benjamini–
Hochberg multiple testing correction with a log2 (FC) of >1 and adjusted P value 

of <0.01; purple) between different time points in MOL2 (c) and MOL5/MOL6 (d), 
gene expression (brown) and chromatin accessibility at enhancer regions (green) 
of the same gene. The black column on the right represents the gene raw counts. 
The line plots represent the average gene expression (line in brown), chromatin 
accessibility at promoters and gene bodies (line in purple) and chromatin 
accessibility at enhancer regions (line in green) of genes in different groups. The 
color band associated with a line represents the standard deviation of the mean. 
Differential chromatin accessibility at promoters/gene bodies and associated 
GOs are shown in Supplementary Tables 3 and 4. e,f, Normalized chromatin 
accessibility of immune system process-related genes (Ido1, C1ra and Isg20) in 
MOL2 (e) and MOL5/MOL6 (f) at each time point.
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Extended Data Fig. 5g,h and Supplementary Tables 7 and 8). This indi-
cated that immune-related genes tend to have important changes in 
both gene expression and chromatin accessibility at promoter/gene 
body regions in all OLG populations.

We then explored the dynamics of chromatin accessibility both at 
promoters/gene bodies and at associated distant enhancer regulatory 
regions during the disease course. Gene loci displaying differential 
chromatin accessibility at promoter/gene body regions between dif-
ferent time points were divided into high chromatin accessibility in 
CFA-Ctrl (Type 1), early stage (Type 2), peak stage (Type 3) and late stage 
(Type 4; Fig. 5c,d). Very few genes could be found in Type 1 in MOLs 
and none could be found in OPCs (Fig. 5c,d and Extended Data Fig. 5i). 
In both OPCs and MOLs, most genes with differential chromatin and 
enhancer accessibility reached their highest levels of accessibility dur-
ing the peak stage, with the association of immune-related functions 
(Supplementary Tables 3 and 4). Of note, a predominance in accessi-
bility at genes associated with collagen biosynthesis and extracellular 
matrix organization was described in MOL5/MOL6 compared to MOL2 
at late stages of EAE (Fig. 5c,d and Supplementary Tables 3 and 4).

When comparing MOL2 to MOL5/MOL6, we found that there 
was a group of antigen processing/presentation with high chro-
matin accessibility at the peak stage in both MOL2 and MOL5/6 
(Extended Data Fig. 5j,k and Supplementary Tables 3 and 4). Moreo-
ver, we found that more immune-related genes were upregulated 
in MOL2 than in MOL5/MOL6 at the peak stage. Some immune sys-
tem process-related genes, such as indoleamine 2,3-dioxygenase 
1 (Ido1), complement component 1, r subcomponent A (C1ra) and 
IFN-stimulated exonuclease gene 20 (Isg20) showed increased chro-
matin accessibility at the peak stage in MOL2 but not in MOL5/MOL6 
(Fig. 5e,f and Supplementary Tables 3 and 4), further indicating that 
MOL2 triggers a more robust opening of the chromatin at immune 
genes after EAE than MOL5/MOL6.

HOXB enhancer activity increases in MOL5/MOL6 in late EAE
Recently, superenhancers, clusters with high levels of transcription 
factor binding and domains of regulatory chromatin (DORCs), have 
been suggested to have key roles in modulating gene expression12. 
Genes associated with DORCs were characterized by exceptionally 
large (five or more) numbers of significant peak–gene associations 
(Extended Data Fig. 6a,b). To explore the role of DORCs in the course 
of EAE, we defined differentially accessible domain-regulated genes in 
OLG subpopulations (Fig. 6a and Extended Data Fig. 6c). We found three 
types of DORCs in MOL5/MOL6, among which only 2 domains were clas-
sified as Type 1 (high activity at the early stage), 49 domains were clas-
sified as Type 2 (high activity at the peak stage), and 24 domains were 
classified as Type 3 (high activity at the late stage; Fig. 6a). By contrast, 
we only found Type 2 (high activity at the peak stage) DORCs in MOL2. 
Type 2 DORCs in both MOL2 and MOL5/MOL6 were associated with 
genes involved in immune processes, with Gbp7, IFN regulatory factor 
4 (Irf4) and Irgm1 included (Fig. 6a,b and Supplementary Table 3). For 
OPCs, 3 Type 1 DORCs and 49 Type 2 DORCs were identified, with many 
of them being immune related (Fig. 6b and Supplementary Table 3).

The presence of two additional DORC types (Types 1 and 3) in 
MOL5/MOL6 suggests that additional biological processes are regu-
lated in this mature OL subtype compared to MOL2 (Fig. 6c). In par-
ticular, at this stage, we found increased DORCs regulating a group 
of homeobox (Hoxb) genes, such as Hoxb2, Hoxb3 and Hoxb4, in 
MOL5/MOL6 but not MOL2 (Fig. 6c–e, Extended Data Fig. 6d,e and 
Supplementary Table 3). Interestingly, only a subset of MOL5/MOL6, 
a subpopulation of MOL5/MOL6-ζ, mainly from late-stage EAE, was 
driving the upregulation of DORCs of Hoxb genes (Fig. 6d). By contrast, 
all subtypes of OPCs present high DORC scores across all time points 
(Fig. 6c and Extended Data Fig. 6d). The increased activity was only 
found in Hoxb but not in other HOX family gene regions (Fig. 6e and 
Extended Data Fig. 6e). HOXB2 is essential for OL patterning28. Thus, 

the increased chromatin accessibility of these developmental-related 
DORCs suggests that MOL5/MOL6 might have primed transcriptional 
programs compatible with nervous system repair and remyelination 
and promotion during the late stages of EAE.

MultiVelo reveals distinct MOL2 and MOL5/MOL6 responses 
in EAE
Although RNA velocity leverages splicing and RNA turnover to infer cel-
lular transitional dynamics29, another key component for these dynam-
ics are changes in the epigenomic landscape during cell transitions. 
To explore dynamics of OLG during disease, we applied MultiVelo30, 
a tool that integrates transcriptomics and epigenomics datasets to 
estimate cell-fate predictions. For a given gene, this tool can define 
the state of each cell into one of the following four phases: priming 
(brown), coupled-on (pink), decoupling (dark blue) and coupled-off 
(light blue; Methods, Fig. 7a and Extended Data Fig. 7a,b)30. Due to 
the limited number of OPCs, some genes of interest did not present 
a complete transcriptional trajectory using MultiVelo (Methods and 
Extended Data Fig. 7c,d). We found that canonical OLG genes, such 
as Opalin, contactin 1 (Cntn1) and neuron navigator 1 (Nav1), showed 
coupled-on phases in MOL5/MOL6 in both CFA-Ctrl mice and in mice 
with EAE from early to late stages (Fig. 7c,d,f). However, many of these 
nervous system development-related genes exhibited either a prim-
ing or coupled-off phase in MOL2 (Fig. 7b,d,f). Thus, similar to our 
previous results, Multivelo analysis suggests a differential regener-
ative response of MOL2 and MOL5/MOL6 in the context of EAE. By 
contrast, immune-related genes, such as B2m, H2-D1 and Stat1, were 
observed to transition between the coupled-on and decoupling phases 
in most MOL2 cells, which indicated a highly open chromatin level 
and transcription (Fig. 7b,e). However, these immune genes showed 
a chromatin priming phase in MOL5/MOL6 in CFA-Ctrl animals, fol-
lowed by a transient coupled-on phase at early-stage EAE. At the peak 
and late stages, B2m and H2-D1 transitioned into a coupled-off phase, 
indicating an important reduction in chromatin accessibility and gene 
expression of these immune-related genes at the chronic stage of the 
disease (Fig. 7c,e). Transition to an immune-like state has been previ-
ously shown to be incompatible with differentiation in OPCs5, and our 
data suggest that in MOL in EAE the enhanced immune-like state of 
MOL2 cells is distinct to a putative more remyelination-prone state of 
MOL5/MOL6 cells. Thus, these results further indicate a divergence 
in the response of different MOL populations to the evolving disease 
environment in EAE.

Changes in MOL transcription factor activity in EAE
To obtain insights into the molecular mechanisms mediating the 
divergent OLG responses in the different stages of EAE, we inferred 
the global gene regulatory network (GRN)31 for OPCs and MOL5/
MOL6 and MOL2. We observed changes in the activity of the predicted 
transcription factors between the different stages of EAE (Fig. 8a–c, 
Extended Data Fig. 8a–d and Methods). We had previously found that 
the transcription factor BACH1 negatively regulated the induction of 
immune-related genes mediated by IFNγ13. Interestingly, we observed 
that its related transcription repressor BACH2 has more activity in 
CFA-Ctrl mice then in any EAE stage in both MOL2 and MOL5/MOL6 
populations (Fig. 8a–c and Extended Data Fig. 8a–d). At early stages of 
EAE, we found higher activity of NKX6.2 in both MOL2 and MOL5/MOL6, 
which might be consistent with the transitory regenerative responses 
observed at early stages. NKX6.2 has an important role in oligodendro-
genesis and myelination32–34 and has been recently shown to drive OLG 
specification from induced pluripotent stem cells35,36. We also found 
that STAT3, which has immunosuppression potential37,38, showed higher 
positive activity in MOL5/MOL6 from the early stage, while at the peak 
stage in MOL2 and OPCs (Fig. 8a,c and Extended Data Fig. 8c)13.

We identified 26 transcription factors in MOL5/MOL6 and 23 tran-
scription factors in MOL2, acting mainly with positive activities at 
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the late stage. Among these transcription factors were TCF4, RUNX2, 
myocyte enhancer factor 2A (MEF2A) and POU homodomain transcrip-
tion factors (Fig. 8a,b), with functions in nervous system development. 
In particular within MOL5/MOL6-predicted transcription factors, we 
found an increased number of candidates related to nervous system 
development at the late stage, including nuclear factor I A (NFIA) and 
TCF12, which are involved in the regulation of OL differentiation and 
maturation39–41 (Fig. 8b). Some transcription factors regulating cell 
differentiation, such as SOX4, were also found to mainly act at the late 
stage compared to other stages in MOL5/MOL6 (Fig. 8b). However, 
unlike in MOL5/MOL6, the differentiation-related factors TCF7L2  
(ref. 42) and SOX4 exhibited the highest activity from the peak stage in 
OPCs (Extended Data Fig. 8c), suggesting that early CNS regeneration 
may already be initiated. These results further underscore differential 
regenerative potential of OLG during the late stages of the disease.

STAT3 contributes to immunosuppression in MOLs
STAT3 is a transcription factor that can be involved in immune sup-
pression by, for instance, the upregulation of PD-L1 expression43,44. 
PD-L1 is an immune checkpoint protein whose immune-suppressing 
effects have been observed across a broad range of cell types45–55. We 
found that both the expression and chromatin accessibility of Cd274 
(which encodes PD-L1) were increased at early and peak stages in OPCs 

and MOLs (Extended Data Fig. 9a). The increase of PD-L1 expression 
may thus be stalling the autoimmune response during the early and 
peak stages of the disease. To investigate whether STAT3 regulates 
PD-L1 expression in OLG, we knocked down Stat3 expression using 
short interfering RNA (siRNA) or inhibited its activity with the inhibitor 
auranofin56,57 in primary cultured neonatal OPCs. We found that both 
Stat3 siRNA and auranofin effectively inhibited Stat3 expression fol-
lowing IFNγ treatment. This inhibition also resulted in reduced Cd274 
expression in response to IFNγ (Fig. 8d and Extended Data Fig. 8e). 
Furthermore, flow cytometry analysis revealed a decrease in PD-L1 
protein expression in OPCs treated with Stat3 siRNA (Fig. 8e). These 
findings suggest that certain immune suppression-related genes may 
be upregulated in OLGs during EAE in response to the inflammatory 
milieu, attempting to attenuate and regulate the immune response.

Discussion
The immune plasticity of OLG was first reported about 40 years ago58. 
In addition, MHC class I and MHC class II expression in OLG under 
inflammatory conditions was further observed in many subsequent 
studies59–62. Recently, with the emergence of single-cell transcrip-
tomics, the concept of imOLG has been further expanded to neuro-
inflammation in the context of MS, Alzheimer’s disease and aging in 
several studies4,5,8,62,63. We have recently shown that MHC and other 
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cultures isolated from a different mouse.
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immune-associated genes are highly expressed in EAE at the peak stage, 
with primed chromatin accessibility of some of these genes already 
in CFA-Ctrl animals4,13. In the current study, we applied multiomics 
scRNA-seq and scATAC-seq to comprehensively profile OLG cellular 
states throughout EAE, from onset to chronic stages. Our results show 
that several immune-related genes and their chromatin accessibility 
levels are already elevated in OLG, in particular in OPCs, at the early 
stage of EAE, when symptoms start emerging. Furthermore, these loci 
remain highly accessible even in the late disease stage.

Immune-like OLG emerge early in EAE, before lesions are fully 
developed64. We also observe that the percentage of MHC class II+ OLG 
is similar inside and outside lesions, suggesting that the lesion environ-
ment is not essential for the transition of OLG to immune-like states. 
These findings are consistent with spatiotemporal transcriptomics 
analysis in EAE, indicating that disease-associated glia can be induced 
independent of lesions and that the disease-associated MOLs are in 
close proximity to disease-associated microglia and astrocytes64. Thus, 
it is plausible that the induction of imOLG might be mediated not only 
by infiltrating immune cells but also by other disease-associated glia 
or inflammatory environmental factors.

The presence of imOLG at all stages of EAE could suggest differ-
ential functions at distinct time points. We observed that only a small 
percentage of Sox10+ cells express MHC class II genes. However, even 
minimal expression can have substantial functional implications. 
In MS and EAE, OLG are direct targets of the autoimmune response 
within the CNS. MHC class II expression in OLG might enable them 
to present antigens and activate CD4⁺ T cells, positioning OLG at the 
forefront of disease onset and progression. Nevertheless, our results 
showed immune-repressive pathway activation in MOLs at EAE early 
and peak stages, aligning with previous findings that OPCs and MOLs 
express PD-L1 (ref. 13). Thus, MOLs could, in principle, activate or, 
alternatively, block immune responses in the context of EAE. At the 
early stages, immune MOLs might act by modulating (preventing or 
initiating/amplifying) the initial neuroinflammatory events underlying 
the etiology of the disease. At peak stages, given the presence of high 
numbers of professional antigen-presenting cells, such as microglia 
and macrophages, the role of immune MOLs might be more subtle and 
modulatory of the function of these other immune cells. We observe the 
persistence of MHC class I and MHC class II in OLG in the late stages of 
EAE, when imOLG might be involved in disease persistence, although 
a role in reducing inflammatory responses is also possible.

IFNγ treatment of human HeLa cells has been shown to lead to 
long-term transcriptional memory65. Moreover, epigenetic memory of 
previous inflammatory events has also been observed in mouse epider-
mal stem cells66,67. Disease-associated astrocytes have also been sug-
gested to present epigenetic memory following neuroinflammation68, 
and obesity has also been reported to lead to epigenetic memory in 
adipocytes, including genes involved in inflammatory signaling69. 
Here, we found that OLG can also retain memory of previous inflam-
matory insults at a chromatin accessibility level. In the most common 
course of MS, individuals with relapsing–remitting MS suffer from 
multiple remissions and relapses over the course of the disease, and 
the symptoms can worsen after each relapse1. Therefore, the observed 
epigenetic memory of immune-related genes in OPCs may contribute 
to faster and stronger immune gene expression following the next wave 
of stimulation during the relapse stage in individuals with MS. This 
immune epigenetic memory in OLG may contribute to the chronicity 
of the disease and the difficulty in treating demyelinating diseases.

The heterogeneity of the OL lineage in development has been 
reported in our previous study19, and several subsequent studies have 
further confirmed the transcriptional and spatial preferences of dis-
tinct subpopulations of OL in development and disease4,7,14,20. In our 
analysis, we identified previously reported mature resting subtypes. 
The percentage of cells with an immune profile was higher in MOL2 
than in MOL5/MOL6. The expression of immune-related genes in MOL5/

MOL6 decreased considerably at the late stage compared to the early 
stages. Together, the immune characteristics of MOL2 in the spinal cord 
of mice with EAE are stronger than those of MOL5/MOL6. MOL5/MOL6 
are more enriched in the gray matter of the spinal cord, whereas MOL2 
are more preferentially located within the white matter of the spinal 
cord, where immune infiltrates and lesions are the most prominent14,70. 
The difference in the domain distribution between MOL2 and MOL5/
MOL6, in combination with intrinsic factors, may thus contribute to the 
heterogeneity of MOL in response to the inflammatory environment 
and higher immune characteristics of MOL2.

We observed notable disparities in CNS development functions 
between MOL2 and MOL5/MOL6. We saw that some genes related to 
CNS development always stay in a coupled-on stage in MOL5/MOL6 
but not in MOL2, which suggests a more central role of MOL5/MOL6 
in myelin maintenance and stability than MOL2 in disease, especially 
at the chronic stage. However, our results do not provide a definitive 
answer regarding whether MOL5/MOL6 at the late stages are newly 
generated or resilient cells that were already present before disease 
development. One hypothesis is that MOL5/MOL6 are newly generated 
and possess a stronger ability for CNS development. Alternatively, it is 
still possible that these MOL5/MOL6 survive in a severe inflammatory 
environment and contribute to remyelination once the inflammation 
in the CNS is diminished. To address this question, lineage tracing 
experiments need to be conducted in future studies.

Our study provides a unique resource for understanding the 
intricate mechanisms underlying the gene regulation and chromatin 
accessibility of OLG in the context of MS using an animal model. In par-
ticular, our study sheds light on the distinct fates of MOL2 and MOL5/
MOL6 during disease evolution, indicating that therapeutic strategies 
targeting MOLs need to be specific for the different populations. The 
road to fully understand the complex interplay of transcriptomics 
and epigenomics in MS requires further exploration, such as spatial 
resolution, which may provide a more comprehensive and accurate 
picture of the disease.

Limitations of the study
Although our multiome analysis gives insights into the epigenetic 
potential and memory in OLG during the time course of the disease, 
at the onset of the disease, the inclusion of intermediate time points 
might allow further granularity and uncovering of additional cellular 
states in OLG. We also show that OPCs in vitro can acquire epigenetic 
memory in the form of chromatin accessibility at immune-related 
genes. Although it is possible that this epigenetic memory occurs in 
MOLs, it is challenging to assess this in vitro due to cell death of MOLs 
after prolonged culture in vitro. Future studies might elucidate whether 
this epigenetic memory also occurs in adult OPCs and MOLs in vivo and 
whether it plays a role after the second inflammatory challenge, as, for 
instance, in relapsing–remitting EAE models. The observed priming of 
OL differentiation and myelination gene programs in MOL5/MOL6, par-
ticularly at the early stages of EAE, suggest that there might be a window 
of opportunity for the promotion of MOL-associated remyelination in 
MS. Nevertheless, our results indicate only potential given the nature of 
epigenomic data, and it is thus unclear whether it is possible to harness 
this MOL capability to promote remyelination. A deeper analysis of the 
epigenetic landscape at a single-cell level by examining, for instance, 
activating and repressive histone modifications71 or DNA methylation 
might further elucidate mechanisms that could lead to the activation of 
these gene programs and promote remyelination in the context of MS.
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Methods
Animals
The present study followed some applicable aspects of the PREPARE 
and ARRIVE72,73 planning guidelines checklist such as the formulation 
of the in vivo study, dialog between scientists and the animal facility 
and quality control of the in vivo components in the study. All animals 
were born, bred, housed and subjected to experimental treatment at 
Karolinska Institutet, Comparative Medicine Biomedicum animal facil-
ity for research on small rodents (KM-B). Sox10:cre-RCE:loxP (eGFP) 
transgenic mice were used in this study and were originally obtained 
by crossing mice with Cre recombinase under the control of the Sox10 
promoter (The Jackson Laboratories, 025807; with a C57BL/6 genetic 
background) with reporter mice RCE:loxP-EGFP (with a CD1 background, 
32037-JAX) to label the complete OL lineage. Breedings were performed 
with cre allele females and non-cre carrier males, with one male and up to 
two females. Breeding males carrying a hemizygous cre allele, along with 
the reporter allele, with non-cre females was avoided because it resulted 
in progeny expressing eGFP in all cells. Mice included in the experiment 
were heterozygotes and between 9 and 13 weeks old; both males and 
females were included. None of the experimental animals in this study 
were subjected to previous procedures. The following housing conditions 
were used: dawn 06:00–07:00, daylight 07:00–18:00, dusk 18:00–19:00 
and night 19:00–06:00. A maximum of five adult mice was housed per 
individually ventilated cage of type II (IVC seal safe GM500, Tecniplast). 
All animals were free from mouse viral pathogens, ectoparasites and 
endoparasites and mouse bacteria pathogens. Animal health surveil-
lance was performed every third month according to the Federation of 
European Laboratory Animal Science Association recommendations74. 
Three basic and one complete Federation of European Laboratory Animal 
Science Association tests were performed per year (health monitoring 
was performed via PCR on exhaust air filter dust and by serology from 
sentinel animals). General housing parameters, such as relative humid-
ity, temperature and ventilation, followed the European Convention for 
the Protection of Vertebrate Animals Used for Experimental and Other 
Scientific Purposes Treaty ETS 123, Strasbourg 18.03.1996/01.01.1991. 
Briefly, a relative air humidity of 55% ± 10% and temperature of 22 °C 
were maintain, and air quality was controlled with the use of stand-alone 
air handling units supplemented with HEPA-filtrated air. Monitoring of 
husbandry parameters was performed using ScanClime (Scanbur) units. 
Cages contained hardwood bedding (TAPVEI), nesting material, shredded 
paper, gnawing sticks and card box shelter (Scanbur). The mice received 
a regular chow diet (R70 or R34, Lantmännen Lantbruk or CRM(P) SDS 
or CRM(P), SAFE). Water was provided by using a water bottle, which 
was changed weekly (water quality was assessed by 1SO 6222, SS EN-ISO 
9308-2:2014 and SS EN-ISO 14189:2016 methods, Eurofins). Cages were 
changed once every week. All cage changes were performed in a laminar 
air flow cabinet (NinoSafe MCCU mobile cage changing unit) provided 
with a HEPA H14 EN1822 filter (0.3-μm particle size). Facility personnel 
wore dedicated scrubs, socks and shoes. Respiratory masks were used 
when working outside of the laminar air flow cabinet. Animals of both 
sexes were assigned to different experimental groups by randomization 
using the GraphPad randomization tool (GraphPad by Dotmatics).

All experimental procedures on animals were performed fol-
lowing the European Directive 2010/63/EU, local Swedish directive 
L150/SJVFS/2019:9, Saknr L150 and Karolinska Institutet complemen-
tary guidelines for procurement and use of laboratory animals (Dnr. 
1937/03-640) and Karolinska Institutet Comparative Medicine vet-
erinary guidelines and plans (version 2020/12/18). The procedures 
described were approved by the local committee for ethical experi-
ments on laboratory animals in Sweden (Stockholms Norra Djurförsök-
setiska nämnd), license numbers 1995-2019 and 7029-2020.

EAE
For EAE induction, animals were injected subcutaneously with an 
emulsion of MOG35–55 in CFA (Hooke Laboratories, EK-2110; containing 

1 mg of MOG35–55 per ml emulsion and 2–5 mg of killed mycobacterium 
tuberculosis H37Ra per ml emulsion, Hooke Laboratories), followed 
by the intraperitoneal injection of pertussis toxin (Hooke Laborato-
ries, included in the induction kits) in 1× PBS (Gibco, 10010023) on 
days 0 and 1 (200–225 ng per animal, adjusted by lot according to the 
manufacturer’s instructions). Scores of EAE were graded according 
to the following criteria: 0, asymptomatic; 1, limp tail or titubation; 2, 
limp tail and weakness of hindlimbs; 3, limp tail and complete paralysis 
of hindlimbs; 4, limp tail, complete paralysis of two hindlimbs with 
forelimb involvement; 5, moribund or dead; 0.5 for intermediate symp-
toms. Investigators were not blinded to group allocation and were 
aware of whether animals were assigned to the control or EAE group 
during both experimentation and outcome assessment. Accordingly, 
data collection and analysis were not blindly performed to the condi-
tions of the experiments.

CFA-Ctrl mice were injected subcutaneously with control emulsion 
containing CFA but without MOG35–55 (Hooke Laboratories, CK-2110), 
followed by the administration of pertussis toxin in PBS on days 0 and 
1 (200–225 ng per animal, adjusted by lot according to the manufac-
turer’s instructions). Spinal cords from mice with EAE were collected 
at the (1) early stage (days 8–9 after injection, score of 0–0.5, 14 mice 
in 7 multiome experiments), (2) peak stage (days 14–15, score of 3, 10 
mice in 5 multiome experiments) or (3) late/chronic stage (days 37–40, 
score of 2–2.5, 14 mice in 6 multiome experiments). Spinal cord samples 
from CFA-Ctrl mice were also collected from the same stages (early 
stage, peak stage and late stage) with a score of 0 (at least four mice 
in two multiome experiments for each stage), alongside spinal cord 
tissues from noninduced Naive-Ctrl animals (3-month-old mice from 
the same strain, six mice in three multiome experiments). Scores for 
mice with EAE and CFA-Ctrl mice were plotted using GraphPad Prism 
version 9.0.0.

Tissue dissociation, FACS and single-cell multiome RNA-seq 
and ATAC-seq
At the early, peak and late stages, mice were perfused with cold PBS, and 
spinal cords were collected. Spinal cord tissues were then dissociated 
into a single-cell suspension according to the manufacturer’s protocol 
for the Adult Brain Dissociation kit, mouse and rat (Miltenyi Biotec, 130-
107-677; we did not perform the red blood cell removal step because the 
majority of red blood cells had been removed after PBS perfusion). For 
the debris removal step, most of the samples were processed with 38% 
Percoll except two Naive-Ctrl samples, two EAE peak-stage samples and 
two EAE late-stage samples, which were processed with debris removal 
solution (Miltenyi Biotec, 130-107-677) according to the manufacturer’s 
protocol, to enrich more OPCs. Spinal cord single eGFP+ cells were 
enriched with a BD FACS Aria III Cell Sorter (BD Biosciences).

The cells were then lysed and washed according to the dem-
onstrated protocol for Nuclei Isolation for Single Cell Multiome 
ATAC + Gene Expression Sequencing (10x Genomics, CG000365), 
with the following modifications. Cells were centrifuged for 10 min at 
300g and 4 °C, resuspended in lysis buffer (containing 10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.01% Tween-20, 0.01% IGEPAL 
(CA-630), 0.001% digitonin, 1% bovine serum albumin (BSA), 1 mM 
dithiothreitol (DTT) and 1 U μl−1 RNase inhibitor) and incubated on ice 
for 3 min. After the incubation, wash buffer (containing 10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 1% BSA, 1 mM DTT 
and 1 U μl−1 RNase inhibitor) was added on top without mixing. The 
nuclei were centrifuged for 5 min at 500g and 4 °C. Nuclei were washed 
once in wash buffer, followed by another wash with diluted 1× Nuclei 
buffer (10x Genomics, PN-1000283) containing 1% BSA, 1 mM DTT and 
1 U μl−1 RNase inhibitor. Chromium Next GEM Single Cell Multiome 
ATAC + Gene Expression chemistry (10x Genomics, PN-1000283) was 
then applied to yield single-cell ATAC and RNA libraries. Twenty-six 
mice with EAE (8 early-stage mice, 8 peak-stage mice and 10 late-stage 
mice), 12 CFA-Ctrl mice (4 early-stage mice, 4 peak-stage mice and 
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4 late-stage mice) and 4 Naive-Ctrl mice were used for independent 
replicates. Libraries were sequenced on an Illumina Novaseq 6000 
with a 50–8–24–49 read setup for ATAC (minimum of 25,000 read pairs 
per cell) and a 28–10–10–90 read setup for RNA (minimum of 20,000 
read pairs per cell).

Both male and female mice were used in our study. Most of the 
samples contained cells from one male mouse and one female mouse, 
except two early-stage EAE samples (one only contained male mice, 
another only contained female mice), two peak-stage EAE samples (one 
only contained male mice, another only contained female mice) and 
two late-stage EAE samples (one only contained male mice, another 
only contained female mice) for establishing a sex prediction model 
and validation.

RNAscope, immunohistochemistry and confocal microscopy
RNAscope ISH was performed on 14-μm spinal cord sections from the 
lumbar spinal cord of control mice and mice with EAE (n = 3 for each 
condition) with probes for mouse Sox10 (ACD, 435931) and H2-Ab1 
(ACD, 414731-C2). The RNAscope ISH protocol for sections was per-
formed following the manufacturer’s instructions with minor modifica-
tions (RNAscope Multiplex Fluorescent Detection Reagents v2, 323110). 
Tissue sections were incubated in 1× target retrieval reagent (RNAscope 
Target Retrieval Reagents, 322000) for 5 min at 98 °C, followed two 
2-min washes with DNase/RNase-free water. The samples were then 
incubated with protease IV (RNAscope Protease III and Protease IV 
Reagents, 322340) at room temperature for 20 min, followed by two 
2-min washes with DNase/RNase-free water. The sections were hybrid-
ized with probes (C1:C2/C3 in a 1:50 dilution) for 2 h at 40 °C and washed 
twice with wash buffer (RNAscope Wash Buffer Reagents, 310091). 
Amplification steps were performed by incubating with v2Amp1 
(30 min), v2Amp2 (30 min) and v2Amp3 (15 min) (RNAscope Multiplex 
Fluorescent Detection Reagents v2, 323110) at 40 °C, with two 2-min 
washes with wash buffer in between steps. The sections were incu-
bated with v2-HRP-C1 for 15 min at 40 °C, and after two 2-min washes 
with wash buffer, tyramide signal amplification (TSA)-conjugated 
fluorophores (1:1,500 dilution in TSA buffer; RNAscope Multiplex TSA 
Buffer, 322810) were added and incubated for 30 min at 40 °C. The 
sections were washed twice with wash buffer and incubated with HRP 
blocker for 30 min at 40 °C. The v2-HRP, TSA-conjugated fluorophore 
and HRP blocker steps were then repeated for C2 and C3 channels, if 
applicable. At the end, the sections were incubated with DAPI (Sigma, 
D9542; 1:5,000) for 5 min and washed with PBS with 0.05% Tween-20 
(VWR, 9005-64-5) for 2 min.

For immunohistochemistry, after blocking with 5% normal donkey 
serum (Sigma) in 0.3% PBS/Triton X-100 for 1 h at room temperature, 
spinal cord sections were incubated overnight at 4 °C in the follow-
ing primary antibodies: anti-MHC class II (Invitrogen, 14-5321-85, 
rat 1:50, clone M5/114.15.2) and anti-GFP (Abcam, ab13970, chicken 
1:200) diluted in PBS/0.05% Tween-20/2% normal donkey serum. After 
washing the sections with PBS/0.05% Tween-20, secondary Alexa 
Fluor-conjugated antibodies (goat anti-rat (for MHC class II, 1:1,000; 
Invitrogen, A21434) and goat anti-chicken (for GFP, 1:1,000; Abcam, 
ab150169)) diluted in PBS/0.05% Tween-20/2% normal donkey serum 
were incubated for 2 h at room temperature. Slides were counter-
stained with DAPI, mounted with mounting medium and maintained 
at 4 °C until further microscopic analysis.

Images were acquired using a Zeiss LSM800 confocal microscope 
(RNAscope) and Zeiss LSM980 microscope (immunohistochemistry) 
and processed in Fiji/ImageJ. For RNAscope, six ×20 randomly selected 
fields per mouse (three from lesions and three from nonlesions) were 
chosen for quantification. The percentage of MHC class II+ OLG was 
significantly higher at the peak stage (lesion: 5.33 ± 0.23%, nonlesion: 
5.32 ± 0.23%) than at both early stage (lesion: 0.49 ± 0.849; nonle-
sion: 0.384 ± 0.333%) and late stage (lesion: 2.54 ± 0.23; nonlesion: 
2.71 ± 0.32%) in both lesion (P = 0.0001) and nonlesion (P = 0.0001) 

areas (Fig. 2j). A two-way ANOVA with a Tukey’s multiple comparisons 
test was performed using GraphPad Prism version 9.0.0 for comparing 
the percentages of Sox10+H2-Ab1+ cells between different time points 
and between lesion and nonlesion.

Primary OPC culture
Sox10:cre-RCE:loxP (eGFP) transgenic mice were used. The brains 
of postnatal days 3–6 pups were dissociated using a Neural Tis-
sue Dissociation kit (Miltenyi Biotec, 130-092-628), according to 
the manufacturer’s protocol. OPCs were obtained with MACS with 
CD140a microbeads following the manufacturer’s protocol (CD140a 
Microbead kit, Miltenyi Biotec, 130-101-547). Cells were seeded in 
poly-L-lysine-coated (Sigma, P4707) dishes and grown on OPC pro-
liferation medium comprising DMEM/F-12/GlutaMAX (Thermo 
Fisher, 10565018), N2 medium (Thermo Fisher, 17502048), penicil-
lin–streptomycin (Thermo Fisher, 15140122), NeuroBrew (Miltenyi, 
130-097-263), bFGF (40 ng ml−1; R&D, 233-FB) and PDGF-AA (20 ng ml−1; 
Peprotech, 315-17).

Oli-neu cell culture
Oli-neu cells (obtained from J. Trotter, Johannes Gutenberg Univer-
sity) were seeded in poly-L-lysine-coated (Sigma, P4707) dishes and 
grown on proliferation medium comprising DMEM (Gibco, 41966029) 
supplemented with 1× N2 supplement (Thermo Fisher, 17502048), 1× 
penicillin–streptomycin–glutamine (Gibco, 10378016), 340 ng ml−1 T3 
(Sigma, T6397), 400 ng ml−1 T4 (Sigma, 89430), 10 ng ml−1 bFGF (R&D, 
233-FB), 1 ng ml−1 PDGF-BB (R&D, 520-BB) and 0.5% fetal bovine serum 
(Gibco, 10500064).

IFNγ treatment, RT–qPCR, bulk RNA-seq and bulk ATAC-seq
For the 2× IFNγ treatment, primary OPCs (n = 2) and Oli-neu cells (n = 3) 
were initially treated with IFNγ (100 ng ml−1; R&D, 485-MI-100) for 24 h. 
Afterward, the cells were cultured in proliferation medium without 
IFNγ for 96 h, and then a second dose of IFNγ was administered for an 
additional 24 h. For the 1× IFNγ treatment, cells were treated with IFNγ 
only at the time when the 2× IFNγ-treated cells received their second 
dose. RNA extraction was performed using an RNeasy kit (Qiagen, 
74106), and RNA-seq libraries were prepared using Stranded Total RNA 
Prep, Ligation with Ribo-Zero Plus (Illumina, 20040525), according to 
the manufacturer’s protocol. Libraries were sequenced on an Illumina 
NovaSeq X, with a 75–10–10–75 read setup.

RNA extraction was performed using an RNeasy kit (Qiagen, 
74106), followed by cDNA synthesis using a High-Capacity cDNA 
Reverse Transcription kit (Thermo Fisher, 4368814), according to the 
manufacturers’ protocols. RT–qPCR was performed on a QuantStudio 
5 using SYBR Green Master Mix (Thermo Fisher, 4385617; Supplemen-
tary Table 10). Relative gene expression was calculated using the change 
in cycling threshold (2−∆∆Ct) method, normalizing to the housekeeping 
gene Gapdh.

ATAC-seq was performed as previously described11, with minor 
adaptations. For each condition, 50,000 primary OPCs were col-
lected, washed with PBS and lysed with 50 μl of lysis buffer (10 mM 
Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL (CA-630), 
0.1% Tween-20 and 0.01% digitonin) on ice for 3 min. After lysis, 1 ml 
of wash buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2 and 
0.1% Tween-20) was added, and the nuclei were pelleted by centrifuga-
tion at 500g for 10 min at 4 °C. After aspirating the supernatant, the 
nuclei were resuspended in 50 μl of transposition mix (25 μl of 2× TD 
buffer (Tagment DNA Buffer), 16.5 μl of PBS, 0.5 μl of 1% digitonin, 
0.5 μl of 10% Tween-20, 2.5 μl of Tn5 Transposase (final 100 nM) and 
5 μl of nuclease-free water) and incubated for 30 min at 37 °C in a 
thermomixer with mixing at 1,000 rpm. The DNA was purified both 
before and after PCR using a Zymo DNA Clean and Concentrator-5 kit 
(Zymo Research). Libraries were sequenced on an Illumina NovaSeq 
X with a 51–8–8–50 read setup.
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Transcription factor knockdown/inhibition, RT–qPCR and 
flow cytometry
For transcription factor knockdown, siGENOME SMARTpool non-
targeting control siRNA (D-001206-13-05, Dharmacon) or siRNA 
targeting Stat3 (M-040794-00-0005, Dharmacon) was used, which 
contains a pool of four siRNAs. One milligram of siRNA was diluted 
in OPTIMEM (31985062, Gibco), mixed with Lipofectamine 2000 
(11668027, Invitrogen) and allowed to form complexes for 20 min 
at room temperature. Primary OPCs were then incubated with the 
siRNA complexes in OPTIMEM with N2 medium, NeuroBre, bFGF 
(40 ng ml−1) and PDGF-AA (20 ng ml&minu;1). After 72 h, IFNγ (100 ng ml−1) 
was added for 24 h. For the STAT3 inhibitor auranofin (Enzo Life Sci-
ences), primary OPCs were cultured in OPC proliferation medium with 
2 μM auranofin for 24 h, followed with IFNγ (100 ng ml−1) treatment  
for 24 h.

Specific gene sequences were used for qPCR, and the primer 
sequences used are as shown in Supplementary Table 10. Relative gene 
expression was calculated using the 2−∆∆Ct method, normalizing to the 
housekeeping gene Gapdh. A two-tailed paired t-test was performed 
using GraphPad Prism version 9.0.0 for comparing the relative 
expression levels.

For flow cytometry, OPCs were collected and washed with stain-
ing buffer (PBS/0.5% BSA). The cells were then stained using a LIVE/
DEAD Fixable Near-IR Dead Cell Stain kit (for 633- or 635-nm excita-
tion, Invitrogen) to determine cell viability, followed by staining of 
PD-L1-APC-conjugated antibody (1:100; BioLegend, 124312, clone 
10F.9G2) for 30 min at 4 °C and washing once with staining buffer. 
Cellular fluorescence was measured with CantoII (BD Biosciences). 
Forward- and side-scatter parameters were used for the exclusion of 
doublets. Data were analyzed with FlowJo software 10.8.1 (TreeStar).

Raw data processing
In total, seven batches were collected from the sequencing facility. 
Fastq files from 28 samples were processed throughout the 10x Genom-
ics standard pipeline. Gene expression and chromatin accessibility 
libraries were inputted into cellranger-arc2 (ref. 75) ‘count’ v2.0.2 with 
default settings to align the biological readouts on the associated 
mm10 reference genome v2020-A-2.0.0. Sample aggregation of both 
transcriptomic and genomics metrics was done using the ‘aggr’ of the 
same CellRanger executable file, without normalization.

The aggregated count matrix and fragments file were loaded 
into R v4.3.2 (https://www.R-project.org). The former was lodged 
into a Seurat v5.0.3 (ref. 76) assay, whereas the latter was accommo-
dated into a Signac v1.13.0 (ref. 77) chromatin assay associated with 
Ensembl78 base annotation v79_2.99.0 for mice where University of 
California, Santa Cruz, nomenclature was applied to provide gene name  
readability.

If not specifically mentioned, the following pipeline descriptions 
belong to either the Seurat or Signac package.

Removal of ambient RNA
Cell-free mRNA contamination was removed from each droplet using 
Cellbender v0.3.0 (ref. 79). Genes called in all samples by Cellbender 
were included into the feature list. Potential cells called in both Cell-
Ranger and Cellbender were included in the cell list. In total, 181,674 
cells were retrieved. Most of the genes affected by the ambient RNA 
removal were canonical genes and ribosomal genes (120 genes with a 
log2 (FC) greater than 1).

Filtering of low-quality cells
After determining that each cell could be uniquely identified, quality 
metrics for both gene expression and peak accessibility were calcu-
lated. Among others, the mitochondrial ratio, cell cycle score, nucleo-
some signal and TSS enrichment were generated to support the quality 
control cutoffs.

Minimum and maximum outliers in counts, detected genes, 
TSS enrichment and percentage of mitochondrial information were 
removed from the analysis (Supplementary Methods).

Peak calling
The aggregated fragments file was used in MACS2 v3.0.0 (ref. 80) to 
proceed to a peak call. Peaks falling in nonstandard chromosomes or 
overlapping genomic blacklist regions from the mm10 genome were 
discarded. The fraction of reads in peaks was then calculated for each 
cell, and the mean value for each sample ranged from 0.64 to 0.79.

Peak annotation
The annotation of each peak was performed using the Ensembl base 
annotation v79_2.99.0 for mice, following the 10x Genomics guideline 
(https://www.10xgenomics.com/support/software/cell-ranger-arc/
latest/analysis/peak-annotations), and saved in the same format as 
cellranger-arc output. In total, 976,949 entries were registered, with 
20,611 promoter, 939,715 distal (10% inside the gene body) and 16,623 
intergenic hits.

Peak connection
To consider a peak associated with a given gene, the function LinkPeaks 
from Signac was used with a P value cutoff at 0.05. The P values were cor-
rected using the Benjamini–Hochberg method, and only associations 
with a P value adjusted lower than 0.01 were selected for downstream 
analysis. Peak coaccessibility was performed using Cicero v1.3.9, and 
P values were calculated on z scores of coaccessibility scores, adjusted 
using the Benjamini–Hochberg method and selected if less than 0.01 
(Supplementary Methods).

Gene activity
The computation of fragment counts per cell in the gene body and 
promoter region (gene activity) was performed with the GeneActiv-
ity function from Signac, fetching all biotypes and extending 500 bp 
upstream of the TSS to catch the promoter region. All other parameters 
were set to default. This matrix was used later to infer chromatin acces-
sibility for each gene.

Doublet detection
The detection of putative events where more than one cell in the same 
droplet occurs was performed using DoubletFinder v2.0.4 (ref. 81).

Most of the samples drew less than 1% of doublets, but eight 
samples drew 1.49, 1.59, 1.88, 2.35, 3.33, 5.08, 7.85 and 20.86% of 
doublets. Using the multiplet rate provided by 10x Genomics 
(https://kb.10xgenomics.com/hc/en-us/articles/360001378811-
What-is-the-maximum-number-of-cells-that-can-be-profiled), we 
were able to measure a 0.8%/8% theoretical number of doublets. 
Predicted doublets were removed from the downstream analysis 
(Supplementary Methods).

Sex classification model
In total, 69,152 cells were sequenced with a priori sex annotation. This 
knowledge was used to create a machine-learning sex classifier to 
investigate sex-dependent transcriptomic or epigenetic differences. 
Equal numbers of cells for each sex (30,940 cells) were extracted from 
the main object to a sex object to build the model. Mouse genes and 
positions from chromosomes X and Y were extracted from Ensembl 
v79_2.99.0 (ref. 78).

The validation on the testing dataset yielded an accuracy of 95.4%, 
a sensitivity of 91.0% and a specificity of 99.7%. An insignificant number 
of male cells was annotated as female cells, while a few female cells 
were assigned as male cells. We then used the newly created model 
to process each cell of the main object. Correction of misassigned 
cells (8.32%) from a priori sex-annotated samples was performed 
(Supplementary Methods).
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Some studies have reported that immune responses are different 
in many aspects between males and females in both MS and its animal 
models82,83. Because most of our samples were mixed with one male 
mouse and one female mouse, we created a sex prediction model based 
on the expression of sex-related genes (Methods). This sex prediction 
model was validated with samples containing cells from only male 
or female mice with EAE, with an accuracy of 95.3% on the validation 
dataset. There was better prediction accuracy in the male sample 
(99.48%) than in the female sample (86.13%; Extended Data Fig. 9b,c). 
We applied this sex prediction model to the entire dataset, annotated 
the sex of the cells (Extended Data Fig. 9d,e) and compared the dif-
ferences between male and female OLG based on the sex prediction 
results. For OLG subpopulations, apart from sex-related genes, such as 
X inactive specific transcript (Xist and Tsix), ubiquitously transcribed 
tetratricopeptide repeat containing Y-linked (Uty), eukaryotic trans-
lation initiation factor 2 subunit 3 structural gene Y-linked (Eif2s3y), 
dead-box helicase 3 Y-linked (Ddx3y) and lysine demethylase 5D 
(Kdm5d), no other genes were found to be differentially expressed 
between males and females (Extended Data Fig. 9f). Accordingly, we 
found no major differences between the OLG of males and females 
at the gene expression level in our data. We also did not observe a 
significant difference in the percentages of imOLG between male and 
female mice (Extended Data Fig. 9f–h). Thus, our data indicate that 
OLG responses to the neuroinflammatory environment in EAE are not 
characterized by sexual dimorphism.

Normalization
Each feature of each cell of the gene count matrix was divided by the 
total counts of that cell and multiplied by a scale factor of 10,000. 
The obtained scaled matrix was then natural-log-transformed. The 
peak count matrix was processed through a term frequency inverse 
document frequency (TF-IDF) normalization, which computed a 
log (TF × IDF) with a scale factor of 10,000. Each feature of each cell of 
the gene activity matrix was divided by the total counts of that cell and 
multiplied by a scale factor of 10,000. The obtained scaled matrix was 
then natural-log transformed.

Significant features selection
To proceed to the reduction of the dataset dimensions, the 2,000 most 
variable genes were selected via variance stabilizing transformation, 
and 95% of the most common peaks were also selected. The expression 
of each gene was transformed by subtracting its average expression 
and scaled by dividing its standard deviation.

Dimension reduction
Reduction of the dimensionality of the expression matrix on the 2,000 
most variable genes was done by running a principal component (PC) 
analysis. The first 30 PCs, representing most of the diversity of the 
dataset, were selected by the elbow plot method. The partial singular 
value decomposition was used to reduce the dimensions of the most 
common peaks, and 12 of the first latent semantic indexing (LSI) layers 
were selected via the elbow method. However, the first LSI was removed 
from the selected dimensions due to its high correlation with chromatin 
capture depth, which would bias the investigation of the chromatin 
opening binarity.

Construction of the nearest neighbor graph
For both PCs and LSI, the graphs were made with the ‘annoy’ method 
with Euclidean distances and 50 trees. A ‘k’ for the k-nearest neighbor 
algorithm was set to 20. For the construction of the graph based on PCs, 
an acceptable Jaccard index was set to 0. For the multimodal nearest 
neighbor graph, the same numbers of PCs and LSIs were used. A ‘k’ 
for the k-nearest neighbor algorithm was set to 20, 200 approximate 
neighbors were computed, and the cutoff to discard the edge in the 
shared nearest neighbor graph was set to 0.

Cluster determination
Unsupervised clustering of the nearest neighbor graphs was performed 
using the Louvain algorithm. The resolution of each clustering was 
assessed using the ‘clustree’ R package iterating over different resolu-
tions to pinpoint the most stable clustering resolution. Resolutions 
of 1, 0.4 and 1.2 were selected, generating 19, 13 and 24 clusters, for 
gene expression, peak accessibility and joined modality, respectively. 
Of note, an undetermined cluster specific at 97.86% for a unique 
sample at the early time point was standing out of all other clusters. 
All 1,973 cells from this cluster were therefore removed from the 
downstream analysis.

Cell projection
In all visualizations of the cells, despite the high dimensionality of the 
data, the nearest neighbor graphs were reduced to only two dimensions 
using UMAP with the appropriate number of PCs and LSIs (‘Dimension 
reduction’), and other values were set as default.

Batch effect correction
As sample libraries were not prepared on the same day and sequenced in 
the same sequencing run, and technical artifacts might arise and gener-
ate variability not related to biology in the dataset. However, account-
ing for such disequilibrium, without removing the subtle differences 
between time points, was challenging. Batch effect correction methods 
such as Harmony84 or Scanorama85 with soft parameters completely 
masked the differences between time points. Moreover, sample integra-
tion with ‘cca’ and ‘rpca’ was also overcorrecting time-point-specific 
cell populations. Although the popular batch effect methods were not 
suitable for our particular dataset, we relied on the strength that every 
sequencing run possessed at least one CFA-Ctrl sample (except on late 
time point and Naive-Ctrl samples). Thus, we investigated if the cells in 
each CFA-Ctrl cluster were well mixed across the different replicates. All 
14 major CFA-Ctrl clusters contained cells from all replicates. To analyze 
further at the cell mixing level, a local inverse Simpson’s index (LISI) 
from Harmony v1.2.0, accounting for categorical variable diversity, was 
calculated for an equivalent number of cells in each CFA-Ctrl replicate, 
using the first two components of the joint projected UMAP. This score, 
initially ranging from 1 to the number of replicates, was normalized to a 
scale of 0 to 1. For CFA-Ctrl, 63% of the cells maintained a LISI of at least 
0.5. The same strategy was applied to the Naive-Ctrl samples, where 15 
of the 17 major Naive-Ctrl clusters mainly contained cells ascending 
from the two replicates; one homogeneous cluster was coming from a 
microglia cluster and the other one was from a pericyte population. At 
the single-cell level, 76% of the cells maintained a LISI of at least 0.5. For 
all EAE time points, the same method was applied, yet the calculated LISI 
was lower than CFA-Ctrl or Naive-Ctrl (EAE score equal to 0), probably 
due to the heterogeneity of the EAE score at the sample collection within 
each time point (46% for early, 51% for peak and 49% for late). Although 
this method does not allow us to mitigate potential hidden batch effects, 
it provides a well-balanced cell distribution at a consistent EAE score.

Label transfer
After removing cells with less than 200 detected genes, more than 
8,000 detected genes and less than 10% of reads matching the mito-
chondrial genome using a dataset from the literature4, the tran-
scriptomes of the remaining cells were normalized and scaled using 
SCTransform from Seurat. A label transfer was then performed from 
the literature annotation to the present dataset based on the transcrip-
tional profile of selected anchors via the FindTransferAnchors function 
using canonical correlation analysis, the ten first dimensions of the PC 
analysis and recomputing of the residual with the reference SCT model 
parameters. The label prediction was run using TransferData with 
the previously determined anchors set and the canonical correlation 
analysis reduction to weight the anchors. For each cell, the highest 
prediction score was selected to make the annotation.
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Cell annotation
Cell-type annotation was assessed per cluster on the joined graph 
clustering resolution, and label transfer outputs, cell-type marker gene 
expression and chromatin accessibility were taken into consideration. 
More refined cell types for the MOL population were later considered.

Immune score
Exhaustive lists of immune-related genes published in Meijer 
et al.13, specific to ‘immune response’ (GO:0002250) and ‘immune 
system process’ (GO:0002376), were used to evaluate the immune 
capability of each cell. Cells from Naive-Ctrl animals were used as 
the background signal. After removing unexpressed genes in our 
dataset, subcategories with genes related to positive regulation of 
immune response, negative regulation of immune response, anti-
gen processing and presentation, positive regulation of type I/
II IFN-mediated signaling pathway, positive regulation of cytokine 
production, complement activation, CD4+ T cell-related immune 
response and CD8+ T cell-related immune response were extracted 
from the immune gene list, respectively, using the MGI immune 
database (https://www.informatics.jax.org/vocab/gene_ontology).

For each cell type, immune scores were calculated for each immune 
subcategory and as a whole, using the AddModuleScore function from 
Seurat with default parameters. All scores were scaled from 0 to 1, and 
the probability of each cell following the immune score distribution of 
the Naive-Ctrl population was processed using the following distribu-
tion function, where μ and σ are the mean and standard deviation of the 
immune score distribution of the Naive-Ctrl population, respectively:

Pr (X ≤ x) = F (x) = 1
2 [1 + erf ( x − μ

σ√2
)]

Under the null hypothesis that each cell follows the immune score 
distribution of Naive-Ctrl cells in a given population, each cell with a 
P value less than 0.05, rejecting the null hypothesis, was classified as 
‘immune’. Cells accepting the alternative hypothesis (P value greater 
than 0.05), sharing a relationship between the immune score of a given 
cell and the immune score distribution of the Naive-Ctrl population, 
were classified as ‘nonimmune’. Due to the lack of cells annotated as 
neurons in Naive-Ctrl samples, this population was not annotated. 
The same approach was used on the gene activity matrix to compare 
transcriptional and epigenetic immune states. An investigation of cell 
status was also performed using damage-associated gene lists8 (95 
genes) following the same strategy (Supplementary Table 9).

Naive-Ctrl versus CFA-Ctrl comparison
To acknowledge the impact of CFA and pertussis toxin in CFA-Ctrl com-
pared to Naive-Ctrl animals, we first performed a Pearson correlation 
on the gene expression matrix in each cell type between replicates of 
each time point. We found a high similarity of expression between OLs 
from CFA-Ctrl time points (Pearson correlation score between CFA-Ctrl 
replicates: 0.97–0.99; Extended Data Fig. 9i) and Naive-Ctrl replicates 
(Pearson correlation score between Naive-Ctrl replicates: 0.96–0.99). 
For OPCs, microglia and astrocytes, the correlation scores were slightly 
lower (OPCs, CFA-Ctrl replicates: 0.45–0.96, Naive-Ctrl replicates 
0.85–0.98; microglia, CFA-Ctrl replicates: 0.69–0.92, Naive-Ctrl repli-
cates: 0.80–0.92; astrocytes, CFA-Ctrl replicates: 0.84–0.99, Naive-Ctrl 
replicates 0.85–0.95). We did not compare the difference between 
CFA-Ctrl replicates in neurons, ependymal cells and pericytes due to 
low cell numbers. Because the cells we used for sequencing were sorted 
based on GFP signal, these microglia are likely to be activated microglia 
that engulf OLs and are therefore more sensitive to ex vivo alteration. 
The finding that microglia are more sensitive than other CNS cell types 
has also been confirmed before in another study86. We did not compare 
the difference between CFA-Ctrl replicates in neurons, ependymal cells 
and pericytes due to low cell numbers.

A gene expression matrix with CFA-Ctrl and Naive-Ctrl replicates 
was loaded into a SingleCellExperiment v1.24.0 (ref. 87) object where 
genes with less than ten counts were removed. Feature counts were 
then aggregated across cell types and broken down by sample. Each cell 
type was processed independently, and samples formed by less than 5 
cells and time points formed by less than 30 cells were not considered 
for downstream investigation. The resulting matrix and associated 
metadata were loaded into an R object using DESeq2 v1.42.1 (ref. 88), 
with a design formula including sample names in addition to the debris 
removal method as a covariate. After size factors and dispersion esti-
mations, results tables were extracted per contrast of Naive-Ctrl on 
CFA-Ctrl. Genes presenting an absolute log2 (FC) over 1 with an adjusted 
P value less than 0.01 and a baseMean (the average of the normalized 
count values, dividing by size factors, taken over all samples) greater 
than 1 were selected as differentially expressed. Seven genes passed the 
filters in MOLs (Adamts1, Gli2, Lypd6, Map7d2, Npr1, Rnf125 and Sema3c; 
Extended Data Fig. 9j), and one gene was differentially expressed in 
microglia between CFA-Ctrl and Naive-Ctrl samples (Csmd3).

OL lineage investigation
All cells belonging to the OL lineage were subsetted for fine-tuning 
annotation. One EAE early time point sample collected on day 8 after 
immunization with a score of 0 (without any symptom but with weight 
loss during the disease course) was removed from the analysis due 
to no EAE symptoms and similar gene expression as CFA-Ctrl. As no 
major gene expression differences were found between Naive-Ctrl 
and CFA-Ctrl in the OL lineage population, Naive-Ctrl samples were 
removed from the downstream analysis. The processing of this OL 
lineage subset of 120,183 cells was similar to the processing of all cell 
types. Nevertheless, a few differences must be mentioned, specifically, 
the first 20 PCs and the first 9 LSIs were selected for graph construc-
tion. Additionally, cluster resolutions of 2.2, 0.8 and 3.6 were selected 
for gene expression, peak accessibility and joined modality, respec-
tively. An in-depth label transfer was performed on the subset with 
the same methods as previously described using only the OL lineage 
cells from the literature dataset4 (Extended Data Fig. 3c,d). From the 
47 potential OL lineage cell clusters on joined graph clustering reso-
lution, we aggregated them using the average hierarchical clustering 
methods (Supplementary Methods). The OPC cluster was subdivided 
into three subclusters as we observed two time point-specific groups 
of OPCs and a third group expressing cycling genes. Each aggregated 
cluster was manually assigned to the main OL lineage cell types (OPC, 
COP, MOL1, MOL2 and MOL5/MOL6) using specific gene markers and 
label transfers. OL lineage cell type subclustering (α, β, γ, δ, ε, ζ, η, θ, ι 
and κ) was assessed and ordered along their average immune score for 
each main OL lineage cell type (Extended Data Fig. 4a). For instance, 
compared to other MOL2 populations, MOL2-ε, predominantly derived 
from the peak stage of EAE (Fig. 3c), exhibited an enrichment of 
immune-related genes, including IFN-induced protein with tetratrico-
peptide repeats 3 (Ifit3), Nlrc5 and IFNγ-induced GTPase (Igtp), among 
others (Supplementary Table 2). MOL2-α, which mainly came from 
CFA-Ctrl and EAE at the early stage, expressed higher lipid metabolic 
process genes, such as 3-hydroxy-3-methylglutaryl-CoA synthase 1 
(Hmgcs1), cytochrome P450 family 27 subfamily A member 1 (Cyp27a1) 
and squalene epoxidase (Sqle; Supplementary Table 2). Oligodendro-
cytic myelin paranodal and inner loop protein (Opalin), which is associ-
ated with OL differentiation, was enriched in MOL5/MOL6-β. A major 
increase in the expression of actin cytoskeleton organization-related 
genes, such as actin binding LIM protein family member 2 (Ablim2), 
NCK-associated protein 5 (Nckap5) and prickle planar cell polarity 
protein 1 (Prickle1), was observed in MOL5/MOL6-ζ compared to other 
MOL5/MOL6 populations (Supplementary Table 2). The majority of 
MOL2-β and MOL2-γ were derived from late-stage EAE (Fig. 3b,c), 
with gene markers associated with metabolism and differentiation, 
like ectonucleotide pyrophosphatase/phosphodiesterase 6 (Enpp6) 
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and S100 calcium binding protein B (S100b; Supplementary Table 2). 
In addition, most MOL5/MOL6-α, MOL5/MOL6-β and MOL5/MOL6-γ 
cells were mainly composed of cells from early-stage CFA-Ctrl and 
EAE samples, MOL5/MOL6-θ were mainly composed of cells from 
peak-stage EAE and cells from MOL5/MOL6-ζ and MOL5/MOL6-ι were 
drawn by late-stage EAE (Fig. 3b,c).

Multimodality features selection
Transcriptomic and epigenomic variations in specific cell types 
throughout the disease time course were assessed in a pseudobulk 
manner. This technique allows us to overcome the sparsity of the data-
sets and highlight dynamic features within three modalities, gene 
expression, gene/promoter accessibility and peak accessibility. These 
tri-omics modalities meet the prerequisites for analyses based on the 
negative binomial distribution (lack of intrasample variability, most 
of the features remain stable throughout the tested conditions, raw 
integer counts to specific genomic locations, sufficient number of 
replicates). Each modality was loaded into a SingleCellExperiment 
v1.24.0 (ref. 87) object where features with less than ten counts were 
removed. Feature counts were then aggregated across cell types and 
broken down by sample. Each cell type was processed independently, 
and samples formed by less than 5 cells and time points formed by 
less than 30 cells were not considered for the downstream investi-
gation. The resulting matrix and associated metadata were loaded 
into an R object using DESeq2 v1.42.1 (ref. 88), with a design formula 
including sample names in addition to the debris removal method as 
a covariate. After size factors and dispersion estimations, a Wald test 
was performed followed by a multiple testing correction using the 
Benjamini–Hochberg method. The results tables were then extracted 
per contrast. We decided to investigate four contrasts (early/control, 
peak/early, late/early and peak/late), depicting a broad overview of the 
disease time course. Features presenting an absolute log2 (FC) greater 
than 1 with an adjusted P value of less than 0.01 and a baseMean (the 
average of the normalized count values, dividing by size factors, taken 
over all samples) of greater than 1 were selected to be displayed on the 
heat maps and GO analyses for the modalities represented by gene and 
promoter and were included into the transcription factor analysis for 
the modality represented by peaks. Differential gene expression analy-
sis between males and females within each time point was performed 
similarly, merging gene counts by both sample and sex.

Multimodality pseudotime
Expression dynamics were assessed using velocyto v0.17.17 (ref. 29) 
to retrieve the number of spliced and unspliced reads in each sample. 
In addition to the CellRanger output directory, the GTF annotation 
file used by CellRanger was given, along with a GTF annotation file for 
mm10 repetitive elements from RepeatMasker (https://www.repeat-
masker.org). Resulting loom files were loaded into scVelo89 in Python 
and directly imported via MultiVelo v0.1.3. After merging the samples, 
OL lineage cells were selected to undergo a log-transformed normaliza-
tion on the 1,000 most variable features with at least ten read counts.

The chromatin accessibility matrix from Macs2 output was loaded, 
and peaks were aggregated around each gene using peak annotation 
(‘Peak annotation’) and feature linkage prediction (‘Peak annotation’) 
inputted in the aggregate_peaks_10x function. OL lineage cells were 
selected to undergo a TF-IDF normalization.

The 120,183 cells as well as the 798 genes with both expression 
and chromatin accessibility signals were picked to compute moments 
for velocity estimation for each cell across its 30 nearest neighbors 
calculated from Euclidean distances in the first 30 PC spaces of the 
expression matrix. Weighted nearest neighbor properties calculated 
previously on the OL lineage cells were used to smooth the epigenetic 
modality and were incorporated into RNA velocity to recover chromatin 
dynamics and carry out enhanced lineage predictions. This last step 
was done on MOL5/MOL6 and MOL2 populations separately. For each 

cell type, a new UMAP was generated; velocity, latent time and terminal 
states were processed; and CFA-Ctrl cells were set as root cells.

MultiVelo classifies, if possible, each gene into two modules of 
biological dynamics. This tool is anchored in two models for the cor-
relation of gene expression and chromatin accessibility changes within 
the latent time line: a first model (M1) where chromatin starts clos-
ing before the end of transcription and a second model (M2) where 
chromatin starts closing after the end of transcription. Moreover, the 
coupled kinetics of the transcriptomic and epigenomic profiles can 
be used as leverage to predict a current cell state for a given gene. The 
priming state is considered when the chromatin is opening but no 
unspliced transcript has yet been detected (brown, chromatin is open-
ing but transcription is not initiated). The couple-on state is selected 
when the chromatin is open and the number of unspliced transcripts 
is increasing (pink, chromatin is open and transcription is initiated). 
The decoupling state is picked when there is a decorrelation between 
chromatin and unspliced transcripts dynamics. For the first model, 
the chromatin closes before the end of transcription, whereas for the 
second model, the number of unspliced transcripts starts decreasing 
but the chromatin is still open (dark blue, M1: chromatin accessibility 
starts closing before the end of transcription, M2: chromatin is open 
but transcription repression begins). The couple-off state is set when 
the chromatin is closed while the number of unspliced transcripts is 
collapsing (light blue, chromatin is closed and the number of unspliced 
reads is dropping; Fig. 7a and Extended Data Fig. 7a,b).

Due to the limited number of OPCs, some genes of interest did 
not present a complete transcriptional trajectory using MultiVelo. 
Therefore, we focused on key metrics to highlight their partial kinet-
ics, including unspliced RNA, spliced RNA and chromatin accessibil-
ity levels of the same group of immune-related genes as in MOLs. We 
observed that spliced RNA levels of these immune-related genes were 
elevated in OPCs both at peak and in a subset of early-stage cells and 
were accessible at all time points. By contrast, unspliced RNA levels of 
these genes remained low across time points (Extended Data Fig. 7c,d). 
Thus, based on OPC unspliced and spliced dynamics, OPCs may have a 
faster RNA splicing process than MOLs to meet their immune functional 
demands at early and peak stages of the disease.

Potential enhancers and DORCs
The intermodality investigation helped us associate detected peaks 
with the expression of the most probable nearby genes using the Link-
Peaks function from Signac, inspired by the method described in the 
SHARE-seq paper12. Each peak-to-gene connection, occurring in at least 
ten cells and within a 50,000-bp distance from the gene TSS, with a 
positive Pearson correlation coefficient and a P value lower than 0.05 
was considered a meaningful interaction. For each cell, the number of 
fragments falling into the 47,610 peaks involved in the same number 
of meaningful interactions was divided by the total number of frag-
ments falling in peaks for the same cell. From the normalized matrix 
of meaningful peaks per cell, the normalized numbers of fragments in 
peaks were aggregated by gene using the peak-to-gene connections, 
for a total of 14,665 genes joined to at least one peak. The regulatory 
chromatin score for each cell of the generated genes was then multi-
plied by a scaling factor of 10,000. Notwithstanding the value of such 
enhancer scores, we were interested in deciphering more consequent 
DORCs. Therefore, we selected a pool of genes connected to at least 
five peaks to redo the peaks-to-genes connectivity calculation on a 
broader distance of 500,000 bp from the gene TSS. Keeping a positive 
Pearson correlation coefficient and a P value lower than 0.05, a total 
of 66,105 peaks were connected to a total of 3,369 genes defined as 
DORCs. Similar to the regulatory chromatin of genes, the DORCs were 
normalized, aggregated per gene according to the new connection 
material and scaled to generate a DORC score.

As calculating the sum of the peak counts conserves the negative 
binomial distribution of the epigenetic modality, both regulatory 
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chromatin and DORC-regulated genes were reversed into unnormal-
ized matrices (scaling factor and number of fragments in peaks for a 
given cell) to be loaded into a SingleCellExperiment object to ascertain, 
with confidence, gene variations between time points in a pseudobulk 
manner as described above, with the same parameters and thresholds.

GRNs and predicted transcription factors
GRNs were inferred with Pando 1.0.0 (ref. 31). Pando models the 
relationship between transcription factors and their binding sites 
in selected regulatory regions with the expression of target genes 
combining multiome RNA and ATAC information.

The whole dataset was subset in MOL2 and MOL5/MOL6. For each 
MOL, we randomly subset a maximum of 2,000 cells per time point. We 
selected peak regions specific to each time point in MOL2 and MOL5/
MOL6 (‘Multimodality features selection’) as candidate regulatory 
regions to scan for transcription factor binding motifs with JASPAR 
(2022 release).

The GRNs were inferred by fitting generalized linear models 
(GLMs) implemented in Pando for the expression of each gene. The 
regression model with peak–transcription factor pairs as independent 
variables and target genes as response variables was built for MOL2 
and MOL5/MOL6 populations independently. Peaks were assigned to 
nearby genes with the peak_to_gene_method = ‘Signac’, which considers 
the closest distance, upstream or downstream, to the gene. The model 
estimates of each predicted transcription factor with a target gene can 
be interpreted as a measure of interaction between both. We calculated 
transcription factor activity by multiplying the mean estimates (coef-
ficient) in the model by the average transcription factor expression 
at each time point. Transcription factor activities were ranked per 
the highest positive activity in each time point. Gene modules were 
selected with an R2 threshold of an adjusted P value lower than 0.05 and 
default parameters with the Pando find_modules function.

IFNγ treatment, bulk RNA-seq and bulk ATAC-seq processing
A total of two replicates per condition were sequenced for both bulk 
RNA-seq and bulk ATAC-seq. Raw FastQ files were aligned and processed 
using the NextFlow core ATAC and RNA pipelines90, nextflow v24.04.2, 
to the genome assembly GRCm38.

For bulk RNA-seq, gene-level integer raw counts tables from 
nf-core Salmon output were loaded into R and used as input for edgeR 
v4.2.0 (refs. 91,92) together with their associated metadata. The com-
bined counts table was used to estimate the library size, perform Calc-
NormFactors with the trimmed mean of M values (TMM) method and 
perform the fit of genewise common dispersion (glmFit), followed by 
a likelihood ratio test (glmLRT). Benjamini and Hochberg’s algorithm 
test was used to control the FDR.

First, differential gene expression was tested for changes in the 
first dose of IFNγ treatment versus control. Second, the resulting genes 
with a P value of <0.05 and FDR of <0.05 were tested for differential 
gene expression changes after the second IFNγ treatment dose. The 
experiment design included batch (replicates) and treatment as covari-
ates. Visualization of the expression levels of differentially expressed 
genes was performed after running VST normalization from DESeq2 
v1.44.0 in the whole dataset, including all replicates from the five time 
points. The final visualization shows the scaled z scores through the 
whole table, (scale function center = TRUE) for visualization purposes.

Aligned reads for treatment and replicates were extracted from 
processed BAM files from the nf-core ATAC-seq pipeline. Using Bed-
Tools v2.25.0 (ref. 93) coverage on the defined TSS windows and 
enhancer regions as a reference, an integer count table was built for 
enhancer regions and TSS windows, respectively, with defined regions 
as rows and samples as columns. Raw count tables on defined regions 
were loaded into R and used as input for edgeR v4.2.0, together with 
their associated metadata. Count tables were used to estimate the 
library size, perform CalcNormFactors with the TMM method and 

perform the fit of regionwise common dispersion (glmFit), followed 
by a likelihood ratio test (glmLRT). Differential accessibility testing was 
performed with the design (~0 + treatment, replicate) with makecon-
trast IFNγ 24 h (+0 h) – IFNγ 24 h (+96 h). Benjamini and Hochberg’s 
algorithm test was used to control the FDR. TSS windows and enhancer 
regions were selected based on a ⎸ log (FC) ⎸ of <0.5 and FDR of >0.05.

To define the TSS windows, also referred to as promoter regions, all 
annotated TSSs from EnsEmbl Mouse genes version 102 were extracted. 
Each TSS was extended 25 bp upstream and 25 bp downstream. The 
resulting resized TSS regions were merged whenever there were overlaps 
between them using BedTools 2.17.0 mergeBed –s –nms. The resulting 
merged TSS regions were resized, adding upstream 500 bp and down-
stream 500 bp from the center. To avoid repeated regions, each window 
was annotated with the closest gene as a consensus. Windows including 
more than one TSS usually referred to alternative TSSs of the same gene. 
One gene can have several TSS windows assigned. The final annotations 
consisted of 113,018 nonoverlapping TSS windows of 1 kb in length.

To define enhancer regions, the regions defined as proximal and 
distal enhancers from ENCODE candidate cis-regulatory element 
(cCRE; GRCm38/mm10) assemblies and last updated 26 May 2021 were 
retrieved. Enhancer cCREs overlapping the defined TSS windows (‘IFNγ 
treatment, bulk RNA-seq and bulk ATAC-seq processing’) were filtered 
out using BedTools v2.25.0 intersect –v. Resulting enhancer cCREs were 
merged in nonoverlapping regions with bedtools 2.17.0 mergeBed 
–s –nms and extended 500 bp upstream and downstream from the 
center. To avoid regions without evidence from our primary OPC bulk 
ATAC-seq analysis, any defined region not overlapping the consensus 
peaks from all conditions called by nf-ATACseq were discarded. To 
annotate enhancers to potentially regulated genes, each enhancer 
region was assigned to a candidate gene based on the previously cal-
culated peaktogene interactions, CICERO, in our single-cell multiome 
data from OLG. The final annotations consisted of 59,857 nonoverlap-
ping enhancer regions of 1 kb in length. One enhancer region can have 
several annotated cCREs and be assigned to different genes.

Visualization of ATAC signal on the TSS windows and the enhancer 
regions of the assigned genes was performed after running VST nor-
malization from DESeq2 1.44.0 in the whole dataset, including all rep-
licates from the five time points. Normalized counts were scaled from 
0 to 1 by row (gene) for visualization purposes94–96

Heat maps
Samples with less than 5 cells and time points with less than 30 cells 
were removed before heat map generation. For gene expression and 
gene/promoter accessibility, normalized log transform aggregated 
gene expression and gene/promoter accessibility at each time point 
and cell type were calculated to generate heat maps scaled across time 
points from 0 (low) to 1 (high). For gene regulatory chromatin, the aver-
age value of the gene regulatory chromatin score at each time point and 
cell type was scaled across time points from 0 (low) to 1 (high). Missing 
values in any tested modalities were set to 0. The black column on the 
right side of each heat map represents the gene average raw count. For 
each modality, the average of the previously calculated scaled values 
per gene category and time point was used to produce the summarized 
dynamic line plots and their associated standard deviation of the dis-
tribution shown as a band of the same color.

GO
Highlights of biological pathways involving the most dynamic features 
along the disease time course were assessed using the biomaRt v2.58.2 
R package in addition to the Ensembl v79_2.99.0 database. For each cell 
type, the top 50 features with the highest amplitude across time points 
were selected. Genes possessing an Entrez Gene ID underwent pathway 
enrichment via the ‘enrichPathway’ function from the ReactomePA 
v1.46.0 R package, with a pvalueCutoff set at 0.05, a qvalueCutoff set 
to 0.05 and FDR (‘fdr’) as a method of adjustment. A maximum of ten 
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pathways (adjusted P value of <0.05) ranked by adjusted P value were 
displayed on dot plots. Network graphs were built on significant path-
ways (adjusted P value of <0.05) from the ‘emapplot’ function, taking 
as input the results of the pairwise_termsim function, with the Jaccard 
similarity coefficient as the calculation method for a maximum of 50 
pathways ranked by adjusted P value.

Genome tracks
Coverage of the DNA fragments within a given genomic region was 
determined using CoveragePlot from Signac. Tracks were normalized 
by group using a scaling factor as the number of cells within the group 
multiplied by the sequencing depth average of the group.

Single-cell genomic heat maps
All fragments from 50 randomly selected cells per cluster and falling 
into a specific genomic region were carried into a 250-bp windowed 
matrix that was further down-binarized and plotted.

Percentage of cells on stacked bar plots
The number of cells per cell subtype in each condition was aggregated, 
normalized across conditions to get a proportion of each cell subtype 
per condition and divided by the number of conditions to keep the sum 
of the proportion equal to 100%.

Percentage of cells on side-by-side bar plots
The number of predicted male and female cells in each sex-specific 
sample was aggregated and normalized across samples to get a propor-
tion of each sex per sample.

Circos plots
Distribution of cell numbers in the top levels of the circos plots, 
matched to each corresponding bottom level. For an unbiased visu-
alization of proportion, some circos plots were randomly downsam-
pled by top levels, bottom levels or both (details are mentioned in the 
figure legends).

Bigwig files
The mouse genome was segmented into 100-bp windows, and frag-
ments were assigned to their corresponding window, generating a 
binarized genome per cell matrix. For each group of cells, the fragment 
counts matrix was aggregated, multiplied by a scaling factor of 10,000 
and divided by the number of fragments in the group.

Statistics and reproducibility
Data were processed inside notebooks within a singularity environ-
ment (‘Code availability’) on a high-performance computer cluster 
running under Ubuntu 20.04 LTS. One EAE early time point sample with 
a score of 0 was removed from the analysis due to no EAE symptoms and 
similar gene expression as CFA-Ctrl, as well as a MOL cluster specific 
at 97.86% for a unique sample at the early time point. Differential gene 
expression was determined using the DESeq2 package using negative 
binomial GLMs, which is the expected distribution from single-cell 
experiments97,98. Animals of both sexes were randomly assigned to 
experimental groups using the GraphPad randomization tool. The 
number of cells in each sample was selected to fit the specifications 
outlined by 10x Genomics. The investigators were not blinded to allo-
cation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw fastq files, counts matrices and genomic tracks are available on 
Gene Expression Omnibus (GSE250589, GSE283085 and GSE283086). 

Data are also available for browsing at the University of California, Santa 
Cruz, Cell Browser and Genome Browser (https://olg-dyn-eae-multi-
ome.cells.ucsc.edu) and at https://ki.se/en/mbb/research/research-
division-of-molecular-neurobiology/goncalo-castelo-branco-group/
oligointernode. Source data are provided with this paper.

Code availability
Jupyter notebooks to process the raw datasets and reproduce the 
figures are accessible at https://github.com/Castelo-Branco- 
lab/EAE_multiomics_2025.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single cell multiome of OLGs from the EAE model.  
a, Representative fluorescence-activated cell sorting (FACS) gating strategy with 
a sample from EAE peak stage. b, Quality control metrics after removing low 
quality cells of the multiome ATAC + gene expression sequencing data.  
c, d, UMAP with Louvain clustering algorithm based on gene expression (c) and 
chromatin accessibility (d) of 10x Genomics chromium multiome ATAC + gene 
expression. e,f, UMAP of the cells colored by condition on top of UMAP with all 

cells (in gray), based on gene expression data (e) and chromatin accessibility 
data (f). g, UMAP with Louvain clustering algorithm based on joint projection 
of gene expression and chromatin accessibility modalities. h, UMAP based on 
scRNA-seq data (left), scATAC-seq data (middle), and joint UMAP created by 
combining scRNA-seq and scATAC-seq nearest neighbors graphs (right), with 
lines connecting cells by single-cell barcodes across modalities.
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Extended Data Fig. 2 | Expression and chromatin accessibility of MHC-I/II 
genes in different OLG cell types. a, Normalized chromatin accessibility (left) 
and log2 expression (right) of representative MHC-I and II associated genes in 
each time point. b, Heatmaps of the expression (left) and chromatin accessibility 
(right) of MHC-I and -II genes at different stages of EAE in OPC (left), MOL2 

(upper right), and MOL5/6 (lower left). The black column on the side represents 
the gene raw counts. MOL1 not included due to the low number of cells. c, 
Normalized chromatin accessibility of representative MHC-I (B2m) and MHC-II 
(H2-Ab1) genes at different time points (top) and ATAC-seq reads alignment of 50 
individual random cells per condition for the same genes (bottom).
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Extended Data Fig. 3 | IFN-γ induces epigenetic memory in oligodendroglia 
and MHC2/SOX10+ cells in lesions. a,b, Feature plots showing gene expression 
(a) and gene activity score (b) of markers for OLG (Sox10), OPC (Pdgfra), COP 
(Bmp4), and MOL (Mbp, Fosb, Klk6, Ptgds) populations. c, UMAP of label transfer 
predictions from matched scRNA-seq data. d, Label transfer prediction scores 
from literature cell types to annotated clusters. 0: n = 4270, 1:3971, 2:3912, 3:3822, 
4:3818, 5:3813, 6:3760, 7:3679, 8:3471, 9:3442, 10:3415, 11:3392, 12:3343, 13:3291, 
14:3251, 15:3158, 16:3048, 17:2965, 18:2927, 19:2881, 20:2814, 21:2811, 22:2768, 
23:2626, 24:2508, 25:2464, 26:2385, 27:2382, 28:2333, 29:2260, 30:2241, 31:2225, 
32:2180, 33:2161, 34:1938, 35:1841, 36:1793, 37:1702, 38:1683, 39:1554, 40:1334, 
41:1093, 42:1073, 43:1002, 44:677, 45:542, 46:164. e, Relative expression level 

(qRT-PCR) of MHC-I (upper)/II (lower) genes with 1x and 2x IFN-γ treatments 
in Oli-neu cells. Data are presented as mean values ± s.e.m. n = 3 biologically 
independent cultures per condition, with each replicate representing a separate 
seeding and treatment of Oli-neu cells. f, Representative lumbar spinal cord 
section from EAE peak stage with white lines outline DAPI-dense areas (lesions) 
(left). Zoomed-in images of the region marked by the square are shown on the 
right. Scale bar = 200 µm. g, Representative lumbar spinal cord section from EAE 
early, peak, and late stages, immunostained against GFP (SOX10) and immune-
related protein (MHC-II). Scale bar = 5 µm. n = 3 biologically independent 
experiments per condition.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | MOL sub-cell type classification based on gene 
expression and their IFN-associated and damage-associated transcriptional 
responses. a, Joint UMAP of OLG populations colored by sub-cell types, on top of 
UMAP with all cells (in gray). b, Heatmap of the scaled expression of differentially 
expressed genes between OLG sub-cell types (percentage of cells in a cluster 
expressing a gene superior to 50%, log2FC > 0.5 and adjusted p-value < 0.05), 
colored by sub-cell types and time points. c, Scaled expression level of immune 
response related genes grouped by function in OLG sub-cell types. OPC-
α:n = 2134, OPC-β:289, OPC-γ:1072, COP:1002, MOL56-α:4706,MOL56-β:37969, 
MOL56-γ:5595, MOL56-δ:4166, MOL56-ε:4733, MOL56-ζ:6299, MOL56-η:164, 

MOL56-θ:3392, MOL56-ι:1093, MOL56-κ:10704, MOL2-α:10854, MOL2-β:8988, 
MOL2-γ:1841, MOL2-δ:6227, MOL2-ε:8413, MOL1:542. d, Percentage of cells with 
(red) or without (green) immune status identified by gene expression (left) and 
chromatin accessibility (right) in each OLG sub-cell type. e,f, Circos plot showing 
the number of cells with (black) or without (green) damage- and IFN-associated 
profiles, only IFN-associated profile (blue), only damage-associated profiles 
(gray) for OPC (left), MOL2 (middle), and MOL5/6 (right) from different time 
points at gene expression (e) and chromatin accessibility (f) levels (downsampled 
by time point).
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Extended Data Fig. 5 | Immune-related genes showed substantial changes in 
expression and chromatin accessibility, with increased transcription in OPCs 
and MOL2 at early and peak EAE stages. a Heatmaps of differentially expressed 
genes (log2FC > 1 and p-value adjusted < 0.01) (in brown) between different 
time points in OPC, with chromatin accessibility at promoter and gene body (in 
purple) and at enhancer regions (in green) of the same gene. The black column 
on the side represents the gene raw counts. The line plots represent the averages 
of gene expression (line in brown), the chromatin accessibility at promoter and 
genes body (line in purple), and chromatin accessibility at enhancer regions 
(line in green) of genes in different groups. The color band associated with a line 
represents the standard error of the distribution. b,c, Circos plots showing the 
number of cells with (red) or without (green) immune status identified with gene 
expression (b) and chromatin accessibility (c) from different time points in OPC 
(left), MOL2 (middle) and MOL56 (right) (downsampled by time points). d, Violin 

plots showing the expression of myelination related gene Plp1 at different stages 
in MOL5/6. n=CFA-Ctrl:43293,Early:30937,Peak:15248,Late:30705. e, f Upset plots 
showing differentially expressed genes overlaps between MOL2 over MOL5/6 
(e) or MOL5/6 over MOL2 (f), within each time point (Log2 Fold Change > 1 and 
q-value < 0.01)). g,h, Connections between enriched GO terms (p.adjust < 0.05) 
of genes with both differential expression and chromatin accessibility among 
different disease stages in MOL2 (g) and MOL5/6 (h). i, Heatmaps of differential 
chromatin accessibility at promoter and gene body (log2FC > 1 and p-value 
adjusted < 0.01) (in purple) between different time points in OPCs, of gene 
expression (in brown) and chromatin accessibility at enhancer regions (in green) 
of the same gene. Other features are such as in a).j,k, Chromatin accessibility 
normalized tracks of representative immune related genes (Irgm1, Igtp and 
Gbp7) with an important increase at peak stage in MOL2 (j) and MOL5/6 (k).
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Extended Data Fig. 6 | Priming DORCs of immune related genes in MOL2 at 
early and peak stages and MOL5/6 at peak stage. a, Bar plot of the number of 
significant peak-gene associations. b, Representative DORC (Gbp3). The genomic 
track represents the OLG bulk accessibility of Gbp3 while the links denote the 
significant correlation (p-value < 0.05) between peaks and Gbp3 (± 500 kb 
from TSSs). The violin plot shows Gbp3 log2 expression in OLG. c, Heatmaps 
of normalized and scaled DORC score of differentially variable gene scores 
(log2FC > 1 and p-value adjusted < 0.01) at different stages, 52 genes in OPC. 

Differential DORCs and associated gene ontologies are shown in Supplementary 
Table 3, 4. d, Violin plots of DORCs score of Hoxb genes in OLG sub-cell 
types. OPC-α: n = 2134, OPC-β:289, OPC-γ:1072, COP:1002, MOL56-α:4706, 
MOL56-β:37969, MOL56-γ:5595, MOL56-δ:4166, MOL56-ε:4733, MOL56-ζ:6299, 
MOL56-η:164, MOL56-θ:3392, MOL56-ι:1093, MOL56-κ:10704, MOL2-α:10854, 
MOL2-β:8988, MOL2-γ:1841, MOL2-δ:6227, MOL2-ε:8413, MOL1:542.  
e, Normalized chromatin accessibility of Hoxa (upper) and Hoxb (lower)  
genes in MOL2.
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Extended Data Fig. 7 | MultiVelo analysis classified genes into two models. 
a,b, UMAPs of MOL2 (a) and MOL5/6 (b) colored by gene state assigned by 
MultiVelo, model 1 (left) (M1, chromatin is closing before transcriptional 
repression) and model 2 (right) (M2, chromatin is closing after transcriptional 

repression). c, MultiVelo UMAP of OPC colored by time points. d, Depiction of 
chromatin accessibility (top), moments of unspliced RNA (middle) and spliced 
RNA (bottom), calculated by MultiVelo for B2m, H2-D1, H2-K1, Stat1 and  
Stat2 in OPC.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Transcription factor activity combining chromatin 
accessibility and gene expression in OLGs, and regulation of Cd274 (PD-L1) 
by STAT3. a,b,c, Activity score of selected transcription factor at different 
stages in MOL2 (a), MOL5/6 (b), and OPC (c). x axis: transcription factor activity 
score, y axis: transcription factors grouped by time point at which transcription 
factor activity is the highest. d, Activity score of selected transcription factor 

at different stages in MOL2 and MOL5/6. e, Relative expression level of Stat3 
and Cd274 in OPCs treated with DMSO or Stat3 inhibitor Auranofin after IFN- γ 
treatment, measured by qPCR. ** P < 0.01, * P < 0.05; Student’s two-tailed paired 
t-tests were used for comparisons between matched conditions (P = 0.0031 for 
Stat3 and P = 0.02 for Cd274); n = 6 independent experiments per condition.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | No major differences were found neither in OLG 
between male and female nor between CFA-Ctrl and naïve-Ctrl groups 
regarding immune related genes. a, Normalized tracks of chromatin 
accessibility (left) and expression (right) of Cd274 (PD-L1) in OPC, MOL2, and 
MOL5/6. b, Circos plot showing the prediction result (upper semicircle) and 
downsampled ground truth (bottom semicircle) of the sex. c, Bar plot showing 
the percentage of cells predicted to be male (blue) or female (red) in the samples 
used to build the sex prediction model. These samples came from different 
stages of EAE and only contained cells from one gender. d, Joint UMAP from the 
weighted nearest neighbors graph of scRNA-seq and scATAC-seq modalities 
colored by sex predition. e, Circos plot showing the proportion of predicted male 

and female cells in each cell type, downsampled by sex. f, Heatmap showing the 
expression of differentially expressed genes (log2FC > 1 and pvalue adjusted 
< 0.01) between male and female in OPC, COP, MOL2, MOL5/6. g, Circos plot 
showing the number of cells with (red) or without (green) immune status for 
predicted male and female cells (downsampled by sex). h, Heatmaps of the 
expression (left) and chromatin accessibility (right) of MHC-I (upper) and -II 
(lower) genes in predicted male and female cells at different stages in OLG. The 
black column on the side represents the gene raw counts. i, Correlation matrix 
showing the Pearson correlation scores of MG between different CFA-Ctrl 
replicates. j, Dot plot showing differentially expressed genes (log2FC > 1 and 
pvalue adjusted < 0.01) between Naïve-ctrl and CFA-Ctrl in MOL.
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The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Single cell multiome data was collected using Illumina NovaSeq 6000 (NovaSeq Control Software 1.7.5/RTA v3.4.4). Raw fastq files were 

aligned for both ATAC and RNA to mm10 genome associated with Cellranger ARC2 v2.0.2 (GENCODE vM23/Ensembl98), with default settings 

and aggregated using aggr function from the same software without normalization. Bulk-RNA-seq and bulk ATAC-seq data were collected 

using Illumina NovaSeq X with standard software. Raw fastq files were aligned and processed using NextFlow v24.04.2 core ATAC and RNA 

pipelines to the genome assembly GRCm38. Images acquired using a Zeiss LSM800 Confocal (RNAscope) and Zeiss LSM980 

(immunohistochemistry). OPC cellular fluorescence was measured with CantoII (BD Biosciences).

Data analysis Single cell multiomics data was analyzed using mainly R v.4.3.2, Seurat v5.0.3 and Signac v1.13.0 packages. Ambiant RNA was removed using 

Cellbender v0.3.0 and potential doublets were called using DoubletFinder v2.0.4.Peaks were called using MACS2 v3.0.0 and linked to each 

others genes using Cicero v1.3.9. The sex determination was created using a random forest model from Caret v6.0. The Local Inverse 

Simpson's Index (LISI) was performed using Harmony v1.2.0. Differential features expression or accessibility were computed using 

SingleCellExperiment v1.24.0 and DESeq2 v1.42.1. Gene Ontology (GO) was assessed using ReactomePA v1.46.0. Genes velocity were 

processed from velocyto v.0.17.17 and MultiVelo v.0.1.3. Gene Regulatory Network (GRN) was generated using Pando v1.0.0. 

Bulk RNA-seq and ATAC-seq were analysed with the NextFlow v24.04.2 nf-core RNA-seq and ATAC-seq pipelines.  Differential features 

expression or accessibility were processed using edgeR v4.2.0 and DESeq2 v1.44.0. Count tables were built for enhancer regions and TSS 

windows using BedTools v2.25.0. All code to reproduce the analysis step by step is published in notebooks available at : https://github.com/

Castelo-Branco-lab/EAE_multiomics_2025. RNAscope and immunohistochemistry images were processed in Fiji/ 

ImageJ (1.54f). Scores for EAE and CFA-Ctrl were plotted using GraphPad Prism version 9.0.0. Flow cytometry data were analyzed with 

FlowJo software 10.8.1 (TreeStar).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Mouse reference genome associated with Cellranger ARC2 v2020-A-2.0.0 (GENCODE vM23/Ensembl98) was used for the single cell multiomics. For the bulk RNA-

seq and ATAC-seq, the mouse reference genome GRCm38 was used. 

From the single cell dataset, Ensembl base annotation v79_2.99.0 was used to annotated peaks. Gene Ontology database was provided by biomaRt v2.58.2. 

Cells association with immune response were characterize using GO:0002250, with immune system process using GO:0002376 and the damage-associated from 

Kaya, T., et al., Nat Neurosci, 2022 Supplementary Table3. Finally RepeatMasker database whas queried from https://genome.ucsc.edu with the following options : 

Mouse genome, GRCm38/mm10 Dec2011, Group by All Track, RepeatMasker Track for the whole genome output as GTF file, in order to consider repeat elements 

and low complexity sequences. 

For the bulk dataset, JASPAR 2022 database, was used to find Transcription Factors (TFs) binding motifs and ENCODE Candidate Cis-Regulatory Elements (cCREs) 

(GRCm38/mm10) assembly (last update on 2021-05-26) was used to define enhancers. 

Raw and processed data are available under GSE250589. GSE283085 (ATAC-seq) and GSE283086 (RNA-seq). 

The following publicly available dataset was used in this study for label transfer GSE113973 (scRNA-seq of oligodendrocytes in EAE). 

Statistical source data for image quantification, qPCR, and flow cytometry analyses are provided in the accompanying Source Data file.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a. No human data is included in this study.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

n/a. No human data is included in this study.

Population characteristics n/a. No human data is included in this study.

Recruitment n/a. No human data is included in this study.

Ethics oversight n/a. No human data is included in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed to pre-determine sample sizes. For all experiments, a minimum of three biological replicates per 

condition was used. Although no a priori statistical power calculation was performed, sample sizes were selected based on precedent in the 

literature and our prior experience with similar experimental designs, where n ≥ 3 has consistently yielded reproducible and statistically 

discernible effects. 

 

EAE samples:  

- 7 multiome experiments for the early stage (7 females plus  7 male mice, total 14 mice) 

- 5 multiome experiments for the peak stage (5females plus  5 male mice, total 10 mice) 

- 6 multiome experiments for the late stage (7 females plus  7 male mice, total 14 mice) 

 

CFA-CTRL samples: 

 

- 5 multiome experiments for the early stage (5 females plus  5 male mice, total 10 mice) 

- 2 multiome experiments for the peak stage (2 females plus  2 male mice, total 4 mice) 

- 2 multiome experiments for the late stage (2 females plus  2 male mice, total 4 mice) 
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3 multiome experiments were performed for Naïve-Ctrl (3 females plus  3 male mice, total 6 mice).  

 

For RNAscope ISH and immunohistochemistry, the sample size was n=3 per condition. For RNAscope ISH, six 20X randomly selected fields per 

mouse (three from lesion and three from non-lesion) were chosen for quantification. 

Data exclusions For single-cell multiome data, we excluded data points through our quality control pipeline, as indicated in the methods section in the paper. 

In short, depending on the quality of each sample, for each cell, a maximum of 30,000/150,000 and a minimum of 1,000 ATAC counts, a 

maximum of 10,000/50,000 and a minimum of 600 RNA counts, a minimum o 250 detected genes, a maximum of 0.8/1.5 nucleosomal signal, 

a TSS minimum enrichment of 2 and a maximum percentage of mitochondrial information of 15/50 were prerequisites to consider a given cell 

for the downstream analysis. One EAE early time point sample collected on day 8 post-immunization with a score of 0 was removed from the 

analysis due to no EAE symptom and similar gene expression as CFA-Ctrl. A cluster of 1973 cells specific at 97.86% to one Early sample, was 

removed from the analysis. 

 

For the  bulk RNA-Seq and ATAC-Seq experiments, for each treatment and control data 3 replicates were collected and sequenced. After 

preprocessing and QC with RNA-seq nf-core pipeline QC statistics, one of the replicates from the second dose of IFN-g treatment of one of the 

replicates  showed significant differences compared to the other replicates, based on PCA inspection of similarity between replicates and 

Euclidean distance between replicates between others.  For consistency reasons, this replicate from all the treatments and control was 

discarded. All downstream analyses were performed with 2 replicates for both RNA-seq and ATAC-seq in all data points.  

 

Replication RNAscope ISH and immunohistochemistry were performed with n = 3 independent biological replicates per condition. Multiome experiments 

included 7 (14 mice) early-stage, 5 (10 mice) peak-stage, and 6 (14 mice) late-stage EAE experiments; 5 (10 mice), 2 (4 mice), and 2 (4 mice) 

CFA-control experiments at early, peak, and late stages respectively; and 3 (6 mice) naïve controls, all independently replicated successfully. 

IFN-γ treatments were performed with n = 2 primary OPCs and n = 3 Oli-neu samples. Stat3 siRNA experiments included n = 5 for qPCR and n 

= 4 for flow cytometry, and Stat3 inhibitor treatments were done with n = 6, with all replication attempts successful.

Randomization For single-cell RNA-seq, we distributed females and males with similar ages equally in controls and EAE, using the GraphPad randomization 

tool (GraphPad by Dotmatics). For cell experiments, cells used within each independent experiment were derived from the same passage 

or from the same animals, and therefore allocation to experimental groups was not randomized.

Blinding The analysis involving RNAscope ISH were performed blindly. Blinding was not performed for EAE experiments, as disease monitoring and 

stage-specific tissue collection required knowledge of group allocation. For cell experiments, blinding was also not performed, as investigators 

were responsible for administering specific treatments to designated groups.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 

quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 

predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 

rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 

what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 

whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 

cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 

participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 

allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 

hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 

indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 

blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 

compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies

Antibodies used MHCII (1:50, Invitrogen, 14-5321-85, Clone M5/114.15.2), GFP (1:200, Abcam, ab 13970), Goat anti-Rat Secondary Antibody(1:1000, 

Invitrogen, A21434), Goat anti-Chicken Secondary Antibody(1:1000, Abcam, ab150169), and PD-L1-APC-conjugated antibody (1:100, 

BioLegend, 124312, Clone 10F.9G2)

Validation All antibodies used in this study are broadly used in the field and have been tested by the company.  

-MHCII (Invitrogen, 14-5321-85, rat) : Host/Isotype Rat / IgG2b, kappa; applications: Western blot, immunohistochemistry , IHC on 

paraffin and frozen sections, immunocytochemistry/immunofluorescence, flow cytometry, ELISA, immunoprecipitation, 

neutralization, functional assays, inhibition assays, blocking assays, and in vitro assays. https://www.thermofisher.com/antibody/

product/MHC-Class-II-I-A-I-E-Antibody-clone-M5-114-15-2-Monoclonal/14-5321-82 

-GFP (Abcam, ab 13970, chicken): Host/Isotype: Chicken/IgY; applications: Western blot and immunocytochemistry/

immunofluorescence. https://www.abcam.com/en-us/products/primary-antibodies/gfp-antibody-ab13970 

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Oli-neu Mouse Oligodendroglial Precursor Cell Line (RRID:CVCL_IZ82, obtained from Dr. Jacqueline Trotter, Johannes 

Gutenberg University, Germany).

Authentication Cell line was not specifically authenticated but was used in genomic studies that were consistent with their identity.

Mycoplasma contamination Cell line was regularly checked for mycoplasma contaminations and was found negative.

Commonly misidentified lines
(See ICLAC register)

Olineu is not listed as a misidentified cell line.

Palaeontology and Archaeology

Specimen provenance n/a

Specimen deposition n/a

Dating methods n/a

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Sox10:Cre-RCE:LoxP (EGFP) transgenic mice between 9-13 weeks were used in this study. Sox10:Cre-RCE:LoxP (EGFP) mice are a 

strain of mice obtained originally by crossing mice with Cre recombinase under the control of the Sox10 promoter (The Jackson 

Laboratories; with a C57BL/6 genetic background) with reporter mice RCE:loxP-EGFP (with CD1 background).

Wild animals No wild animals were used in this study.

Reporting on sex Both male and female mice were included in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures on animals were performed following the European Directive 2010/63/EU, local Swedish directive L150/

SJVFS/2019:9, Saknr L150, and Karolinska Institutet complementary guidelines for procurement and use of laboratory animals, Dnr. 

1937/03-640 and Karolinska Institutet Comparative Medicine veterinary guidelines and plans (version 2020/12/18). The procedures 

described were approved by the local committee for ethical experiments on laboratory animals in Sweden (Stockholms Norra 

Djurförsöksetiska nämnd), license numbers: 1995-2019 and 7029-2020.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration n/a

Study protocol n/a

Data collection n/a

Outcomes n/a

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a

Plants
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ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

n/a

Files in database submission n/a

Genome browser session 
(e.g. UCSC)

n/a

Methodology

Replicates n/a

Sequencing depth n/a

Antibodies n/a

Peak calling parameters n/a

Data quality n/a

Software n/a

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Mouse spinal cords were collected. Spinal cord tissues were then dissociated into a single cell suspension according to the 

manufacturer’s protocol of Adult Brain Dissociation Kit, mouse and rat (Miltenyi Biotec, 130-107-677, we did not perform the 

red blood cells removal step since the majority of the red blood cells had been removed with PBS perfusion)

Instrument BD FACS Aria III Cell Sorter was used for sorting. BD CantoII was used for analysis.

Software FlowJo_v10.8.1 was used for analysis.

Cell population abundance The percentages of GFP+ cells out of live cells differ across samples (1-15%), with EAE samples showed lower percentage 

compared to control. The percentages of PD-L1+ cells out of live cells differ across samples with different treatments 

(7.65-36.5%). 

Gating strategy Cells were identified first on FSC/SSC plots, dead cells were gated away using DAPI staining (sorting) or LIVE/DEAD Fixable 

Near-IR Dead Cell Stain Kit (analysis). For cell sorting, live cells were plotted on GFP (FITC channel was used) for collecting the 

GFP+ population.  For PD-L1 expression analysis, live cells were plotted on APC channel for detecting PD-L1 expression.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type n/a
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Design specifications n/a

Behavioral performance measures n/a

Acquisition

Imaging type(s) n/a

Field strength n/a

Sequence & imaging parameters n/a

Area of acquisition n/a

Diffusion MRI Used Not used

Preprocessing

Preprocessing software n/a

Normalization n/a

Normalization template n/a

Noise and artifact removal n/a

Volume censoring n/a

Statistical modeling & inference

Model type and settings n/a

Effect(s) tested n/a

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

n/a

Correction n/a

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity n/a

Graph analysis n/a

Multivariate modeling and predictive analysis n/a


	Distinct transcriptomic and epigenomic responses of mature oligodendrocytes during disease progression in a mouse model of  ...
	Results

	Single-cell multiome analysis of OLG at different EAE stages

	Immune OLG states emerge early and persist in late EAE

	OLG MHC class I/MHC class II chromatin accessibility persists in late EAE

	IFNγ induces epigenetic memory in neonatal OPCs

	RNAscope confirms imOLG across EAE stages

	Stronger immune transcriptional responsiveness of MOL2

	Damage-associated transcriptional responses in OLG

	Distinct transcriptional response of MOL2 and MOL5/MOL6 in EAE

	Increased MOL chromatin accessibility at immune genes in EAE

	HOXB enhancer activity increases in MOL5/MOL6 in late EAE

	MultiVelo reveals distinct MOL2 and MOL5/MOL6 responses in EAE

	Changes in MOL transcription factor activity in EAE

	STAT3 contributes to immunosuppression in MOLs


	Discussion

	Limitations of the study


	Online content

	Fig. 1 Single-cell multiome (RNA-seq + ATAC-seq) analysis of OLG in an EAE mouse model of MS.
	Fig. 2 Transition to the imOLG states occurs at early stages of EAE and persists at late stages, consistent with epigenetic memory at a chromatin accessibility level.
	Fig. 3 Differential immune and damage-associated transcriptional responses to EAE of MOL2 and MOL5/MOL6.
	Fig. 4 Increase of cholesterol biosynthetic processes in MOL5/MOL6 at early stages of EAE.
	Fig. 5 Stronger epigenetic immune response at the chromatin accessibility level in MOL2 than in MOL5/MOL6.
	Fig. 6 Increased chromatin accessibility at DORCs at the Hoxb locus in MOL5/MOL6 at late-stage EAE.
	Fig. 7 MultiVelo analysis indicates divergent responses of MOL2 and MOL5/MOL6 cells to the evolving disease environment in EAE.
	Fig. 8 Transcription factor activity foresees the immunosuppression potential of MOLs.
	Extended Data Fig. 1 Single cell multiome of OLGs from the EAE model.
	Extended Data Fig. 2 Expression and chromatin accessibility of MHC-I/II genes in different OLG cell types.
	Extended Data Fig. 3 IFN-γ induces epigenetic memory in oligodendroglia and MHC2/SOX10+ cells in lesions.
	Extended Data Fig. 4 MOL sub-cell type classification based on gene expression and their IFN-associated and damage-associated transcriptional responses.
	Extended Data Fig. 5 Immune-related genes showed substantial changes in expression and chromatin accessibility, with increased transcription in OPCs and MOL2 at early and peak EAE stages.
	Extended Data Fig. 6 Priming DORCs of immune related genes in MOL2 at early and peak stages and MOL5/6 at peak stage.
	Extended Data Fig. 7 MultiVelo analysis classified genes into two models.
	Extended Data Fig. 8 Transcription factor activity combining chromatin accessibility and gene expression in OLGs, and regulation of Cd274 (PD-L1) by STAT3.
	Extended Data Fig. 9 No major differences were found neither in OLG between male and female nor between CFA-Ctrl and naïve-Ctrl groups regarding immune related genes.




