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Multiple sclerosis (MS) is a chronic autoimmune disease that targets mature
oligodendrocytes (MOLs) and their myelin. MOLs are heterogeneous

and can transition to immune-like states in MS. However, the dynamics

of this process remain unclear. Here, we used single-cell multiome

assay for transposase-accessible chromatin and RNA sequencing

targeting oligodendroglia (OLG) from the experimental autoimmune
encephalomyelitis (EAE) MS mouse model at multiple disease stages. We
found thatimmune OLG states appear at early disease stages and persist to
late stages, which can be consistent with epigenetic memory of previous
neuroinflammation. Transcription factor activity suggested immunosup-
pressionin OLG at early disease stages. Different MOLs exhibit differential
responsiveness to EAE, with MOL2 exhibiting a stronger transcriptional
immune response than MOL5/MOL6, and showed divergent responses at
the epigenetic level during disease evolution. Our single-cell multiomic
resource highlights dynamic and subtype-specific responses of OLG to EAE,
which might be amenable to modulationin MS.

Multiple sclerosis (MS) is an inflammatory autoimmune disease of
the central nervous system (CNS)'. Oligodendrocytes (OLs) are the
myelinating cells of the CNS, and their precursor cells (OL precursor
cells (OPCs)) are present throughout the developing and adult CNSand
are capable of differentiating into myelinating mature OLs (MOLs)>. MS
has been generally viewed as primarily driven by T cells and B cells>.
However, recent studies revealed the expression of immunomodula-
tory molecules in oligodendroglia (OLG) not only in MS but also in

Alzheimer’s disease and aging* ®. These findings indicate the potential
role of OLG in the modulation of immune responses within the CNS.
Single-cell/nucleus RNA sequencing (scRNA-seq) has been
applied to reveal specific MOLs/OPC subpopulations in MS and
experimental autoimmune encephalomyelitis (EAE)**'°. Assay for
transposase-accessible chromatin using sequencing (ATAC-seq) is a
high-throughput sequencing technique for assessing genome-wide
chromatin accessibility” and provides information on regions with
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open chromatin, which is required for gene expression'. By applying
single-cell ATAC-seq (scATAC-seq) in combination with scRNA-seq
independently, we previously found that a cohort ofimmune genes
exhibit open chromatin in both control animals and in animals with
EAE at peak disease, while their expression only increases in the context
of EAE®. These studies were conducted with samples from single time
points, at the peak of the disease in mouse EAE and from the late stage
of disease in human postmortem MS tissue. Thus, the dynamics of OLG
throughout the disease process have not been explored.

Here, we investigate the epigenomic and transcriptional dynam-
ics of OPCs and MOLs over the course of EAE. We applied simultane-
ous single-cell multiome ATAC-seq and RNA-seq to OLG sorted by
fluorescence-activated cell sorting (FACS) from male and female mice
with EAE at three distinct time points: early, peak and late stages. At the
early stage of EAE, a subset of genes involved in antigen presentation
showed increased expression and chromatin accessibility in OPCs and
MOLs, indicating that the induction of an immune-like state in OLG
occurs before the formation of fully developed lesions. Moreover, chro-
matinaccessibility at these genes remained highly open at the late stage
of EAE, indicating either partial maintenance or an epigenetic memory
ofthisimmune-like state. Furthermore, specific MOL subtypes acquire
different patterns of change in genes related to the immune response
atboth expression and chromatin accessibility levels over the course of
disease. We observed that white matter-enriched" MOL2 showed higher
immune signatures than MOL5/MOL6, which in turn exhibited induc-
tion of chromatin accessibility in genes with regenerative pathways,
particularlyinthelate stage. Our study provides aresource available for
browsing at the University of California, Santa Cruz, Cell Browser and
Genome Browser” (https://olg-dyn-eae-multiome.cells.ucsc.edu)anda
deeper understanding of OLG dynamicsinthe inflammatory demyelina-
tion mouse model of MS, offering insights into these cell populations
as potential targets forimmune modulation and myelin regeneration.

Results

Single-cell multiome analysis of OLG at different EAE stages
We induced EAE in Sox10:cre-RCE:loxP (enhanced green fluorescent
protein (eGFP)) transgenic mice'*" with injection of emulsion contain-
ing the MOG;,_ssimmunogenic peptide in complete Freund’s adjuvant
(CFA), followed by intraperitoneal injection of pertussis toxin. Spinal
cordtissues frommale and female miceinduced with EAE were collected
at three different stages: (1) early stage (days 8-9 after injection), (2)
peak stage (days 14-15) and (3) late/chronic stage (days 37-40; Fig.1a,b).
Spinal cord samples from CFA-treated control (CFA-Ctrl) mice were also
collected from the same stages, alongside spinal cord tissues fromnon-
induced naive untreated control (Naive-Ctrl) mice. OLG were enriched
based on eGFP by sorting by FACS (Extended Data Fig. 1a), after which
we performed single-cell multiome RNA-seq and ATAC-seq (Fig. 1a).
After sample-specific quality control filtering (Extended Data Fig. 1b
and Methods), we obtained 156,205 cells. Louvain clustering was per-
formed on the scRNA-seq (Extended Data Fig. 1c,e) and scATAC-seq
datasets (Extended Data Fig. 1d,f). Neighbors’ graphs from both modali-
ties were overlapped to generate a new joined projection (Fig. 1c-f
and Extended Data Fig.1g,h), annotated by cell type with marker gene
expression and chromatin accessibility (Fig. 1g and Methods). As
expected from the lineage tracing strategy, most of the cells were MOLs,
OPCsand committed OL precursors. Nevertheless, other populations,
in particular astrocytes and microglia, were also captured (Fig. 1c-e).

Immune OLG states emerge early and persistin late EAE

We observed that a subset of MOLSs transitioned to transcriptional/
epigenomic states distinct from CFA-Ctrl at early stages of EAE, when
lesions are just starting to develop (Fig. 1f and Extended Data Fig. 1e,f).
Moreover, a minority of MOLs retained peak-stage-like profiles at late
stages, while most MOLs transitioned to CFA-Ctrl-like states, suggesting
areturn to homeostasis (Fig. 1f and Extended Data Fig. 1e,f). Because

disease-associated OLG states at peak EAE are characterized by chromatin
accessibility and the expression of immune genes*”, we investigated
whether the observed transitions were driven by theirimmune status. We
subsetted and reclustered OPCs and MOLs to identify those expressing
immune-related genes® (Fig. 2a and Methods). Immune OLG (imOLG)
were hardly observedin CFA-Ctrl mice, but were found in mice with EAE,
with a higher percentage present at the peak stage thanin the early and
late stages (early stage 26.80%, peak stage 66.91% and late stage 32.41%;
Fig.2c). Chromatin accessibility at the promoter/gene body of the same
immune genes identified a lower number of imOLG than by immune
gene expression (early 14.69%, peak stage 37.71% and late stage 17.81%;
Fig.2b,d). Thisis most likely due to some OLG from CFA-Ctrl and Naive-Ctrl
animals exhibiting already primed chromatin accessibility inimmune
genelocibutwithlow or no expression**, which made the cutoffvalue of
immune status depicted from gene chromatin accessibility higher than
fromexpression. Thus, our dataindicate that the transition of both OPCs
and MOLs toimmune-like states at epigenomic and transcriptionallevels
occurs at early stages of EAE, when lesions are just starting to develop,
and persists at late stages, despite resolving inflammation.

OLG MHC class I/MHC class Il chromatin accessibility persists
inlate EAE

The expressionand chromatin accessibility of some major histocompat-
ibility complex (MHC) classI-and MHC class IlI-related genes were previ-
ously showntobeincreased in EAE-specific OLG at peak stages of EAE*".
Here, we found that, overall, the expression level of MHC class Il genes
was lower thanthat of MHC class I genes (Extended DataFig. 2a). Notably,
the expression of 3-chain of MHC class I molecules (B2m), histocompat-
ibility 2, Kregionlocus1(H2-K1) and NLR family CARD domain-containing
5 (Nlrc5) was increased in EAE OLG at early stages (Fig. 2e and
Extended Data Fig. 2a,b). We identified MOL1, MOL2 and MOL5/MOL6
mature OLG subpopulations (Fig. 3a and Extended Data Fig. 3a-d). We
observed that the increase in expression of MHC class I and MHC class
Il genes at early stages was more expressive in OPCs thanin MOL2 and
MOLS5/MOL6 (Extended Data Fig. 2b). The chromatin of some of the
MHC class I genomic loci was accessible in OLG from CFA-Ctrl animals
and exhibited a further increase in the early stages of EAE (Fig. 2e and
Extended Data Fig. 2a,b). By contrast, MHC class Il genes had no or low
expressionin OLG from CFA-Ctrl mice and showed increased expression
and chromatin accessibility in OPCs at early stages of EAE, but only at
the peak stage for MOLs (Fig. 2e and Extended Data Fig. 2a-c). A few
MHC class I genes such as B2m, histocompatibility 2, D region locus 1
(H2-DI1) and H2-K1 remained highly expressed at late EAE stages, while
the expression of most other MHC class I and MHC class Il genes was
notably downregulated compared to at the peak stage. Nevertheless,
chromatin accessibility at the promoter/gene body of both MHC class
Iand MHC class Il genes remained high at the late stage (Fig. 2e and
Extended DataFig.2a-c). Thus, OLG exhibit persistent chromatin acces-
sibility of specificimmune genes at late stages of EAE. Because inflamma-
tionis decreased at these stages, this chromatin accessibility persistence
in OLG might result from either epigenetic memory of peakimmune-like
states or from amild inflammatory environment at late stages.

IFNy induces epigenetic memory in neonatal OPCs

To investigate whether a possible immune epigenetic memory in
OPCs enhances immune characteristics after re-exposure to inflam-
matory stimuli, we treated primary mouse neonatal OPCs and the
mouse OLG precursor cell line Oli-neu’® with IFNy, either once or
twice with a 96-h interval without IFNy between treatments (Fig. 2f
and Extended Data Fig. 3e). RNA-seq and ATAC-seq were conducted
24 h after the first or second IFNy treatment. We observed that there
wasalarge number of genes for which chromatin accessibility around
their transcription start sites (TSSs; Supplementary Table 1) and their
potential enhancers (Supplementary Table 1) was maintained or kept at
arelatively higher level, inthe absence of IFNy for 96 h, after treatment
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Fig.1|Single-cell multiome (RNA-seq + ATAC-seq) analysis of OLGinan EAE projection (UMAP) of cells profiled with simultaneous scRNA-seq (c) and scATAC-
mouse model of MS. a, Schematic of the methodology used in animal model seq (d). Cell types are identified according to marker genes; Ast, astrocytes;
establishment and multiome sequencing (image created using BioRender); blue Epen, ependymal cells; MG, microglia; COP, committed OL precursor. e, Joint
dots, Naive-Ctrl; green dots, CFA-Ctrl; yellow dots, EAE early stage; red dots, EAE UMAP from the weighted nearest neighbors graph of scRNA-seq and scATAC-seq

peak stage; brown dots, EAE late stage. b, Clinical scores of the mice used in the modalities colored by cell type. f,Joint UMAP with cells colored by conditions on
study (EAE: 38 mice in 19 multiome experiments, CFA-Ctrl n = 9; data are shown top of aUMAP with all cells (in gray). g, Normalized chromatin accessibility (left)
asmean +s.d.). For EAE from peak and late stages, only mice that had reached and log, expression (right) of representative marker genes of each cell type.

ascore of 3were used in this study. ¢,d, Uniform manifold approximation and
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with this cytokine. Many of these genes, such as H2-Ab1, H2-K1 and
H2-D1, retained chromatin accessibility in OPC populations but alsoin
MOL populationsin late-stage EAE (Fig. 2e and Extended Data Fig. 2b),
suggesting epigenetic memory in this MS model. Moreover, some of
these genes also exhibited afurtherincrease in chromatinaccessibility
after the second IFNy treatment (Fig. 2g,h and Supplementary Table 1).
One of the possible functional outcomes of this epigenetic memory
could be increased expression of these genes after a second bout of
neuroinflammation. Indeed, aspecific subset of the genes presenting
unaltered chromatin accessibility around the TSS and/or enhancers
exhibited elevated expression in OPCs after exposure to the second
dose of IFNy compared to OPCs after one dose of IFNy treatment
(Fig. 2g,h and Supplementary Table 1). Moreover, in the Oli-neu cell
line, quantitative PCR with reverse transcription (RT-qPCR) analy-
sis revealed increased expression of specific genes within the MHC
pathway, such as NicrS, H2-D1, H2-Ab1, H2-Aa, B2m and class [l MHC
transactivator (Ciita), when comparing the two IFNy treatments to
asingle IFNy treatment (Extended Data Fig. 3e). These results from
cultured neonatal OPCs suggest that OPCs might retain, at the level of
chromatin accessibility, epigenetic memory of a previous neuroinflam-
matory insult, which might make them more prone to transcriptionally
reactivate animmunological profile. However, additional studies are
needed to determine whether a similar epigenetic memory phenom-
enonoccursinadult OPCsand MOLs, giventheir distinct transcriptomic
and epigenomic profiles.

RNAscope confirmsimOLG across EAE stages

Our multiome data suggested that imOLG are present not only at the
peak stage but also at the early and late stages of EAE. We thus used
RNAscopeinsitu hybridization (ISH) to understand where these imOLG
were located relative to EAE lesions. We defined lesions as white mat-
ter regions witha high number of cells due to inflammatory infiltrates
(Extended Data Fig. 3f). Consistent with the multiome results, the MHC
class " OLG (SoxIO"H2-AbI") were observed in EAE spinal cord sections
fromthe peak stage butalsoin early and late stages, albeit in different
proportions (Fig. 2i,j and quantification in the Methods). There was no
significant differencein the percentages of imOLG between lesion and
nonlesion areas for all three stages (Fig. 2j; P> 0.05). Consistent with
previous observations*, we confirmed the presence of imOLG at the
protein level by immunostaining against MHC class 11 (I-A/I-E), along
with SOX10 (GFP; Extended DataFig. 3g). Together, our dataindicate
that MHC classland MHC class Il genes maintain latent transcriptional
and epigenetic states in OLG at late EAE stages, which may resultin
immune gene expression when facing recurrentinflammatory stimuli
and contribute to the chronic persistent disease state.

Stronger immune transcriptional responsiveness of MOL2
MOLs have recently been shown to be heterogeneous, with spe-
cific populations exhibiting regional preferences and different

susceptibility to spinal cord injury*”>'**?° Based on distinct gene
expression profiles within OLG, we could further subdivide OPCs
into three (OPC-a-OPC-y), MOL2 into five (MOL2-a-MOL2-¢) and
MOL5/MOL6 into ten cell states/subpopulations (MOL5/MOL6-0~
MOLS5/MOL6-k; Fig. 3a and Extended Data Fig. 4a). Interestingly, most
of these states display prevalence toward specific EAE time points
(Fig. 3a-c) and present specific expression of gene modules (Meth-
ods, Extended Data Fig. 4b and Supplementary Table 2). Overall, we
observed a higher proportion of MOL2 at the peak and late stages
of EAE than CFA-Ctrl and early-stage EAE (Fig. 3b—d). This increase
could arise from conversion of MOL5/MOL6 into MOL2, being more
resilient to the neuroinflammatory environment, and/or preferen-
tial differentiation of OPCs into MOL2 in the context of EAE. We then
investigated whether any of these MOL populations were more prone
to transition into immune-like states in EAE. In total, 38.35% of MOL2
were identified asimOLG, whereas only 18.75% of MOL5/MOL6 under-
went this transition (Fig. 3e and Extended Data Fig. 4d), indicating
that MOL2 has higher immune responsiveness. Within the identified
immune-related genes, some were more enriched in specific MOL
populations, whereas others, involved, for instance, in cytokine and
T cellimmune responses, showed similar expression levels among all
MOLs (Fig. 3fand Extended Data Fig. 4c). Overall, our results suggest
that MOL2 exhibit astrongerimmune response to the neuroinflamma-
tory environment than MOL5/MOL6 and may play amore important
rolein disease progress.

Damage-associated transcriptional responses in OLG
Inaddition to theimmune response, the disease-associated profile of
OLG can also include a damage-associated response, which is related
to apoptosis and survival mechanisms®?'. We found that the major-
ity of OLG at the peak stage expressed high levels of both damage-
and IFN-associated genes, whereas a subset of cells from the early
and late stages expressed either damage- or IFN-associated profiles
(Fig. 3g,h). By contrast, chromatin accessibility showed a stronger
specificity in either damage- or IFN-associated genes (Fig. 3i), suggest-
ingthat the chromatinaccessibility of these IFN- or damage-associated
genes was already reduced at the peak stage, despite their transcrip-
tion. A higher percentage of MOL2 displayed both damage- and
IFN-associated profiles than MOL5/MOL6 at peak and late stages
(Extended Data Fig. 4e). At the late stage, a greater proportion of
MOL2 exhibited a damage-associated profile, whereas MOL5/MOL6
showed a higher prevalence of IFN-associated profiles. Additionally,
we identified a subset of OPCs at the late stage that did not express
either damage- or IFN-associated profiles (Fig. 3f,g), suggesting that
these OPCs may have a nondisease phenotype and could potentially
contribute to remyelination at the chronic stage of disease. Similar to
immune-related genes, fewer damage- and IFN-associated OLG were
identified by chromatin accessibility than gene expression (Fig. 3h,i
and Extended Data Fig. 4e,f).

Fig.2| Transition to the imOLG states occurs at early stages of EAE and
persists at late stages, consistent with epigenetic memory at achromatin
accessibility level. a,b, Joint UMAP with OLG from CFA-Ctrl mice and mice with
EAE. Projection of cells withimmune status (red) and nonimmune status (green)
identified by gene expression (a) and chromatin accessibility (b). ¢,d, Circos
plots showing the number of cells with (red) or without (green) immune status
identified by gene expression (c) and chromatin accessibility (d; downsampled
by time point). e, Heat maps of the expression (top) and chromatin accessibility
(CA; bottom) of MHC class I (top) and MHC class Il (bottom) genes at different
stages. The black column on the right represents the gene raw counts.

f, Schematic of the 1x/2x IFNy treatment experiment on mouse primary OPCs.
Arrows represent the time points of sample collection (image created using
BioRender). g,h, Heat maps showing normalized gene expression (top) and
chromatin accessibility signalin 1-kb windows around the TSS (bottom; g) at
defined enhancer regions (Methods) in the same 1-kb windows (bottom; h) in

mouse primary OPCs with the first and second doses of IFNy. Genes plotted
were upregulated following IFNy treatment compared to control treatment
(P<0.05and false discovery rate (FDR) < 0.05) and showed no changes in
chromatin accessibility signal after the first treatment with IFNy in the absence
of this cytokine for 96 h (P> 0.05and FDR > 0.05). Genes that were significantly
upregulated following the second dose of IFNy compared to the first dose of
IFNy are marked with an asterisk (*; P< 0.05 and FDR < 0.05), while the remaining
genes presented P < 0.05in this comparison. i, RNAscope ISH from early-, peak-
and late-stage EAE mice marked with probes for Sox10 (OLG) and H2-AbI (MHC
classI).j, Quantification of the percentages of Sox10"H2-AbI" cells out of Sox10*
cellsinlesion and nonlesion areas. Statistical analyses were performed using a
two-way ANOVA with a Tukey’s multiple comparisons test and adjusted P values;
NS, P> 0.05; ***P < 0.0001; data are shown asmean = s.d.; n =3 independent
experiments per condition.
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proportions from different time points in each OLG cell subtype.d, Circos (black) or without (green) damage- and IFN-associated profiles, only IFN-
plot showing the number of cells from different time points in OLG cell types associated profiles (blue) or only damage-associated profiles (gray) for OLG from
(downsampled by time point). e, Circos plot showing the number of cells different time points at gene expression (h) and chromatin accessibility (i) levels

with (red) or without (green) immune status for each OLG cell type. f, Scaled (downsampled by time point).
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Fig. 4 |Increase of cholesterol biosynthetic processesin MOL5/MOL6 at

early stages of EAE. a,b, Heat maps of differentially expressed genes (DESeq2

Wald test and Benjamini-Hochberg multiple testing correction with alog, (fold

change) (log, (FC)) of >1and adjusted P value of <0.01; brown) between different

time points in MOL5/MOL6 (a) and MOL2 (b), chromatin accessibility at

promoters and gene bodies (purple) and chromatin accessibility at enhancer

regions (green) of the same gene. The black column on the right represents the

raw gene counts. The line plots represent the mean of the normalized and scaled
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gene expression (line in brown), chromatin accessibility at the promoter and
gene bodies (linein purple) and chromatin accessibility at enhancer regions
(lineingreen) of genes in different groups. The color band associated with aline
represents the standard deviation of the mean. Differentially expressed genes
and associated GOs are shown in Supplementary Table 3 and 4. ¢, Normalized
chromatin accessibility (left of each gene panel) and log, expression (right of
each gene panel) of genes related to the cholesterol biosynthetic process (Scd1,
Idi1, Dhcr24 and Fdft1) in MOL5/MOL6 (left) and MOL2 (right).
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Distinct transcriptional response of MOL2 and MOL5/MOL6 in
EAE

Toexplore whether other biological processes were dynamically modu-
lated in OLG during the course of EAE, we performed differential gene
expression analysis across the different stages in different OLG cell
types (Methods). The differentially expressed genes were divided into
Type 1 (high expression in CFA-Ctrl), Type 2 (high expression at the
early stage), Type 3 (high expression at the peak stage) and Type IV
(high expression at the late stage) main types and also subtypes (high
expressioninamain type associated with high expressioninasecond-
ary type; Fig. 4a,b and Extended Data Fig. 5a).

In OPCs, we observed anincrease in IFN and cytokine signaling at
early and peak stages (secondary subtype division Type 2-Type 3), and,
as expected, genes related to antigen processing cross-presentation
were increased in expression at the peak stage (Type 3), followed
by a notable reduction at the late stage (Extended Data Fig. 5a and
Supplementary Tables3and 4). Furthermore, genes related to neuronal
system and development, albeit not significant in Gene Ontology (GO)
terms, such as doublecortin (Dcx) and glutamate receptor-interacting
protein1(Gripl), were upregulated at the late stage (Type 4) in OPCs
(Extended Data Fig. 5a and Supplementary Tables 3 and 4). OPCs
showed a drastic reduction of immune-associated cells at the gene
expressionlevel and, to some extent, at the chromatin level at the late
stage of EAE compared to all other time points and MOL populations
(Extended Data Fig. 5b,c). However, many of these genes retained
chromatin accessibility, suggesting that they retain the epigenetic
potential to initiate their transcription.

Consistent with OPCs, the differentially expressed genes of
MOL5/MOLG6 were also divided into four distinct types and sub-
types (Fig. 4a). Most of the genes with high expression at the peak
stage (Type 3) in MOL5/MOL6 were immune related, such as anti-
gen processing/cross-presentation (Psmb8, Psmb9 and Tapl), but
their expression decreased drastically at the late stage (Fig. 4a and
Supplementary Tables 3 and 4). We observed anincrease of interleukin
signaling genesin MOL5/MOL6 (Type 2) at the early stage (Fig. 4aand
Supplementary Tables 3 and 4). We found an increase in cholesterol
biosynthetic process-related genes at early stages (Type 2 subtype 1),
such asstearoyl-CoA desaturase-1(Scdl), isopentenyl-diphosphate-6
isomerase 1 (/dil), 24-dehydrocholesterol reductase (Dhcr24),
farnesyl-diphosphate farnesyltransferase1 (FdftI), squalene epoxidase
(Sqle), farnesyl-diphosphate synthase (Fdps) and methylsterol monoox-
ygenase1(Msmol)in MOL5/MOL6. Thisincrease in cholesterol-related
pathway genes was also found in early stages (Type 2 subtype 1) in
OPCs (Fig. 4a,c and Supplementary Tables 3 and 4). The formation of
the myelin sheath necessitates highly coordinated levels of fatty acid
and lipid synthesis process-related genes?’. MOLs have been recently
shown to be able to contribute in some extent to remyelination® .
The increase in expression of cholesterol biosynthesis-related genes
at the initial stage could suggest a form of preliminary remyelination
adaptation to the very first cues given by EAE-driven demyelination
(Extended Data Fig. 5d). At the late stage (Type 4), we observed the
increased expression of genesin MOL5/MOL6 involved in extracellular

matrix degradation and collagen chain trimerization, suggesting simul-
taneous matrix degradation and synthesis for tissue repair during
chronic phases of the disease. We also observed increased expression
of genes involved in the RHO GTPase cycle in MOL5/MOLG6 at a sec-
ondary subtype division at late and early stages (Type 4 subtype 2),
such as STEAP3 metalloreductase (Steap3) and copine 8 (CpneS8;
Supplementary Tables 3 and 4) involved in actin cytoskeleton and
microtubule processes, which play arolein myelination®, further sug-
gesting that MOL5/MOL6 might activate gene regulatory programs
associated with regeneration during these stages.

We also identified four groups and subgroups of genes with
differential expression between different time points for MOL2
(Fig. 4b). Similar to MOL5/MOL6, we found that cholesterol bio-
synthetic process-related genes also had a transitory increase in
MOL2 at early-stage EAE compared to later stages (Fig. 4b,c and
Supplementary Tables 3 and 4). Many genes with high expression
in MOL2 at the peak stage were immune-related genes (Type 3, such
as Tapl, histocompatibility 2, T region locus 23 (H2-723), integrin
subunit-a 9 (/tga9) and Psmb8, which is consistent with the exacer-
bated immune response and higher number of imOLG at the peak
stage (Fig. 4b and Supplementary Tables 3 and 4). Interestingly, we
alsofound that genesrelated to development and axon guidance, dif-
ferent from Type1genes, exhibited high expressionin MOL2 at the late
stage, such as plexin A4 (Plxna4), but also semaphorin 3B (Sema3b),
EPH receptor (Ephb2 and Ephal0) and ankyrin 1 (AnkI; Fig. 4b and
Supplementary Tables 3 and 4). In summary, our multiome data indi-
cate that MOL2 initiate, as MOL5/MOLS6, a cholesterol biosynthesis
program in response to the arising neuroinflammatory environment
but transition to animmune-like state during the course of EAE.

We then explored expression differences between MOL2 and
MOLS5/MOL6 at eachtime point (Methods and Supplementary Table 5).
Atthe peak stage of EAE, we identified 352 genes withincreased expres-
sionin MOL2 compared to MOL5/MOL6 (Extended DataFig. 5e), many
of which were associated with immune responses and apoptotic pro-
cesses, including Ciita, GbpS, Jun and death-associated protein (Dap;
Supplementary Tables 5 and 6). This finding supports that MOL2
exhibitastrongerimmune profile than MOL5/MOL6. For MOL5/MOL6,
we observed 80 genes withincreased expression across different time
points (Extended Data Fig. 5f). Among these, we identified several
genesrelated to the neuronal system but also cell development, such
as meis homeobox 2 (Meis2), neuroligin 3 (NVign3) and Semaéa, at early
stages (Supplementary Tables 5and 6).

Increased MOL chromatin accessibility atimmune genes
inEAE

Differences between MOL2 and MOL5/MOLS6 at the transcriptional
level might correlate with changes at the epigenetic level. We thus
compared the list of genes with differential chromatin accessibility
at promoter/gene body regions and genes with differential expres-
sion across different stages and found that multiple genes showed
notable changes in both expression and chromatin accessibility
(Fig.5aand Supplementary Table 7). Most wereimmune related (Fig. 5b,

Fig. 5| Stronger epigeneticimmune response at the chromatin accessibility
levelin MOL2 thanin MOL5/MOLS6. a, Venn diagram showing the number of
genes with differential expression and/or differential chromatin accessibility
among different disease stages (DESeq2 Wald test and Benjamini-Hochberg
multiple testing correction with alog, (FC) of >1 and adjusted P value of <0.01)
inMOL2 (top) and MOL5/MOL6 (bottom). b, Top GO pathways by biological
process terms (Fisher exact test and multiple testing correction using FDR with
an adjusted Pvalue of <0.05) for genes with both differential expression and
differential chromatin accessibility in MOL2 (top) and MOL5/MOL6 (bottom)
among different disease stages. c¢,d, Heat maps of differential chromatin
accessibility at promoters and gene bodies (DESeq2 Wald test and Benjamini—
Hochberg multiple testing correction with alog, (FC) of >1 and adjusted P value

of <0.01; purple) between different time points in MOL2 (c) and MOL5/MOL6 (d),
gene expression (brown) and chromatin accessibility at enhancer regions (green)
of the same gene. The black column on the right represents the gene raw counts.
Theline plots represent the average gene expression (line in brown), chromatin
accessibility at promoters and gene bodies (line in purple) and chromatin
accessibility at enhancer regions (line in green) of genes in different groups. The
color band associated with aline represents the standard deviation of the mean.
Differential chromatin accessibility at promoters/gene bodies and associated
GOsare shownin Supplementary Tables 3 and 4. e,f, Normalized chromatin
accessibility ofimmune system process-related genes (/do1, CIra and Isg20) in
MOL2 (e) and MOLS5/MOL6 (f) at each time point.
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Fig. 6 | Increased chromatin accessibility at DORCs at the Hoxb locus in MOL5/
MOL6 at late-stage EAE. a, Heat maps of normalized and scaled DORC scores

of differentially expressed genes (DESeq2 Wald test and Benjamini-Hochberg
multiple testing correction with alog, (FC) of >1 and adjusted P value of <0.01)
atdifferent stages, 124 genes in MOL2 and 75 genes in MOL5/MOL6. DORCs were
classified into three types: Type1with high activity in early-stage EAE, Type 2 with
increased activity at the peak stage and Type 3 with increased activity at the late
stage. Differential DORCs and associated GOs are shown in Supplementary Tables
3and 4.b, Representative gene (/rgm1l) in Type 2DORCs in MOL2 (top) and MOLS5/

MOLG6 (bottom). The genomic track representsits accessibility at different time
points, and the links denote the significant correlation (P < 0.05) between peaks
and Irgm1 (500 kb from TSSs). The violin plots show Irgm1 expression in MOL2
(top) and MOL5/MOL6 (bottom). ¢, Normalized and scaled DORC score for Hoxb
cluster genes (Type 3 DORCs in MOL5/MOL6) in OPC (left), MOL2 (middle) and
MOL5/MOL6 (right). d, Feature plots showing DORC scores of Hoxb2, Hoxb3,
Hoxb4, HoxbS, Hoxb6 and Hoxb7. UMAP coordinates and population distributions
areasinFig.3a. e, Normalized chromatin accessibility of Hoxa (top) and Hoxb
(bottom) genesin MOL5/MOL6; the gray box highlights Hoxb genesind.
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Extended DataFig. 5g,h and Supplementary Tables 7 and 8). This indi-
cated that immune-related genes tend to have important changes in
both gene expression and chromatin accessibility at promoter/gene
body regionsin all OLG populations.

We then explored the dynamics of chromatin accessibility both at
promoters/gene bodies and at associated distant enhancer regulatory
regions during the disease course. Gene loci displaying differential
chromatin accessibility at promoter/gene body regions between dif-
ferent time points were divided into high chromatin accessibility in
CFA-Ctrl(Typel), early stage (Type 2), peak stage (Type 3) and late stage
(Type 4; Fig. 5c,d). Very few genes could be found in Type 1in MOLs
and none could be foundin OPCs (Fig. 5c,d and Extended Data Fig. 5i).
In both OPCs and MOLs, most genes with differential chromatin and
enhancer accessibility reached their highest levels of accessibility dur-
ing the peak stage, with the association of immune-related functions
(Supplementary Tables 3 and 4). Of note, a predominance in accessi-
bility at genes associated with collagen biosynthesis and extracellular
matrix organization was described in MOL5/MOL6 compared to MOL2
atlate stages of EAE (Fig. 5¢,d and Supplementary Tables 3 and 4).

When comparing MOL2 to MOL5/MOL6, we found that there
was a group of antigen processing/presentation with high chro-
matin accessibility at the peak stage in both MOL2 and MOL5/6
(Extended Data Fig. 5j,k and Supplementary Tables 3 and 4). Moreo-
ver, we found that more immune-related genes were upregulated
in MOL2 than in MOL5/MOLS6 at the peak stage. Some immune sys-
tem process-related genes, such as indoleamine 2,3-dioxygenase
1(/doI), complement component 1, r subcomponent A (CIra) and
IFN-stimulated exonuclease gene 20 (Isg20) showed increased chro-
matin accessibility at the peak stage in MOL2 but notin MOL5/MOL6
(Fig. 5e,fand Supplementary Tables 3 and 4), further indicating that
MOL2 triggers a more robust opening of the chromatin at immune
genes after EAE than MOL5/MOL6.

HOXB enhancer activity increases in MOL5/MOLG6 in late EAE
Recently, superenhancers, clusters with high levels of transcription
factor binding and domains of regulatory chromatin (DORCs), have
been suggested to have key roles in modulating gene expression'.
Genes associated with DORCs were characterized by exceptionally
large (five or more) numbers of significant peak-gene associations
(Extended Data Fig. 6a,b). To explore the role of DORCs in the course
of EAE, we defined differentially accessible domain-regulated genesin
OLG subpopulations (Fig. 6a and Extended DataFig. 6¢). We found three
types of DORCsin MOL5/MOL6, among which only 2domains were clas-
sified as Type1(high activity at the early stage), 49 domains were clas-
sified as Type 2 (high activity at the peak stage), and 24 domains were
classified as Type 3 (high activity at the late stage; Fig. 6a). By contrast,
we only found Type 2 (high activity at the peak stage) DORCsin MOL2.
Type 2 DORCs in both MOL2 and MOL5/MOL6 were associated with
genesinvolved inimmune processes, with Gbp7, IFN regulatory factor
4 (Irf4) and Irgm1 included (Fig. 6a,b and Supplementary Table 3). For
OPCs, 3 Type1 DORCs and 49 Type 2 DORCs were identified, with many
of them beingimmune related (Fig. 6b and Supplementary Table 3).
The presence of two additional DORC types (Types 1and 3) in
MOLS5/MOL6 suggests that additional biological processes are regu-
lated in this mature OL subtype compared to MOL2 (Fig. 6¢). In par-
ticular, at this stage, we found increased DORCs regulating a group
of homeobox (Hoxb) genes, such as Hoxb2, Hoxb3 and Hoxb4, in
MOL5/MOL6 but not MOL2 (Fig. 6¢-e, Extended Data Fig. 6d,e and
Supplementary Table 3). Interestingly, only a subset of MOL5/MOLS6,
a subpopulation of MOL5/MOL6-C, mainly from late-stage EAE, was
driving the upregulation of DORCs of Hoxb genes (Fig. 6d). By contrast,
all subtypes of OPCs present high DORC scores across all time points
(Fig. 6¢c and Extended Data Fig. 6d). The increased activity was only
found in Hoxb but not in other HOX family gene regions (Fig. 6e and
Extended Data Fig. 6e). HOXB2 is essential for OL patterning?. Thus,

theincreased chromatinaccessibility of these developmental-related
DORCs suggests that MOL5/MOL6 might have primed transcriptional
programs compatible with nervous system repair and remyelination
and promotion during the late stages of EAE.

MultiVelo reveals distinct MOL2 and MOL5/MOLG6 responses
inEAE

Although RNA velocity leverages splicing and RNA turnover toinfer cel-
lular transitional dynamics®, another key component for these dynam-
ics are changes in the epigenomic landscape during cell transitions.
To explore dynamics of OLG during disease, we applied MultiVelo®,
atool that integrates transcriptomics and epigenomics datasets to
estimate cell-fate predictions. For a given gene, this tool can define
the state of each cell into one of the following four phases: priming
(brown), coupled-on (pink), decoupling (dark blue) and coupled-off
(light blue; Methods, Fig. 7a and Extended Data Fig. 7a,b)*°. Due to
the limited number of OPCs, some genes of interest did not present
a complete transcriptional trajectory using MultiVelo (Methods and
Extended Data Fig. 7c¢,d). We found that canonical OLG genes, such
as Opalin, contactin 1(Cntnl) and neuron navigator 1 (NavI), showed
coupled-on phasesin MOL5/MOL6 in both CFA-Ctrl mice and in mice
with EAE from early to late stages (Fig. 7c,d,f). However, many of these
nervous system development-related genes exhibited either a prim-
ing or coupled-off phase in MOL2 (Fig. 7b,d,f). Thus, similar to our
previous results, Multivelo analysis suggests a differential regener-
ative response of MOL2 and MOL5/MOL6 in the context of EAE. By
contrast, immune-related genes, such as B2m, H2-D1 and Stat1, were
observedto transitionbetween the coupled-on and decoupling phases
in most MOL2 cells, which indicated a highly open chromatin level
and transcription (Fig. 7b,e). However, these immune genes showed
a chromatin priming phase in MOL5/MOL6 in CFA-Ctrl animals, fol-
lowed by a transient coupled-on phase at early-stage EAE. At the peak
and late stages, B2m and H2-D1 transitioned into a coupled-off phase,
indicatinganimportantreductionin chromatin accessibility and gene
expression of these immune-related genes at the chronic stage of the
disease (Fig. 7c,e). Transition to an immune-like state has been previ-
ously shownto be incompatible with differentiationin OPCs’, and our
data suggest that in MOL in EAE the enhanced immune-like state of
MOL2 cellsisdistinct to a putative more remyelination-prone state of
MOLS5/MOLSG cells. Thus, these results further indicate a divergence
inthe response of different MOL populations to the evolving disease
environmentin EAE.

Changes in MOL transcription factor activity in EAE
To obtain insights into the molecular mechanisms mediating the
divergent OLG responses in the different stages of EAE, we inferred
the global gene regulatory network (GRN)* for OPCs and MOL5/
MOL6 and MOL2. We observed changesin the activity of the predicted
transcription factors between the different stages of EAE (Fig. 8a—c,
Extended Data Fig. 8a-d and Methods). We had previously found that
the transcription factor BACHI1 negatively regulated the induction of
immune-related genes mediated by IFNy"™. Interestingly, we observed
thatits related transcription repressor BACH2 has more activity in
CFA-Ctrl mice then in any EAE stage in both MOL2 and MOL5/MOL6
populations (Fig. 8a-cand Extended Data Fig. 8a-d). At early stages of
EAE, we found higher activity of NKX6.2in both MOL2 and MOL5/MOLS6,
which might be consistent with the transitory regenerative responses
observed at early stages. NKX6.2 hasanimportantroleinoligodendro-
genesis and myelination®** and has been recently shown to drive OLG
specification from induced pluripotent stem cells*?*°, We also found
that STAT3, which hasimmunosuppression potential®”**, showed higher
positive activity inMOL5/MOLG6 from the early stage, while at the peak
stage in MOL2 and OPCs (Fig. 8a,c and Extended Data Fig. 8c)".
Weidentified 26 transcription factorsin MOL5/MOL6 and 23 tran-
scription factors in MOL2, acting mainly with positive activities at
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Fig. 7| MultiVelo analysis indicates divergent responses of MOL2 and MOL5/
MOLG6 cells to the evolving disease environment in EAE. a, Gene phase
portraits predicted by MultiVelo for model 1 (M1, full line) and model 2 (M2,
dotted line) genes. b,c, MultiVelo UMAPs of MOL2 (b) and MOL5/MOL6 (c) cells
colored by time points. d,e, MultiVelo UMAPs of MOL2 and MOL5/MOL6 cell
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nervous system development- (d) and immune response-related (e)

genes. Navl, Opalin, Cntnl, Synel, Nrcam, Statl and Stat2 are classified as M1
genes, and B2m, H2-D1 and H2-K1 were classified as M2 genes. f, Normalized
chromatin accessibility (left) and log, expression (right) of Opalinin MOL2 and
MOL5/MOLS6 cells.

the late stage. Among these transcription factors were TCF4, RUNX2,
myocyte enhancer factor 2A (MEF2A) and POU homodomain transcrip-
tion factors (Fig. 8a,b), with functionsin nervous system development.
In particular within MOL5/MOL6-predicted transcription factors, we
found an increased number of candidates related to nervous system
development at the late stage, including nuclear factor I A (NFIA) and
TCF12, which are involved in the regulation of OL differentiation and
maturation®* (Fig. 8b). Some transcription factors regulating cell
differentiation, such as SOX4, were also found to mainly act at the late
stage compared to other stages in MOL5/MOL6 (Fig. 8b). However,
unlike in MOL5/MOLS6, the differentiation-related factors TCF7L2
(ref.42) and SOX4 exhibited the highest activity from the peak stage in
OPCs (Extended Data Fig. 8c), suggesting that early CNS regeneration
may already beinitiated. These results further underscore differential
regenerative potential of OLG during the late stages of the disease.

STAT3 contributes toimmunosuppressionin MOLs

STAT3 is a transcription factor that can be involved in immune sup-
pression by, for instance, the upregulation of PD-L1 expression***,
PD-L1is animmune checkpoint protein whose immune-suppressing
effects have been observed across a broad range of cell types* . We
found that both the expression and chromatin accessibility of Cd274
(whichencodes PD-L1) wereincreased at early and peak stages in OPCs

and MOLs (Extended Data Fig. 9a). The increase of PD-L1 expression
may thus be stalling the autoimmune response during the early and
peak stages of the disease. To investigate whether STAT3 regulates
PD-L1 expression in OLG, we knocked down Stat3 expression using
shortinterfering RNA (siRNA) or inhibited its activity with the inhibitor
auranofin®*" in primary cultured neonatal OPCs. We found that both
Stat3siRNA and auranofin effectively inhibited Stat3 expression fol-
lowing IFNy treatment. This inhibition also resulted in reduced Cd274
expression in response to IFNy (Fig. 8d and Extended Data Fig. 8e).
Furthermore, flow cytometry analysis revealed a decrease in PD-L1
protein expression in OPCs treated with Stat3 siRNA (Fig. 8e). These
findings suggest that certainimmune suppression-related genes may
be upregulated in OLGs during EAE in response to the inflammatory
milieu, attempting to attenuate and regulate the immune response.

Discussion

Theimmune plasticity of OLG was first reported about 40 years ago™®.
In addition, MHC class I and MHC class Il expression in OLG under
inflammatory conditions was further observed in many subsequent
studies®® 2, Recently, with the emergence of single-cell transcrip-
tomics, the concept of imOLG has been further expanded to neuro-
inflammation in the context of MS, Alzheimer’s disease and aging in
several studies***°>*>, We have recently shown that MHC and other
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Fig. 8| Transcription factor activity foresees the immunosuppression
potential of MOLs. a,b, Ranked transcription factor activities of the predicted
transcription factors at different stages in MOL2 (a) and MOL5/MOL6 (b). The
X axis shows transcription factor activity represented with a dot colored by
stage and connected with aline. Transcription factor activity was calculated as
the mean coefficient multiplied by the average expressionin each time point.
The yaxis shows transcription factors ranked based on transcription factor
activity at each time point (a zoom-in view is shown in Extended Data Fig. 9);
TF, transcription factor. ¢, Normalized chromatin accessibility (left) and log,
expression (right) of Bcl6 and Stat3in MOL2 (left) and Stat3in MOL5/MOL6
(right). d, Relative expression of Stat3 and Cd274in OPCs treated with control

siRNA or Stat3siRNA after IFNy treatment, measured by RT-qPCR; **P < 0.01

and *P < 0.05. Student’s two-tailed paired ¢-tests were used for comparisons
between matched conditions (P=0.0098 for Stat3and P= 0.0409 for Cd274);
n=>5biologicallyindependent samples per condition, each derived from
primary OPC cultures isolated from a different mouse. e, Percentages of PD-L1*
OPCs treated with control siRNA or Stat3 siRNA after IFNy treatment measured
by flow cytometry; *P < 0.05. Student’s two-tailed paired ¢-tests were used for
comparisons between matched conditions (P = 0.0218 for PD-L1" cells); n =4
biologically independent samples per condition, each derived from primary OPC
culturesisolated from a different mouse.
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immune-associated genes are highly expressedin EAE at the peak stage,
with primed chromatin accessibility of some of these genes already
in CFA-Ctrl animals*". In the current study, we applied multiomics
scRNA-seq and scATAC-seq to comprehensively profile OLG cellular
states throughout EAE, from onset to chronic stages. Our results show
that several immune-related genes and their chromatin accessibility
levels are already elevated in OLG, in particular in OPCs, at the early
stage of EAE, when symptoms start emerging. Furthermore, theseloci
remain highly accessible evenin the late disease stage.

Immune-like OLG emerge early in EAE, before lesions are fully
developed®. We also observe that the percentage of MHC class II* OLG
issimilarinside and outside lesions, suggesting that the lesion environ-
ment is not essential for the transition of OLG to immune-like states.
These findings are consistent with spatiotemporal transcriptomics
analysisin EAE, indicating that disease-associated gliacanbeinduced
independent of lesions and that the disease-associated MOLs are in
close proximity to disease-associated microglia and astrocytes®*. Thus,
itisplausible that theinduction ofimOLG might be mediated not only
by infiltrating immune cells but also by other disease-associated glia
or inflammatory environmental factors.

The presence of imOLG at all stages of EAE could suggest differ-
ential functions at distinct time points. We observed that only asmall
percentage of Sox10" cells express MHC class Il genes. However, even
minimal expression can have substantial functional implications.
In MS and EAE, OLG are direct targets of the autoimmune response
within the CNS. MHC class Il expression in OLG might enable them
to present antigens and activate CD4* T cells, positioning OLG at the
forefront of disease onset and progression. Nevertheless, our results
showed immune-repressive pathway activation in MOLs at EAE early
and peak stages, aligning with previous findings that OPCs and MOLs
express PD-L1 (ref. 13). Thus, MOLs could, in principle, activate or,
alternatively, block immune responses in the context of EAE. At the
early stages, immune MOLs might act by modulating (preventing or
initiating/amplifying) the initial neuroinflammatory events underlying
the etiology of the disease. At peak stages, given the presence of high
numbers of professional antigen-presenting cells, such as microglia
and macrophages, the role ofimmune MOLs might be more subtle and
modulatory of the function of these otherimmune cells. We observe the
persistence of MHC classand MHC class Ilin OLG in the late stages of
EAE, whenimOLG might be involved in disease persistence, although
aroleinreducinginflammatory responsesis also possible.

IFNy treatment of human HelLa cells has been shown to lead to
long-term transcriptional memory®. Moreover, epigenetic memory of
previous inflammatory events has alsobeen observed in mouse epider-
mal stem cells®*’. Disease-associated astrocytes have also been sug-
gested to present epigenetic memory following neuroinflammation®®,
and obesity has also been reported to lead to epigenetic memory in
adipocytes, including genes involved in inflammatory signaling®.
Here, we found that OLG can also retain memory of previous inflam-
matoryinsults atachromatin accessibility level. Inthe most common
course of MS, individuals with relapsing-remitting MS suffer from
multiple remissions and relapses over the course of the disease, and
the symptoms can worsen after each relapse’. Therefore, the observed
epigenetic memory ofimmune-related genes in OPCs may contribute
tofaster and stronger immune gene expression following the next wave
of stimulation during the relapse stage in individuals with MS. This
immune epigenetic memory in OLG may contribute to the chronicity
of the disease and the difficulty in treating demyelinating diseases.

The heterogeneity of the OL lineage in development has been
reportedinour previous study”, and several subsequent studies have
further confirmed the transcriptional and spatial preferences of dis-
tinct subpopulations of OL in development and disease*”'*?°. In our
analysis, we identified previously reported mature resting subtypes.
The percentage of cells with an immune profile was higher in MOL2
thanin MOL5/MOLG6. The expression ofimmune-related genesin MOLS5/

MOLG6 decreased considerably at the late stage compared to the early
stages. Together, theimmune characteristics of MOL2 in the spinal cord
of mice with EAE are stronger than those of MOL5/MOL6. MOL5/MOL6
aremoreenrichedinthe gray matter of the spinal cord, whereas MOL2
are more preferentially located within the white matter of the spinal
cord, whereimmune infiltrates and lesions are the most prominent'*’°,
The difference in the domain distribution between MOL2 and MOLS5/
MOLS6, in combination withintrinsicfactors, may thus contributeto the
heterogeneity of MOL in response to the inflammatory environment
and higher immune characteristics of MOL2.

We observed notable disparities in CNS development functions
between MOL2 and MOL5/MOL6. We saw that some genes related to
CNS development always stay in a coupled-on stage in MOL5/MOL6
but not in MOL2, which suggests a more central role of MOL5/MOL6
in myelin maintenance and stability than MOL2 in disease, especially
at the chronic stage. However, our results do not provide a definitive
answer regarding whether MOL5/MOLSG6 at the late stages are newly
generated or resilient cells that were already present before disease
development. One hypothesisis that MOL5/MOL6 are newly generated
and possess a stronger ability for CNS development. Alternatively, itis
still possible that these MOL5/MOL6 survive ina severe inflammatory
environment and contribute to remyelination once the inflammation
in the CNS is diminished. To address this question, lineage tracing
experiments need to be conducted in future studies.

Our study provides a unique resource for understanding the
intricate mechanisms underlying the gene regulation and chromatin
accessibility of OLG in the context of MS using an animal model. In par-
ticular, our study sheds light on the distinct fates of MOL2 and MOL5/
MOL6 during disease evolution, indicating that therapeutic strategies
targeting MOLs need to be specific for the different populations. The
road to fully understand the complex interplay of transcriptomics
and epigenomics in MS requires further exploration, such as spatial
resolution, which may provide a more comprehensive and accurate
picture of the disease.

Limitations of the study

Although our multiome analysis gives insights into the epigenetic
potential and memory in OLG during the time course of the disease,
at the onset of the disease, the inclusion of intermediate time points
might allow further granularity and uncovering of additional cellular
states in OLG. We also show that OPCs in vitro can acquire epigenetic
memory in the form of chromatin accessibility at immune-related
genes. Although it is possible that this epigenetic memory occursin
MOLs, itis challenging to assess thisin vitro due to cell death of MOLs
after prolonged culturein vitro. Future studies might elucidate whether
this epigenetic memoryalsooccursinadult OPCsand MOLs invivoand
whether it plays arole after the second inflammatory challenge, as, for
instance, in relapsing-remitting EAE models. The observed priming of
OL differentiation and myelination gene programsin MOL5/MOL6, par-
ticularly at the early stages of EAE, suggest that there might be awindow
of opportunity for the promotion of MOL-associated remyelinationin
MS. Nevertheless, our resultsindicate only potential given the nature of
epigenomicdata, and itis thus unclear whetheritis possible to harness
this MOL capability to promote remyelination. A deeper analysis of the
epigenetic landscape at a single-cell level by examining, for instance,
activating and repressive histone modifications” or DNA methylation
might further elucidate mechanisms that could lead to the activation of
these gene programs and promote remyelinationin the context of MS.
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Methods

Animals

The present study followed some applicable aspects of the PREPARE
and ARRIVE”>” planning guidelines checklist such as the formulation
of the in vivo study, dialog between scientists and the animal facility
and quality control of the in vivo components in the study. All animals
were born, bred, housed and subjected to experimental treatment at
Karolinska Institutet, Comparative Medicine Biomedicum animal facil-
ity for research on small rodents (KM-B). Sox10:cre-RCE:loxP (eGFP)
transgenic mice were used in this study and were originally obtained
by crossing mice with Cre recombinase under the control of the Sox10
promoter (The Jackson Laboratories, 025807; with a C57BL/6 genetic
background) with reporter mice RCE:loxP-EGFP (with a CD1background,
32037-JAX) tolabel the complete OL lineage. Breedings were performed
with creallele females and non-crecarrier males, withonemaleand up to
two females. Breeding males carrying ahemizygous creallele, along with
thereporter allele, with non-crefemales was avoided because it resulted
inprogeny expressing eGFPin all cells. Miceincluded in the experiment
were heterozygotes and between 9 and 13 weeks old; both males and
females were included. None of the experimental animals in this study
were subjected to previous procedures. The following housing conditions
were used: dawn 06:00-07:00, daylight 07:00-18:00, dusk18:00-19:00
and night 19:00-06:00. A maximum of five adult mice was housed per
individually ventilated cage of type Il (IVC seal safe GM500, Tecniplast).
All animals were free from mouse viral pathogens, ectoparasites and
endoparasites and mouse bacteria pathogens. Animal health surveil-
lance was performed every third month according to the Federation of
European Laboratory Animal Science Association recommendations™.
Threebasicand one complete Federation of European Laboratory Animal
Science Association tests were performed per year (health monitoring
was performed via PCR on exhaust air filter dust and by serology from
sentinel animals). General housing parameters, such as relative humid-
ity, temperature and ventilation, followed the European Convention for
the Protection of Vertebrate Animals Used for Experimental and Other
Scientific Purposes Treaty ETS 123, Strasbourg 18.03.1996/01.01.1991.
Briefly, a relative air humidity of 55% + 10% and temperature of 22 °C
were maintain, and air quality was controlled with the use of stand-alone
air handling units supplemented with HEPA-filtrated air. Monitoring of
husbandry parameters was performed using ScanClime (Scanbur) units.
Cages contained hardwood bedding (TAPVEI), nesting material, shredded
paper, gnawing sticks and card box shelter (Scanbur). The mice received
aregular chow diet (R70 or R34, Lantménnen Lantbruk or CRM(P) SDS
or CRM(P), SAFE). Water was provided by using a water bottle, which
was changed weekly (water quality was assessed by 1SO 6222, SSEN-ISO
9308-2:2014 and SS EN-ISO 14189:2016 methods, Eurofins). Cages were
changed once every week. All cage changes were performedin alaminar
air flow cabinet (NinoSafe MCCU mobile cage changing unit) provided
with a HEPA H14 EN1822 filter (0.3-um particle size). Facility personnel
wore dedicated scrubs, socks and shoes. Respiratory masks were used
when working outside of the laminar air flow cabinet. Animals of both
sexes were assigned to different experimental groups by randomization
using the GraphPad randomization tool (GraphPad by Dotmatics).

All experimental procedures on animals were performed fol-
lowing the European Directive 2010/63/EU, local Swedish directive
L150/SJVFS/2019:9, Saknr L150 and Karolinska Institutet complemen-
tary guidelines for procurement and use of laboratory animals (Dnr.
1937/03-640) and Karolinska Institutet Comparative Medicine vet-
erinary guidelines and plans (version 2020/12/18). The procedures
described were approved by the local committee for ethical experi-
ments on laboratory animals in Sweden (Stockholms Norra Djurforsok-
setiska ndmnd), license numbers 1995-2019 and 7029-2020.

EAE
For EAE induction, animals were injected subcutaneously with an
emulsion of MOG;;,_ssin CFA (Hooke Laboratories, EK-2110; containing

1mg ofMOG;;_ss per mlemulsion and 2-5 mg of killed mycobacterium
tuberculosis H37Ra per ml emulsion, Hooke Laboratories), followed
by the intraperitoneal injection of pertussis toxin (Hooke Laborato-
ries, included in the induction kits) in 1x PBS (Gibco, 10010023) on
days 0 and1(200-225 ng per animal, adjusted by lot according to the
manufacturer’s instructions). Scores of EAE were graded according
to the following criteria: 0, asymptomatic; 1, limp tail or titubation; 2,
limp tailand weakness of hindlimbs; 3, limp tail and complete paralysis
of hindlimbs; 4, limp tail, complete paralysis of two hindlimbs with
forelimbinvolvement; 5, moribund or dead; 0.5 forintermediate symp-
toms. Investigators were not blinded to group allocation and were
aware of whether animals were assigned to the control or EAE group
during both experimentation and outcome assessment. Accordingly,
data collection and analysis were not blindly performed to the condi-
tions of the experiments.

CFA-Ctrlmice were injected subcutaneously with control emulsion
containing CFA but without MOG,;_s; (Hooke Laboratories, CK-2110),
followed by the administration of pertussis toxinin PBS on days O and
1(200-225 ng per animal, adjusted by lot according to the manufac-
turer’s instructions). Spinal cords from mice with EAE were collected
at the (1) early stage (days 8-9 after injection, score of 0-0.5, 14 mice
in 7 multiome experiments), (2) peak stage (days 14-15, score of 3,10
micein5 multiome experiments) or (3) late/chronic stage (days 37-40,
score 0f2-2.5,14 mice in 6 multiome experiments). Spinal cord samples
from CFA-Ctrl mice were also collected from the same stages (early
stage, peak stage and late stage) with a score of O (at least four mice
in two multiome experiments for each stage), alongside spinal cord
tissues from noninduced Naive-Ctrl animals (3-month-old mice from
the same strain, six mice in three multiome experiments). Scores for
mice with EAE and CFA-Ctrl mice were plotted using GraphPad Prism
version 9.0.0.

Tissue dissociation, FACS and single-cell multiome RNA-seq
and ATAC-seq

Attheearly, peak and late stages, mice were perfused with cold PBS, and
spinal cords were collected. Spinal cord tissues were then dissociated
into asingle-cell suspensionaccording to the manufacturer’s protocol
forthe Adult Brain Dissociation kit, mouse and rat (Miltenyi Biotec, 130-
107-677; we did not perform the red blood cell removal step because the
majority of red blood cells had been removed after PBS perfusion). For
the debris removal step, most of the samples were processed with 38%
Percoll except two Naive-Ctrl samples, two EAE peak-stage samples and
two EAE late-stage samples, which were processed with debris removal
solution (Miltenyi Biotec,130-107-677) according to the manufacturer’s
protocol, to enrich more OPCs. Spinal cord single eGFP* cells were
enriched with aBD FACS Aria lll Cell Sorter (BD Biosciences).

The cells were then lysed and washed according to the dem-
onstrated protocol for Nuclei Isolation for Single Cell Multiome
ATAC + Gene Expression Sequencing (10x Genomics, CGO00365),
with the following modifications. Cells were centrifuged for 10 min at
300gand 4 °C, resuspended in lysis buffer (containing 10 mM Tris-HCI
(pH 7.4),10 mM NacCl, 3 mM MgCl,, 0.01% Tween-20, 0.01% IGEPAL
(CA-630), 0.001% digitonin, 1% bovine serum albumin (BSA), 1 mM
dithiothreitol (DTT) and 1U pl RNase inhibitor) and incubated onice
for 3 min. After the incubation, wash buffer (containing 10 mM Tris-HCI
(pH7.4),10 mM NaCl, 3 mM MgCl,, 0.1% Tween-20,1% BSA,1mM DTT
and 1U pl™ RNase inhibitor) was added on top without mixing. The
nucleiwere centrifuged for 5 minat500gand 4 °C. Nuclei were washed
once in wash buffer, followed by another wash with diluted 1x Nuclei
buffer (10x Genomics, PN-1000283) containing 1% BSA,1 mMDTT and
1U pl™ RNase inhibitor. Chromium Next GEM Single Cell Multiome
ATAC + Gene Expression chemistry (10x Genomics, PN-1000283) was
then applied to yield single-cell ATAC and RNA libraries. Twenty-six
mice with EAE (8 early-stage mice, 8 peak-stage mice and 10 late-stage
mice), 12 CFA-Ctrl mice (4 early-stage mice, 4 peak-stage mice and
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4 late-stage mice) and 4 Naive-Ctrl mice were used for independent
replicates. Libraries were sequenced on an lllumina Novaseq 6000
with a50-8-24-49read setup for ATAC (minimum of 25,000 read pairs
per cell) and a28-10-10-90 read setup for RNA (minimum of 20,000
read pairs per cell).

Both male and female mice were used in our study. Most of the
samples contained cells from one male mouse and one female mouse,
except two early-stage EAE samples (one only contained male mice,
another only contained female mice), two peak-stage EAE samples (one
only contained male mice, another only contained female mice) and
two late-stage EAE samples (one only contained male mice, another
only contained female mice) for establishing a sex prediction model
and validation.

RNAscope, immunohistochemistry and confocal microscopy
RNAscope ISH was performed on 14-pum spinal cord sections from the
lumbar spinal cord of control mice and mice with EAE (n =3 for each
condition) with probes for mouse Sox10 (ACD, 435931) and H2-Ab1
(ACD, 414731-C2). The RNAscope ISH protocol for sections was per-
formed following the manufacturer’sinstructions with minor modifica-
tions (RNAscope Multiplex Fluorescent Detection Reagentsv2,323110).
Tissue sections wereincubatedin 1x target retrieval reagent (RNAscope
Target Retrieval Reagents, 322000) for 5 min at 98 °C, followed two
2-min washes with DNase/RNase-free water. The samples were then
incubated with protease IV (RNAscope Protease Ill and Protease IV
Reagents, 322340) at room temperature for 20 min, followed by two
2-min washes with DNase/RNase-free water. The sections were hybrid-
izedwith probes (C1:C2/C3inal:50 dilution) for 2 hat 40 °C and washed
twice with wash buffer (RNAscope Wash Buffer Reagents, 310091).
Amplification steps were performed by incubating with v2Ampl
(30 min), v2Amp2 (30 min) and v2Amp3 (15 min) (RNAscope Multiplex
Fluorescent Detection Reagents v2, 323110) at 40 °C, with two 2-min
washes with wash buffer in between steps. The sections were incu-
bated with v2-HRP-C1 for 15 min at 40 °C, and after two 2-min washes
with wash buffer, tyramide signal amplification (TSA)-conjugated
fluorophores (1:1,500 dilution in TSA buffer; RNAscope Multiplex TSA
Buffer, 322810) were added and incubated for 30 min at 40 °C. The
sections were washed twice with wash buffer and incubated with HRP
blocker for 30 minat40 °C. The v2-HRP, TSA-conjugated fluorophore
and HRP blocker steps were then repeated for C2 and C3 channels, if
applicable. Atthe end, the sections were incubated with DAPI (Sigma,
D9542;1:5,000) for 5 min and washed with PBS with 0.05% Tween-20
(VWR, 9005-64-5) for 2 min.

Forimmunohistochemistry, after blocking with 5% normal donkey
serum (Sigma) in 0.3% PBS/Triton X-100 for 1 h at room temperature,
spinal cord sections were incubated overnight at 4 °C in the follow-
ing primary antibodies: anti-MHC class Il (Invitrogen, 14-5321-85,
rat 1:50, clone M5/114.15.2) and anti-GFP (Abcam, ab13970, chicken
1:200) diluted in PBS/0.05% Tween-20/2% normal donkey serum. After
washing the sections with PBS/0.05% Tween-20, secondary Alexa
Fluor-conjugated antibodies (goat anti-rat (for MHC class 11, 1:1,000;
Invitrogen, A21434) and goat anti-chicken (for GFP, 1:1,000; Abcam,
ab150169)) diluted in PBS/0.05% Tween-20/2% normal donkey serum
were incubated for 2 h at room temperature. Slides were counter-
stained with DAPI, mounted with mounting medium and maintained
at 4 °Cuntil further microscopic analysis.

Images were acquired using a Zeiss LSM800 confocal microscope
(RNAscope) and Zeiss LSM980 microscope (immunohistochemistry)
and processed in Fiji/ImageJ. For RNAscope, six x20 randomly selected
fields per mouse (three from lesions and three from nonlesions) were
chosen for quantification. The percentage of MHC class II" OLG was
significantly higher at the peak stage (Iesion: 5.33 + 0.23%, nonlesion:
5.32 £ 0.23%) than at both early stage (lesion: 0.49 + 0.849; nonle-
sion: 0.384 + 0.333%) and late stage (lesion: 2.54 + 0.23; nonlesion:
2.71+0.32%) in both lesion (P=0.0001) and nonlesion (P=0.0001)

areas (Fig. 2j). A two-way ANOVA with a Tukey’s multiple comparisons
test was performed using GraphPad Prism version 9.0.0 for comparing
the percentages of Sox10"H2-AbI" cells between different time points
and between lesion and nonlesion.

Primary OPC culture

Sox10:cre-RCE:loxP (eGFP) transgenic mice were used. The brains
of postnatal days 3-6 pups were dissociated using a Neural Tis-
sue Dissociation kit (Miltenyi Biotec, 130-092-628), according to
the manufacturer’s protocol. OPCs were obtained with MACS with
CD140a microbeads following the manufacturer’s protocol (CD140a
Microbead kit, Miltenyi Biotec, 130-101-547). Cells were seeded in
poly-L-lysine-coated (Sigma, P4707) dishes and grown on OPC pro-
liferation medium comprising DMEM/F-12/GlutaMAX (Thermo
Fisher, 10565018), N2 medium (Thermo Fisher, 17502048), penicil-
lin-streptomycin (Thermo Fisher, 15140122), NeuroBrew (Miltenyi,
130-097-263), bFGF (40 ng mI™%; R&D, 233-FB) and PDGF-AA (20 ng ml™;
Peprotech, 315-17).

Oli-neucell culture

Oli-neu cells (obtained fromJ. Trotter, Johannes Gutenberg Univer-
sity) were seeded in poly-L-lysine-coated (Sigma, P4707) dishes and
grown on proliferation medium comprising DMEM (Gibco, 41966029)
supplemented with 1x N2 supplement (Thermo Fisher, 17502048), 1x
penicillin-streptomycin-glutamine (Gibco, 10378016),340 ng ml T3
(Sigma, T6397),400 ng mI™ T4 (Sigma, 89430),10 ng mI"' bFGF (R&D,
233-FB),1ng mI"' PDGF-BB (R&D, 520-BB) and 0.5% fetal bovine serum
(Gibco,10500064).

IFNy treatment, RT-qPCR, bulk RNA-seq and bulk ATAC-seq
For the 2x IFNy treatment, primary OPCs (n = 2) and Oli-neu cells (n = 3)
were initially treated with IFNy (100 ng mI™; R&D, 485-MI-100) for 24 h.
Afterward, the cells were cultured in proliferation medium without
IFNy for 96 h, and then a second dose of IFNy was administered for an
additional 24 h. For the 1x IFNy treatment, cells were treated with IFNy
only at the time when the 2x IFNy-treated cells received their second
dose. RNA extraction was performed using an RNeasy kit (Qiagen,
74106), and RNA-seq libraries were prepared using Stranded Total RNA
Prep, Ligation with Ribo-Zero Plus (Illumina, 20040525), according to
the manufacturer’s protocol. Libraries were sequenced on anlllumina
NovaSeq X, with a75-10-10-75 read setup.

RNA extraction was performed using an RNeasy kit (Qiagen,
74106), followed by cDNA synthesis using a High-Capacity cDNA
Reverse Transcription kit (Thermo Fisher, 4368814), according to the
manufacturers’ protocols. RT-qPCR was performed on a QuantStudio
5using SYBR Green Master Mix (Thermo Fisher, 4385617; Supplemen-
tary Table10). Relative gene expression was calculated using the change
incyclingthreshold (244 %) method, normalizing to the housekeeping
gene Gapdh.

ATAC-seq was performed as previously described"”, with minor
adaptations. For each condition, 50,000 primary OPCs were col-
lected, washed with PBS and lysed with 50 pl of lysis buffer (10 mM
Tris-HCI (pH 7.4), 10 mM NacCl, 3 mM MgCl,, 0.1% IGEPAL (CA-630),
0.1% Tween-20 and 0.01% digitonin) on ice for 3 min. After lysis, 1 ml
of washbuffer (10 mM Tris-HCI (pH 7.4),10 mM NaCl, 3 mM MgCl, and
0.1% Tween-20) was added, and the nuclei were pelleted by centrifuga-
tion at 500g for 10 min at 4 °C. After aspirating the supernatant, the
nuclei were resuspended in 50 pl of transposition mix (25 pl of 2x TD
buffer (Tagment DNA Buffer), 16.5 pl of PBS, 0.5 pl of 1% digitonin,
0.5 pl of 10% Tween-20, 2.5 pl of Tn5 Transposase (final 100 nM) and
5 pl of nuclease-free water) and incubated for 30 minat 37°Cina
thermomixer with mixing at 1,000 rpm. The DNA was purified both
before and after PCR usingaZymo DNA Clean and Concentrator-5 kit
(Zymo Research). Libraries were sequenced on an Illumina NovaSeq
Xwith a 51-8-8-50 read setup.
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Transcription factor knockdown/inhibition, RT-qPCR and
flow cytometry

For transcription factor knockdown, siGENOME SMARTpool non-
targeting control siRNA (D-001206-13-05, Dharmacon) or siRNA
targeting Stat3 (M-040794-00-0005, Dharmacon) was used, which
contains a pool of four siRNAs. One milligram of siRNA was diluted
in OPTIMEM (31985062, Gibco), mixed with Lipofectamine 2000
(11668027, Invitrogen) and allowed to form complexes for 20 min
at room temperature. Primary OPCs were then incubated with the
siRNA complexes in OPTIMEM with N2 medium, NeuroBre, bFGF
(40 ng ml™") and PDGF-AA (20 ng ml$™%) After 72 h, IFNy (100 ng mI™)
was added for 24 h. For the STAT3 inhibitor auranofin (Enzo Life Sci-
ences), primary OPCs were cultured in OPC proliferation medium with
2 uM auranofin for 24 h, followed with IFNy (100 ng ml™) treatment
for 24 h.

Specific gene sequences were used for qPCR, and the primer
sequences used are asshownin Supplementary Table 10. Relative gene
expressionwas calculated using the 2-24 &method, normalizing to the
housekeeping gene Gapdh. A two-tailed paired ¢-test was performed
using GraphPad Prism version 9.0.0 for comparing the relative
expression levels.

For flow cytometry, OPCs were collected and washed with stain-
ing buffer (PBS/0.5% BSA). The cells were then stained using a LIVE/
DEAD Fixable Near-IR Dead Cell Stain kit (for 633- or 635-nm excita-
tion, Invitrogen) to determine cell viability, followed by staining of
PD-L1-APC-conjugated antibody (1:100; BioLegend, 124312, clone
10F.9G2) for 30 min at 4 °C and washing once with staining buffer.
Cellular fluorescence was measured with Cantoll (BD Biosciences).
Forward- and side-scatter parameters were used for the exclusion of
doublets. Datawere analyzed with Flow)o software 10.8.1 (TreeStar).

Raw data processing

In total, seven batches were collected from the sequencing facility.
Fastqfiles from 28 samples were processed throughout the 10x Genom-
ics standard pipeline. Gene expression and chromatin accessibility
libraries were inputted into cellranger-arc2 (ref. 75) ‘count’ v2.0.2 with
default settings to align the biological readouts on the associated
mm10 reference genome v2020-A-2.0.0. Sample aggregation of both
transcriptomic and genomics metrics was done using the ‘aggr’ of the
same CellRanger executable file, without normalization.

The aggregated count matrix and fragments file were loaded
into R v4.3.2 (https://www.R-project.org). The former was lodged
into a Seurat v5.0.3 (ref. 76) assay, whereas the latter was accommo-
dated into a Signac v1.13.0 (ref. 77) chromatin assay associated with
Ensembl’® base annotation v79_2.99.0 for mice where University of
California, Santa Cruz, nomenclature was applied to provide gene name
readability.

If not specifically mentioned, the following pipeline descriptions
belong to either the Seurat or Signac package.

Removal of ambient RNA

Cell-free mRNA contamination was removed from each droplet using
Cellbender v0.3.0 (ref. 79). Genes called in all samples by Cellbender
were included into the feature list. Potential cells called in both Cell-
Ranger and Cellbender were included in the cell list. In total, 181,674
cells were retrieved. Most of the genes affected by the ambient RNA
removal were canonical genes and ribosomal genes (120 genes with a
log, (FC) greater than1).

Filtering of low-quality cells

After determining that each cell could be uniquely identified, quality
metrics for both gene expression and peak accessibility were calcu-
lated. Among others, the mitochondrial ratio, cell cycle score, nucleo-
some signal and TSS enrichment were generated to support the quality
control cutoffs.

Minimum and maximum outliers in counts, detected genes,
TSS enrichment and percentage of mitochondrial information were
removed from the analysis (Supplementary Methods).

Peak calling

The aggregated fragments file was used in MACS2 v3.0.0 (ref. 80) to
proceed to a peak call. Peaks falling in nonstandard chromosomes or
overlapping genomic blacklist regions from the mm10 genome were
discarded. The fraction of reads in peaks was then calculated for each
cell, and the mean value for each sample ranged from 0.64 to 0.79.

Peak annotation

The annotation of each peak was performed using the Ensembl base
annotationv79_2.99.0 for mice, following the 10x Genomics guideline
(https://www.10xgenomics.com/support/software/cell-ranger-arc/
latest/analysis/peak-annotations), and saved in the same format as
cellranger-arc output. In total, 976,949 entries were registered, with
20,611 promoter, 939,715 distal (10% inside the gene body) and 16,623
intergenic hits.

Peak connection

To consider a peak associated with agiven gene, the function LinkPeaks
from Signac was used with a Pvalue cutoffat 0.05. The Pvalues were cor-
rected using the Benjamini-Hochberg method, and only associations
with a Pvalue adjusted lower than 0.01 were selected for downstream
analysis. Peak coaccessibility was performed using Cicero v1.3.9, and
Pvalues were calculated onzscores of coaccessibility scores, adjusted
using the Benjamini-Hochberg method and selected if less than 0.01
(Supplementary Methods).

Gene activity

The computation of fragment counts per cell in the gene body and
promoter region (gene activity) was performed with the GeneActiv-
ity function from Signac, fetching all biotypes and extending 500 bp
upstream of the TSS to catch the promoter region. All other parameters
were set to default. This matrix was used later to infer chromatin acces-
sibility for each gene.

Doublet detection
The detection of putative events where more than one cell inthe same
droplet occurs was performed using DoubletFinder v2.0.4 (ref. 81).
Most of the samples drew less than 1% of doublets, but eight
samples drew 1.49, 1.59, 1.88, 2.35, 3.33, 5.08, 7.85 and 20.86% of
doublets. Using the multiplet rate provided by 10x Genomics
(https://kb.10xgenomics.com/hc/en-us/articles/360001378811-
What-is-the-maximum-number-of-cells-that-can-be-profiled), we
were able to measure a 0.8%/8% theoretical number of doublets.
Predicted doublets were removed from the downstream analysis
(Supplementary Methods).

Sex classification model

Intotal, 69,152 cells were sequenced with a priori sex annotation. This
knowledge was used to create a machine-learning sex classifier to
investigate sex-dependent transcriptomic or epigenetic differences.
Equal numbers of cells for each sex (30,940 cells) were extracted from
the main object to a sex object to build the model. Mouse genes and
positions from chromosomes X and Y were extracted from Ensembl
v79 2.99.0 (ref. 78).

The validation on the testing dataset yielded an accuracy of 95.4%,
asensitivity of 91.0% and a specificity of 99.7%. Aninsignificant number
of male cells was annotated as female cells, while a few female cells
were assigned as male cells. We then used the newly created model
to process each cell of the main object. Correction of misassigned
cells (8.32%) from a priori sex-annotated samples was performed
(Supplementary Methods).
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Some studies have reported thatimmune responses are different
inmany aspects between males and females in both MS and its animal
models®>®, Because most of our samples were mixed with one male
mouse and one female mouse, we created a sex prediction model based
onthe expression of sex-related genes (Methods). This sex prediction
model was validated with samples containing cells from only male
or female mice with EAE, with an accuracy of 95.3% on the validation
dataset. There was better prediction accuracy in the male sample
(99.48%) thanin the female sample (86.13%; Extended Data Fig. 9b,c).
We applied this sex prediction model to the entire dataset, annotated
the sex of the cells (Extended Data Fig. 9d,e) and compared the dif-
ferences between male and female OLG based on the sex prediction
results. For OLG subpopulations, apart from sex-related genes, such as
Xinactive specific transcript (Xist and Tsix), ubiquitously transcribed
tetratricopeptide repeat containing Y-linked (Uty), eukaryotic trans-
lation initiation factor 2 subunit 3 structural gene Y-linked (Eif2s3y),
dead-box helicase 3 Y-linked (Ddx3y) and lysine demethylase 5D
(KdmS5d), no other genes were found to be differentially expressed
between males and females (Extended Data Fig. 9f). Accordingly, we
found no major differences between the OLG of males and females
at the gene expression level in our data. We also did not observe a
significant difference in the percentages of imOLG between male and
female mice (Extended Data Fig. 9f-h). Thus, our data indicate that
OLGresponses to the neuroinflammatory environmentin EAE are not
characterized by sexual dimorphism.

Normalization

Each feature of each cell of the gene count matrix was divided by the
total counts of that cell and multiplied by a scale factor 0f 10,000.
The obtained scaled matrix was then natural-log-transformed. The
peak count matrix was processed through a term frequency inverse
document frequency (TF-IDF) normalization, which computed a
log (TF x IDF) with ascale factor of10,000. Each feature of each cell of
the gene activity matrix was divided by the total counts of that cell and
multiplied by ascale factor of 10,000. The obtained scaled matrix was
then natural-log transformed.

Significant features selection

To proceed to thereduction of the dataset dimensions, the 2,000 most
variable genes were selected via variance stabilizing transformation,
and 95% of the most common peaks were also selected. The expression
of each gene was transformed by subtracting its average expression
and scaled by dividing its standard deviation.

Dimension reduction

Reduction of the dimensionality of the expression matrix onthe 2,000
most variable genes was done by running a principal component (PC)
analysis. The first 30 PCs, representing most of the diversity of the
dataset, were selected by the elbow plot method. The partial singular
value decomposition was used to reduce the dimensions of the most
common peaks, and 12 of the first latent semantic indexing (LSI) layers
were selected viathe elbow method. However, the first LSIwas removed
fromtheselected dimensions duetoits high correlation with chromatin
capture depth, which would bias the investigation of the chromatin
opening binarity.

Construction of the nearest neighbor graph

For both PCs and LSI, the graphs were made with the ‘annoy’ method
with Euclidean distances and 50 trees. A ‘k’ for the k-nearest neighbor
algorithmwassetto 20. For the construction of the graph based on PCs,
an acceptable Jaccard index was set to 0. For the multimodal nearest
neighbor graph, the same numbers of PCs and LSIs were used. A ‘K’
for the k-nearest neighbor algorithm was set to 20,200 approximate
neighbors were computed, and the cutoff to discard the edge in the
shared nearest neighbor graph was set to 0.

Cluster determination

Unsupervised clustering of the nearest neighbor graphs was performed
using the Louvain algorithm. The resolution of each clustering was
assessed using the ‘clustree’ R package iterating over different resolu-
tions to pinpoint the most stable clustering resolution. Resolutions
of1, 0.4 and 1.2 were selected, generating 19, 13 and 24 clusters, for
gene expression, peak accessibility and joined modality, respectively.
Of note, an undetermined cluster specific at 97.86% for a unique
sample at the early time point was standing out of all other clusters.
All 1,973 cells from this cluster were therefore removed from the
downstream analysis.

Cell projection

Inall visualizations of the cells, despite the high dimensionality of the
data, the nearest neighbor graphs were reduced to only two dimensions
using UMAP with the appropriate number of PCs and LSIs (‘Dimension
reduction’), and other values were set as default.

Batch effect correction

Assamplelibraries were not prepared on the same day and sequencedin
the same sequencing run, and technical artifacts might arise and gener-
ate variability not related to biology in the dataset. However, account-
ing for such disequilibrium, without removing the subtle differences
between time points, was challenging. Batch effect correction methods
such as Harmony®* or Scanorama® with soft parameters completely
masked the differences between time points. Moreover, sampleintegra-
tion with ‘cca’ and ‘rpca’ was also overcorrecting time-point-specific
cell populations. Although the popular batch effect methods were not
suitable forour particular dataset, werelied on the strength thatevery
sequencing run possessed at least one CFA-Ctrl sample (except on late
time pointand Naive-Ctrl samples). Thus, weinvestigated if the cellsin
each CFA-Ctrl cluster were well mixed across the different replicates. All
14 major CFA-Ctrl clusters contained cells fromall replicates. To analyze
further at the cell mixing level, a local inverse Simpson’s index (LISI)
fromHarmony v1.2.0, accounting for categorical variable diversity, was
calculated for an equivalent number of cellsin each CFA-Ctrlreplicate,
using the first two components of the joint projected UMAP. This score,
initially ranging from1to the number of replicates, wasnormalized toa
scale of 0 to 1. For CFA-Ctrl, 63% of the cells maintained a LISl of at least
0.5. The same strategy was applied to the Naive-Ctrl samples, where 15
of the 17 major Naive-Ctrl clusters mainly contained cells ascending
fromthe tworeplicates; one homogeneous cluster was coming froma
microglia cluster and the other one was from a pericyte population. At
thesingle-celllevel, 76% of the cells maintained a LISl of atleast 0.5. For
all EAE time points, the same method was applied, yet the calculated LISI
was lower than CFA-Ctrl or Naive-Ctrl (EAE score equal to 0), probably
duetothe heterogeneity of the EAE score at the sample collection within
eachtime point (46% for early, 51% for peak and 49% for late). Although
this method does not allow us to mitigate potential hidden batch effects,
it provides awell-balanced cell distribution at a consistent EAE score.

Label transfer

After removing cells with less than 200 detected genes, more than
8,000 detected genes and less than 10% of reads matching the mito-
chondrial genome using a dataset from the literature®, the tran-
scriptomes of the remaining cells were normalized and scaled using
SCTransform from Seurat. A label transfer was then performed from
theliterature annotation to the present dataset based on the transcrip-
tional profile of selected anchors via the FindTransferAnchors function
using canonical correlation analysis, the ten first dimensions of the PC
analysis and recomputing of the residual with the reference SCT model
parameters. The label prediction was run using TransferData with
the previously determined anchors set and the canonical correlation
analysis reduction to weight the anchors. For each cell, the highest
prediction score was selected to make the annotation.
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Cellannotation

Cell-type annotation was assessed per cluster on the joined graph
clustering resolution, and label transfer outputs, cell-type marker gene
expressionand chromatinaccessibility were taken into consideration.
More refined cell types for the MOL population were later considered.

Immune score
Exhaustive lists of immune-related genes published in Meijer
et al.”?, specific to ‘immune response’ (GO:0002250) and ‘immune
system process’ (GO:0002376), were used to evaluate the immune
capability of each cell. Cells from Naive-Ctrl animals were used as
the background signal. After removing unexpressed genes in our
dataset, subcategories with genes related to positive regulation of
immune response, negative regulation of immune response, anti-
gen processing and presentation, positive regulation of type I/
II IFN-mediated signaling pathway, positive regulation of cytokine
production, complement activation, CD4" T cell-related immune
response and CD8" T cell-related immune response were extracted
from the immune gene list, respectively, using the MGl immune
database (https:/www.informatics.jax.org/vocab/gene_ontology).
Foreach celltype,immunescores were calculated for eachimmune
subcategory and as awhole, using the AddModuleScore function from
Seurat with default parameters. Allscores were scaled fromOto1,and
the probability of each cell following theimmune score distribution of
the Naive-Ctrl population was processed using the following distribu-
tion function, where g and o are the mean and standard deviation of the
immune score distribution of the Naive-Ctrl population, respectively:

1 X—u
Pr(sz):F(x):—[1+erf< )]
2 o2

Under the null hypothesis that each cell follows theimmune score
distribution of Naive-Ctrl cells in a given population, each cell with a
Pvalue less than 0.05, rejecting the null hypothesis, was classified as
‘immune’. Cells accepting the alternative hypothesis (P value greater
than 0.05), sharing arelationship betweentheimmune score ofagiven
cell and the immune score distribution of the Naive-Ctrl population,
were classified as ‘nonimmune’. Due to the lack of cells annotated as
neurons in Naive-Ctrl samples, this population was not annotated.
The same approach was used on the gene activity matrix to compare
transcriptional and epigeneticimmune states. Aninvestigation of cell
status was also performed using damage-associated gene lists® (95
genes) following the same strategy (Supplementary Table 9).

Naive-Ctrl versus CFA-Ctrl comparison

To acknowledge the impact of CFA and pertussis toxinin CFA-Ctrl com-
pared to Naive-Ctrl animals, we first performed a Pearson correlation
on the gene expression matrix in each cell type between replicates of
eachtime point. We found a high similarity of expression between OLs
from CFA-Ctrl time points (Pearson correlation score between CFA-Ctrl
replicates: 0.97-0.99; Extended Data Fig. 9i) and Naive-Ctrlreplicates
(Pearson correlation score between Naive-Ctrlreplicates: 0.96-0.99).
For OPCs, microgliaand astrocytes, the correlation scores were slightly
lower (OPCs, CFA-Ctrl replicates: 0.45-0.96, Naive-Ctrl replicates
0.85-0.98; microglia, CFA-Ctrlreplicates: 0.69-0.92, Naive-Ctrl repli-
cates: 0.80-0.92; astrocytes, CFA-Ctrlreplicates: 0.84-0.99, Naive-Ctrl
replicates 0.85-0.95). We did not compare the difference between
CFA-Ctrl replicates in neurons, ependymal cells and pericytes due to
low cellnumbers. Because the cells we used for sequencing were sorted
based on GFP signal, these microglia are likely to be activated microglia
that engulf OLs and are therefore more sensitive to ex vivo alteration.
The finding that microglia are more sensitive than other CNS cell types
has also been confirmed before in another study®®. We did not compare
the difference between CFA-Ctrlreplicatesin neurons, ependymal cells
and pericytes due to low cell numbers.

A gene expression matrix with CFA-Ctrl and Naive-Ctrl replicates
was loaded into a SingleCellExperiment v1.24.0 (ref. 87) object where
genes with less than ten counts were removed. Feature counts were
thenaggregated across cell types and broken down by sample. Each cell
type was processed independently, and samples formed by less than 5
cells and time points formed by less than 30 cells were not considered
for downstream investigation. The resulting matrix and associated
metadata were loaded into an R object using DESeq2 v1.42.1 (ref. 88),
with a design formulaincluding sample namesinaddition to the debris
removal method as a covariate. After size factors and dispersion esti-
mations, results tables were extracted per contrast of Naive-Ctrl on
CFA-Ctrl. Genes presenting an absolute log, (FC) over 1with an adjusted
Pvalue less than 0.01 and a baseMean (the average of the normalized
count values, dividing by size factors, taken over all samples) greater
than1lwere selected as differentially expressed. Seven genes passed the
filtersin MOLs (Adamtsl, Gli2, Lypd6, Map7d2, Npr1, Rnf125 and Sema3c;
Extended Data Fig. 9j), and one gene was differentially expressed in
microglia between CFA-Ctrl and Naive-Ctrl samples (Csmd3).

OL lineage investigation

All cells belonging to the OL lineage were subsetted for fine-tuning
annotation. One EAE early time point sample collected on day 8 after
immunization withascore of O (without any symptom but with weight
loss during the disease course) was removed from the analysis due
to no EAE symptoms and similar gene expression as CFA-Ctrl. As no
major gene expression differences were found between Naive-Ctrl
and CFA-Ctrl in the OL lineage population, Naive-Ctrl samples were
removed from the downstream analysis. The processing of this OL
lineage subset 0f 120,183 cells was similar to the processing of all cell
types. Nevertheless, afew differences must be mentioned, specifically,
the first 20 PCs and the first 9 LSIs were selected for graph construc-
tion. Additionally, cluster resolutions of 2.2, 0.8 and 3.6 were selected
for gene expression, peak accessibility and joined modality, respec-
tively. Anin-depth label transfer was performed on the subset with
the same methods as previously described using only the OL lineage
cells from the literature dataset* (Extended Data Fig. 3c,d). From the
47 potential OL lineage cell clusters on joined graph clustering reso-
lution, we aggregated them using the average hierarchical clustering
methods (Supplementary Methods). The OPC cluster was subdivided
into three subclusters as we observed two time point-specific groups
of OPCs and a third group expressing cycling genes. Each aggregated
cluster was manually assigned to the main OL lineage cell types (OPC,
COP,MOL1,MOL2 and MOL5/MOL6) using specific gene markers and
label transfers. OL lineage cell type subclustering (a, 3,v,6,€,(,1n, 0,1
and k) was assessed and ordered along their averageimmune score for
each main OL lineage cell type (Extended Data Fig. 4a). For instance,
compared toother MOL2 populations, MOL2-¢, predominantly derived
from the peak stage of EAE (Fig. 3¢), exhibited an enrichment of
immune-related genes, including IFN-induced protein with tetratrico-
peptiderepeats 3 (Ifit3), Nlrc5 and IFNy-induced GTPase (Igtp), among
others (Supplementary Table 2). MOL2-a, which mainly came from
CFA-Ctrl and EAE at the early stage, expressed higher lipid metabolic
process genes, such as 3-hydroxy-3-methylglutaryl-CoA synthase 1
(Hmgcsl), cytochrome P450 family 27 subfamily Amember 1(Cyp27al)
and squalene epoxidase (Sgle; Supplementary Table 2). Oligodendro-
cyticmyelin paranodaland inner loop protein (Opalin), whichis associ-
ated with OL differentiation, was enriched in MOL5/MOL6-f. A major
increase in the expression of actin cytoskeleton organization-related
genes, such as actin binding LIM protein family member 2 (Ablim2),
NCK-associated protein 5 (Nckap5) and prickle planar cell polarity
protein1(Pricklel), was observed in MOL5/MOL6-C compared to other
MOL5/MOL6 populations (Supplementary Table 2). The majority of
MOL2- and MOL2-y were derived from late-stage EAE (Fig. 3b,c),
with gene markers associated with metabolism and differentiation,
like ectonucleotide pyrophosphatase/phosphodiesterase 6 (Enpp6)
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and S100 calcium binding protein B (S100b; Supplementary Table 2).
In addition, most MOL5/MOL6-&, MOL5/MOL6-3 and MOL5/MOL6-y
cells were mainly composed of cells from early-stage CFA-Ctrl and
EAE samples, MOL5/MOL6-0 were mainly composed of cells from
peak-stage EAE and cells from MOL5/MOL6-{and MOL5/MOL6-1were
drawn by late-stage EAE (Fig. 3b,c).

Multimodality features selection

Transcriptomic and epigenomic variations in specific cell types
throughout the disease time course were assessed in a pseudobulk
manner. This technique allows us to overcome the sparsity of the data-
sets and highlight dynamic features within three modalities, gene
expression, gene/promoter accessibility and peak accessibility. These
tri-omics modalities meet the prerequisites for analyses based on the
negative binomial distribution (lack of intrasample variability, most
of the features remain stable throughout the tested conditions, raw
integer counts to specific genomic locations, sufficient number of
replicates). Each modality was loaded into a SingleCellExperiment
v1.24.0 (ref. 87) object where features with less than ten counts were
removed. Feature counts were then aggregated across cell types and
broken down by sample. Each cell type was processed independently,
and samples formed by less than 5 cells and time points formed by
less than 30 cells were not considered for the downstream investi-
gation. The resulting matrix and associated metadata were loaded
into an R object using DESeq2 v1.42.1 (ref. 88), with a design formula
including sample names in addition to the debris removal method as
acovariate. After size factors and dispersion estimations, a Wald test
was performed followed by a multiple testing correction using the
Benjamini-Hochberg method. Theresults tables were then extracted
per contrast. We decided to investigate four contrasts (early/control,
peak/early, late/early and peak/late), depicting abroad overview of the
disease time course. Features presenting an absolute log, (FC) greater
than 1 with an adjusted P value of less than 0.01 and a baseMean (the
average of the normalized count values, dividing by size factors, taken
over allsamples) of greater than1were selected to be displayed on the
heat maps and GO analyses for the modalities represented by gene and
promoter and were included into the transcription factor analysis for
the modality represented by peaks. Differential gene expression analy-
sis between males and females within each time point was performed
similarly, merging gene counts by both sample and sex.

Multimodality pseudotime

Expression dynamics were assessed using velocyto v0.17.17 (ref. 29)
toretrieve the number of spliced and unspliced reads in each sample.
In addition to the CellRanger output directory, the GTF annotation
file used by CellRanger was given, along witha GTF annotation file for
mm1O repetitive elements from RepeatMasker (https:/www.repeat-
masker.org). Resulting loom files were loaded into scVelo® in Python
anddirectlyimported via MultiVelo v0.1.3. After merging the samples,
OL lineage cells were selected to undergo alog-transformed normaliza-
tion on the1,000 most variable features with at least ten read counts.

The chromatin accessibility matrix from Macs2 output was loaded,
and peaks were aggregated around each gene using peak annotation
(‘Peak annotation’) and feature linkage prediction (‘Peak annotation’)
inputted in the aggregate_peaks_10x function. OL lineage cells were
selected to undergo a TF-IDF normalization.

The 120,183 cells as well as the 798 genes with both expression
and chromatin accessibility signals were picked to compute moments
for velocity estimation for each cell across its 30 nearest neighbors
calculated from Euclidean distances in the first 30 PC spaces of the
expression matrix. Weighted nearest neighbor properties calculated
previously onthe OL lineage cells were used to smooth the epigenetic
modality and wereincorporated into RNA velocity torecover chromatin
dynamics and carry out enhanced lineage predictions. This last step
was done on MOL5/MOL6 and MOL2 populations separately. For each

celltype,anew UMAP was generated; velocity, latent time and terminal
states were processed; and CFA-Ctrl cells were set as root cells.

MultiVelo classifies, if possible, each gene into two modules of
biological dynamics. This tool is anchored in two models for the cor-
relation of gene expression and chromatin accessibility changes within
the latent time line: a first model (M1) where chromatin starts clos-
ing before the end of transcription and a second model (M2) where
chromatinstarts closing after the end of transcription. Moreover, the
coupled kinetics of the transcriptomic and epigenomic profiles can
be used asleverage to predictacurrent cell state for agiven gene. The
priming state is considered when the chromatin is opening but no
unspliced transcript hasyetbeendetected (brown, chromatinis open-
ing but transcription is not initiated). The couple-on state is selected
when the chromatin is open and the number of unspliced transcripts
is increasing (pink, chromatin is open and transcription is initiated).
The decoupling state is picked when there is adecorrelation between
chromatin and unspliced transcripts dynamics. For the first model,
the chromatin closes before the end of transcription, whereas for the
second model, the number of unspliced transcripts starts decreasing
but the chromatinis still open (dark blue, M1: chromatin accessibility
starts closing before the end of transcription, M2: chromatin is open
but transcription repression begins). The couple-offstate is set when
the chromatin is closed while the number of unspliced transcripts is
collapsing (light blue, chromatinis closed and the number of unspliced
readsis dropping; Fig. 7a and Extended Data Fig. 7a,b).

Due to the limited number of OPCs, some genes of interest did
not present a complete transcriptional trajectory using MultiVelo.
Therefore, we focused on key metrics to highlight their partial kinet-
ics, including unspliced RNA, spliced RNA and chromatin accessibil-
ity levels of the same group of immune-related genes as in MOLs. We
observed that spliced RNA levels of these immune-related genes were
elevated in OPCs both at peak and in a subset of early-stage cells and
were accessible at all time points. By contrast, unspliced RNA levels of
these genesremained low across time points (Extended DataFig. 7c,d).
Thus, based on OPC unspliced and spliced dynamics, OPCs may have a
faster RNA splicing process than MOLs to meet theirimmune functional
demands at early and peak stages of the disease.

Potential enhancers and DORCs
The intermodality investigation helped us associate detected peaks
with the expression of the most probable nearby genes using the Link-
Peaks function from Signac, inspired by the method described in the
SHARE-seq paper™. Each peak-to-gene connection, occurring in at least
ten cells and within a 50,000-bp distance from the gene TSS, with a
positive Pearson correlation coefficient and a Pvalue lower than 0.05
was considered ameaningfulinteraction. For each cell, the number of
fragments falling into the 47,610 peaks involved in the same number
of meaningful interactions was divided by the total number of frag-
ments falling in peaks for the same cell. From the normalized matrix
of meaningful peaks per cell, the normalized numbers of fragmentsin
peaks were aggregated by gene using the peak-to-gene connections,
for a total of 14,665 genes joined to at least one peak. The regulatory
chromatin score for each cell of the generated genes was then multi-
plied by ascaling factor of10,000. Notwithstanding the value of such
enhancer scores, we were interested in deciphering more consequent
DORCs. Therefore, we selected a pool of genes connected to at least
five peaks to redo the peaks-to-genes connectivity calculation on a
broader distance of 500,000 bp from the gene TSS. Keeping a positive
Pearson correlation coefficient and a P value lower than 0.05, a total
of 66,105 peaks were connected to a total of 3,369 genes defined as
DORC:s. Similar to theregulatory chromatin of genes, the DORCs were
normalized, aggregated per gene according to the new connection
material and scaled to generate a DORC score.

As calculating the sum of the peak counts conserves the negative
binomial distribution of the epigenetic modality, both regulatory
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chromatin and DORC-regulated genes were reversed into unnormal-
ized matrices (scaling factor and number of fragments in peaks for a
givencell) to beloadedinto a SingleCellExperiment object to ascertain,
with confidence, gene variations between time pointsinapseudobulk
manner as described above, with the same parameters and thresholds.

GRNs and predicted transcription factors

GRNs were inferred with Pando 1.0.0 (ref. 31). Pando models the
relationship between transcription factors and their binding sites
in selected regulatory regions with the expression of target genes
combining multiome RNA and ATAC information.

The whole dataset was subsetin MOL2 and MOL5/MOL6. For each
MOL, we randomly subset amaximum of 2,000 cells per time point. We
selected peak regions specific to each time pointin MOL2 and MOL5/
MOL6 (‘Multimodality features selection’) as candidate regulatory
regions to scan for transcription factor binding motifs with JASPAR
(2022 release).

The GRNs were inferred by fitting generalized linear models
(GLMs) implemented in Pando for the expression of each gene. The
regression model with peak-transcription factor pairs asindependent
variables and target genes as response variables was built for MOL2
and MOL5/MOL6 populations independently. Peaks were assigned to
nearby genes with the peak_to_gene_method = ‘Signac’, which considers
the closest distance, upstream or downstream, to the gene. The model
estimates of each predicted transcription factor with atarget gene can
beinterpreted asameasure of interaction between both. We calculated
transcription factor activity by multiplying the mean estimates (coef-
ficient) in the model by the average transcription factor expression
at each time point. Transcription factor activities were ranked per
the highest positive activity in each time point. Gene modules were
selected withan R? threshold of an adjusted Pvalue lower than 0.05 and
default parameters with the Pando find_modules function.

IFNy treatment, bulk RNA-seq and bulk ATAC-seq processing

A total of two replicates per condition were sequenced for both bulk
RNA-seqandbulk ATAC-seq.Raw FastQ files were aligned and processed
using the NextFlow core ATAC and RNA pipelines®, nextflow v24.04.2,
to the genome assembly GRCm38.

For bulk RNA-seq, gene-level integer raw counts tables from
nf-core Salmon output were loaded into Rand used asinput for edgeR
v4.2.0 (refs. 91,92) together with their associated metadata. The com-
bined counts table was used to estimate thelibrary size, perform Calc-
NormFactors with the trimmed mean of M values (TMM) method and
performthe fit of genewise common dispersion (glmFit), followed by
alikelihood ratio test (glmLRT). Benjamini and Hochberg’s algorithm
test was used to control the FDR.

First, differential gene expression was tested for changes in the
first dose of IFNy treatment versus control. Second, the resulting genes
with a P value of <0.05 and FDR of <0.05 were tested for differential
gene expression changes after the second IFNy treatment dose. The
experiment designincludedbatch (replicates) and treatment as covari-
ates. Visualization of the expression levels of differentially expressed
genes was performed after running VST normalization from DESeq2
v1.44.0inthe whole dataset, including all replicates from the five time
points. The final visualization shows the scaled z scores through the
wholetable, (scale function center = TRUE) for visualization purposes.

Aligned reads for treatment and replicates were extracted from
processed BAM files from the nf-core ATAC-seq pipeline. Using Bed-
Tools v2.25.0 (ref. 93) coverage on the defined TSS windows and
enhancer regions as a reference, an integer count table was built for
enhancer regions and TSS windows, respectively, with defined regions
asrows and samples as columns. Raw count tables on defined regions
were loaded into R and used as input for edgeR v4.2.0, together with
their associated metadata. Count tables were used to estimate the
library size, perform CalcNormFactors with the TMM method and

perform the fit of regionwise common dispersion (glmFit), followed
byalikelihood ratio test (gImLRT). Differential accessibility testing was
performed with the design (-0 + treatment, replicate) with makecon-
trast IFNy 24 h (+0 h) - IFNy 24 h (+96 h). Benjamini and Hochberg’s
algorithm test was used to control the FDR. TSS windows and enhancer
regions were selectedbasedona| log (FC)| of<0.5and FDR of >0.05.

To define the TSSwindows, also referred to as promoter regions, all
annotated TSSs from EnsEmbl Mouse genes version102 were extracted.
Each TSS was extended 25 bp upstream and 25 bp downstream. The
resulting resized TSS regions were merged whenever there were overlaps
between them using BedTools 2.17.0 mergeBed -s —nms. The resulting
merged TSS regions were resized, adding upstream 500 bp and down-
stream 500 bp fromthe center. Toavoid repeated regions, eachwindow
was annotated with the closest gene asaconsensus. Windows including
more thanone TSS usually referred to alternative TSSs of the same gene.
Onegene can have several TSS windows assigned. The final annotations
consisted of 113,018 nonoverlapping TSS windows of 1 kb in length.

To define enhancer regions, the regions defined as proximal and
distal enhancers from ENCODE candidate cis-regulatory element
(cCRE; GRCm38/mm10) assemblies and last updated 26 May 2021 were
retrieved. Enhancer cCREs overlapping the defined TSS windows (‘IFNy
treatment, bulk RNA-seqand bulk ATAC-seq processing’) were filtered
outusing BedTools v2.25.0 intersect -v. Resulting enhancer cCREs were
merged in nonoverlapping regions with bedtools 2.17.0 mergeBed
-s -nms and extended 500 bp upstream and downstream from the
center. To avoid regions without evidence from our primary OPC bulk
ATAC-seq analysis, any defined region not overlapping the consensus
peaks from all conditions called by nf-ATACseq were discarded. To
annotate enhancers to potentially regulated genes, each enhancer
region was assigned to a candidate gene based on the previously cal-
culated peaktogeneinteractions, CICERO, in our single-cell multiome
datafrom OLG. The final annotations consisted of 59,857 nonoverlap-
ping enhancer regions of 1 kbinlength. One enhancer region can have
several annotated cCREs and be assigned to different genes.

Visualization of ATAC signal on the TSS windows and the enhancer
regions of the assigned genes was performed after running VST nor-
malization from DESeq21.44.0 in the whole dataset, includingall rep-
licates from the five time points. Normalized counts were scaled from
0 to 1by row (gene) for visualization purposes®

Heat maps

Samples with less than 5 cells and time points with less than 30 cells
were removed before heat map generation. For gene expression and
gene/promoter accessibility, normalized log transform aggregated
gene expression and gene/promoter accessibility at each time point
and cell type were calculated to generate heat maps scaled across time
points from O (low) to1(high). For gene regulatory chromatin, the aver-
age value of the gene regulatory chromatinscore at each time pointand
celltype was scaled across time points from 0 (low) to1 (high). Missing
valuesin any tested modalities were set to 0. The black column onthe
right side of each heat map represents the gene average raw count. For
each modality, the average of the previously calculated scaled values
per gene category and time point was used to produce the summarized
dynamic line plots and their associated standard deviation of the dis-
tribution shown as a band of the same color.

GO

Highlights of biological pathways involving the most dynamic features
alongthe disease time course were assessed using the biomaRt v2.58.2
Rpackageinadditionto the Ensemblv79 _2.99.0 database. For eachcell
type, the top 50 features with the highest amplitude across time points
were selected. Genes possessing an Entrez Gene ID underwent pathway
enrichment via the ‘enrichPathway’ function from the ReactomePA
v1.46.0 R package, with a pvalueCutoff set at 0.05, a qvalueCutoff set
to 0.05 and FDR (‘fdr’) as a method of adjustment. A maximum of ten
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pathways (adjusted P value of <0.05) ranked by adjusted P value were
displayed on dot plots. Network graphs were built on significant path-
ways (adjusted Pvalue of <0.05) from the ‘emapplot’ function, taking
asinputtheresults of the pairwise_termsim function, with theJaccard
similarity coefficient as the calculation method for a maximum of 50
pathways ranked by adjusted Pvalue.

Genome tracks

Coverage of the DNA fragments within a given genomic region was
determined using CoveragePlot from Signac. Tracks were normalized
by group using ascaling factor as the number of cells within the group
multiplied by the sequencing depth average of the group.

Single-cell genomic heat maps

All fragments from 50 randomly selected cells per cluster and falling
into a specific genomic region were carried into a 250-bp windowed
matrix that was further down-binarized and plotted.

Percentage of cells on stacked bar plots

The number of cells per cell subtype in each condition was aggregated,
normalized across conditions to get a proportion of each cell subtype
per conditionand divided by the number of conditions to keep the sum
of'the proportion equal to 100%.

Percentage of cells on side-by-side bar plots

The number of predicted male and female cells in each sex-specific
sample was aggregated and normalized across samplesto get a propor-
tion of each sex per sample.

Circos plots

Distribution of cell numbers in the top levels of the circos plots,
matched to each corresponding bottom level. For an unbiased visu-
alization of proportion, some circos plots were randomly downsam-
pled by top levels, bottom levels or both (details are mentioned in the
figure legends).

Bigwig files

The mouse genome was segmented into 100-bp windows, and frag-
ments were assigned to their corresponding window, generating a
binarized genome per cell matrix. For each group of cells, the fragment
counts matrix was aggregated, multiplied by ascaling factor of 10,000
and divided by the number of fragments in the group.

Statistics and reproducibility

Data were processed inside notebooks within a singularity environ-
ment (‘Code availability’) on a high-performance computer cluster
running under Ubuntu20.04 LTS. One EAE early time point sample with
ascore of 0 wasremoved from the analysis due to no EAE symptoms and
similar gene expression as CFA-Ctrl, as well as a MOL cluster specific
at97.86% for aunique sample at the early time point. Differential gene
expression was determined using the DESeq2 package using negative
binomial GLMs, which is the expected distribution from single-cell
experiments®’®, Animals of both sexes were randomly assigned to
experimental groups using the GraphPad randomization tool. The
number of cells in each sample was selected to fit the specifications
outlined by 10x Genomics. The investigators were not blinded to allo-
cation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw fastq files, counts matrices and genomic tracks are available on
Gene Expression Omnibus (GSE250589, GSE283085 and GSE283086).

Dataarealsoavailable for browsingat the University of California, Santa
Cruz, Cell Browser and Genome Browser (https://olg-dyn-eae-multi-
ome.cells.ucsc.edu) and at https://ki.se/en/mbb/research/research-
division-of-molecular-neurobiology/goncalo-castelo-branco-group/
oligointernode. Source data are provided with this paper.

Code availability

Jupyter notebooks to process the raw datasets and reproduce the
figures are accessible at https://github.com/Castelo-Branco-
lab/EAE_multiomics_2025.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Single cell multiome of OLGs from the EAE model.

a, Representative fluorescence-activated cell sorting (FACS) gating strategy with
asample from EAE peak stage. b, Quality control metrics after removing low
quality cells of the multiome ATAC + gene expression sequencing data.

¢, d, UMAP with Louvain clustering algorithm based on gene expression (c) and
chromatin accessibility (d) of 10x Genomics chromium multiome ATAC + gene
expression. e,f, UMAP of the cells colored by condition on top of UMAP with all

cells (in gray), based on gene expression data (e) and chromatin accessibility
data (f). g, UMAP with Louvain clustering algorithm based on joint projection
of gene expression and chromatin accessibility modalities. h, UMAP based on
scRNA-seq data (left), scATAC-seq data (middle), and joint UMAP created by
combining scRNA-seq and scATAC-seq nearest neighbors graphs (right), with
lines connecting cells by single-cell barcodes across modalities.
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Extended Data Fig. 4 | MOL sub-cell type classification based ongene
expression and their IFN-associated and damage-associated transcriptional
responses. a, Joint UMAP of OLG populations colored by sub-cell types, on top of
UMAP with all cells (in gray). b, Heatmap of the scaled expression of differentially
expressed genes between OLG sub-cell types (percentage of cells ina cluster
expressing a gene superior to 50%, log2FC > 0.5 and adjusted p-value < 0.05),
colored by sub-cell types and time points. ¢, Scaled expression level ofimmune
response related genes grouped by function in OLG sub-cell types. OPC-

a:n = 2134, OPC-B:289, OPC-y:1072, COP:1002, MOL56-0::4706,MOL56-(3:37969,
MOL56-y:5595, MOL56-6:4166, MOL56-£:4733, MOL56-0:6299, MOL56-1:164,

MOL56-0:3392, MOL56-1:1093, MOL56-k:10704, MOL2-a::10854, MOL2-3:8988,
MOL2-y:1841, MOL2-6:6227, MOL2-£:8413, MOL1:542. d, Percentage of cells with
(red) or without (green) immune status identified by gene expression (left) and
chromatin accessibility (right) in each OLG sub-cell type. e f, Circos plot showing
the number of cells with (black) or without (green) damage- and IFN-associated
profiles, only IFN-associated profile (blue), only damage-associated profiles
(gray) for OPC (left), MOL2 (middle), and MOL5/6 (right) from different time
points at gene expression (e) and chromatin accessibility (f) levels (downsampled
by time point).
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Immune-related genes showed substantial changesin
expression and chromatin accessibility, with increased transcriptionin OPCs
and MOL2 at early and peak EAE stages. a Heatmaps of differentially expressed
genes (log2FC >1and p-value adjusted < 0.01) (in brown) between different

time points in OPC, with chromatin accessibility at promoter and gene body (in
purple) and at enhancer regions (in green) of the same gene. The black column
ontheside represents the gene raw counts. The line plots represent the averages
of gene expression (linein brown), the chromatin accessibility at promoter and
genes body (linein purple), and chromatin accessibility at enhancer regions
(lineingreen) of genes in different groups. The color band associated with aline
represents the standard error of the distribution. b,c, Circos plots showing the
number of cells with (red) or without (green) immune status identified with gene
expression (b) and chromatin accessibility (c) from different time pointsin OPC
(left), MOL2 (middle) and MOLS56 (right) (downsampled by time points).d, Violin

plots showing the expression of myelination related gene Plpl at different stages
inMOLS5/6.n=CFA-Ctrl:43293,Early:30937,Peak:15248,Late:30705. e, fUpset plots
showing differentially expressed genes overlaps between MOL2 over MOL5/6

(e) or MOL5/6 over MOL2 (f), within each time point (Log2 Fold Change >1and
g-value < 0.01)). g,h, Connections between enriched GO terms (p.adjust < 0.05)
of genes with both differential expression and chromatin accessibility among
different disease stages in MOL2 (g) and MOL5/6 (h). i, Heatmaps of differential
chromatin accessibility at promoter and gene body (log2FC >1and p-value
adjusted < 0.01) (in purple) between different time points in OPCs, of gene
expression (in brown) and chromatin accessibility at enhancer regions (in green)
of the same gene. Other features are such asin a).j, k, Chromatin accessibility
normalized tracks of representative immune related genes (Irgm1, Igtp and
Gbp7) withanimportantincrease at peak stage in MOL2 (j) and MOL5/6 (k).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Priming DORCs ofimmune related genes in MOL2 at
early and peak stages and MOL5/6 at peak stage. a, Bar plot of the number of
significant peak-gene associations. b, Representative DORC (Gbp3). The genomic
track represents the OLG bulk accessibility of Gbp3 while the links denote the
significant correlation (p-value < 0.05) between peaks and Gbp3 (+ 500 kb

from TSSs). The violin plot shows Gbp3 log2 expression in OLG. ¢, Heatmaps

of normalized and scaled DORC score of differentially variable gene scores
(log2FC >1and p-value adjusted < 0.01) at different stages, 52 genes in OPC.

Differential DORCs and associated gene ontologies are shown in Supplementary
Table 3, 4.d, Violin plots of DORCs score of Hoxb genes in OLG sub-cell

types. OPC-a: n = 2134, OPC-3:289, OPC-y:1072, COP:1002, MOL56-1:4706,
MOLS56-B:37969, MOL56-y:5595, MOL56-6:4166, MOL56-€:4733, MOL56-0:6299,
MOL56-n:164, MOL56-08:3392, MOL56-1:1093, MOL56-k:10704, MOL2-:10854,
MOL2-(3:8988, MOL2-y:1841, MOL2-6:6227, MOL2-£:8413, MOL1:542.

e, Normalized chromatin accessibility of Hoxa (upper) and Hoxb (lower)
genesin MOL2.
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Extended Data Fig. 8| Transcription factor activity combining chromatin
accessibility and gene expression in OLGs, and regulation of Cd274 (PD-L1)
by STAT3. a,b,c, Activity score of selected transcription factor at different
stagesin MOL2 (a), MOL5/6 (b), and OPC (c). x axis: transcription factor activity
score, y axis: transcription factors grouped by time point at which transcription
factor activity is the highest. d, Activity score of selected transcription factor

at different stagesin MOL2 and MOL5/6. e, Relative expression level of Stat3
and Cd274 in OPCs treated with DMSO or Stat3 inhibitor Auranofin after IFN-y
treatment, measured by qPCR.**P <0.01,*P < 0.05; Student’s two-tailed paired
t-tests were used for comparisons between matched conditions (P = 0.0031 for
Stat3 and P = 0.02 for Cd274); n = 6 independent experiments per condition.
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Extended Data Fig. 9| See next page for caption.
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Extended Data Fig. 9 | No major differences were found neitherin OLG
between male and female nor between CFA-Ctrl and naive-Ctrl groups
regarding immunerelated genes. a, Normalized tracks of chromatin
accessibility (left) and expression (right) of Cd274 (PD-L1) in OPC,MOL2, and
MOLS5/6.b, Circos plot showing the prediction result (upper semicircle) and
downsampled ground truth (bottom semicircle) of the sex. ¢, Bar plot showing
the percentage of cells predicted to be male (blue) or female (red) in the samples
used to build the sex prediction model. These samples came from different
stages of EAE and only contained cells from one gender. d, Joint UMAP from the
weighted nearest neighbors graph of scRNA-seq and scATAC-seq modalities
colored by sex predition. e, Circos plot showing the proportion of predicted male

and female cells in each cell type, downsampled by sex. f, Heatmap showing the
expression of differentially expressed genes (log2FC >1and pvalue adjusted
<0.01) between male and female in OPC, COP, MOL2, MOLS5/6.g, Circos plot
showing the number of cells with (red) or without (green) immune status for
predicted male and female cells (downsampled by sex). h, Heatmaps of the
expression (left) and chromatin accessibility (right) of MHC-I (upper) and -11
(lower) genes in predicted male and female cells at different stages in OLG. The
black column on the side represents the gene raw counts. i, Correlation matrix
showing the Pearson correlation scores of MG between different CFA-Ctrl
replicates. j, Dot plot showing differentially expressed genes (log2FC >1and
pvalue adjusted < 0.01) between Naive-ctrl and CFA-Ctrlin MOL.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Single cell multiome data was collected using lllumina NovaSeq 6000 (NovaSeq Control Software 1.7.5/RTA v3.4.4). Raw fastq files were
aligned for both ATAC and RNA to mm10 genome associated with Cellranger ARC2 v2.0.2 (GENCODE vM23/Ensembl98), with default settings
and aggregated using aggr function from the same software without normalization. Bulk-RNA-seq and bulk ATAC-seq data were collected
using lllumina NovaSeq X with standard software. Raw fastq files were aligned and processed using NextFlow v24.04.2 core ATAC and RNA
pipelines to the genome assembly GRCm38. Images acquired using a Zeiss LSM800 Confocal (RNAscope) and Zeiss LSM980
(immunohistochemistry). OPC cellular fluorescence was measured with Cantoll (BD Biosciences).

Data analysis Single cell multiomics data was analyzed using mainly R v.4.3.2, Seurat v5.0.3 and Signac v1.13.0 packages. Ambiant RNA was removed using
Cellbender v0.3.0 and potential doublets were called using DoubletFinder v2.0.4.Peaks were called using MACS2 v3.0.0 and linked to each
others genes using Cicero v1.3.9. The sex determination was created using a random forest model from Caret v6.0. The Local Inverse
Simpson's Index (LISI) was performed using Harmony v1.2.0. Differential features expression or accessibility were computed using
SingleCellExperiment v1.24.0 and DESeq2 v1.42.1. Gene Ontology (GO) was assessed using ReactomePA v1.46.0. Genes velocity were
processed from velocyto v.0.17.17 and MultiVelo v.0.1.3. Gene Regulatory Network (GRN) was generated using Pando v1.0.0.

Bulk RNA-seq and ATAC-seq were analysed with the NextFlow v24.04.2 nf-core RNA-seq and ATAC-seq pipelines. Differential features
expression or accessibility were processed using edgeR v4.2.0 and DESeq?2 v1.44.0. Count tables were built for enhancer regions and TSS
windows using BedTools v2.25.0. All code to reproduce the analysis step by step is published in notebooks available at : https://github.com/
Castelo-Branco-lab/EAE_multiomics_2025. RNAscope and immunohistochemistry images were processed in Fiji/

ImageJ (1.54f). Scores for EAE and CFA-Ctrl were plotted using GraphPad Prism version 9.0.0. Flow cytometry data were analyzed with
FlowJo software 10.8.1 (TreeStar).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Mouse reference genome associated with Cellranger ARC2 v2020-A-2.0.0 (GENCODE vM23/Ensembl98) was used for the single cell multiomics. For the bulk RNA-
seq and ATAC-seq, the mouse reference genome GRCm38 was used.

From the single cell dataset, Ensembl base annotation v79_2.99.0 was used to annotated peaks. Gene Ontology database was provided by biomaRt v2.58.2.

Cells association with immune response were characterize using GO:0002250, with immune system process using GO:0002376 and the damage-associated from

Kaya, T., et al., Nat Neurosci, 2022 Supplementary Table3. Finally RepeatMasker database whas queried from https://genome.ucsc.edu with the following options :

Mouse genome, GRCm38/mm10 Dec2011, Group by All Track, RepeatMasker Track for the whole genome output as GTF file, in order to consider repeat elements
and low complexity sequences.

For the bulk dataset, JASPAR 2022 database, was used to find Transcription Factors (TFs) binding motifs and ENCODE Candidate Cis-Regulatory Elements (cCREs)
(GRCmM38/mm10) assembly (last update on 2021-05-26) was used to define enhancers.

Raw and processed data are available under GSE250589. GSE283085 (ATAC-seq) and GSE283086 (RNA-seq).

The following publicly available dataset was used in this study for label transfer GSE113973 (scRNA-seq of oligodendrocytes in EAE).

Statistical source data for image quantification, gPCR, and flow cytometry analyses are provided in the accompanying Source Data file.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a. No human data is included in this study.

Reporting on race, ethnicity, or n/a. No human data is included in this study.
other socially relevant

groupings

Population characteristics n/a. No human data is included in this study.
Recruitment n/a. No human data is included in this study.
Ethics oversight n/a. No human data is included in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed to pre-determine sample sizes. For all experiments, a minimum of three biological replicates per
condition was used. Although no a priori statistical power calculation was performed, sample sizes were selected based on precedent in the
literature and our prior experience with similar experimental designs, where n > 3 has consistently yielded reproducible and statistically
discernible effects.

EAE samples:

- 7 multiome experiments for the early stage (7 females plus 7 male mice, total 14 mice)
- 5 multiome experiments for the peak stage (5females plus 5 male mice, total 10 mice)
- 6 multiome experiments for the late stage (7 females plus 7 male mice, total 14 mice)

CFA-CTRL samples:
- 5 multiome experiments for the early stage (5 females plus 5 male mice, total 10 mice)

- 2 multiome experiments for the peak stage (2 females plus 2 male mice, total 4 mice)
- 2 multiome experiments for the late stage (2 females plus 2 male mice, total 4 mice)
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Data exclusions

Replication

Randomization

Blinding

Behaviou

3 multiome experiments were performed for Naive-Ctrl (3 females plus 3 male mice, total 6 mice).

For RNAscope ISH and immunohistochemistry, the sample size was n=3 per condition. For RNAscope ISH, six 20X randomly selected fields per
mouse (three from lesion and three from non-lesion) were chosen for quantification.

For single-cell multiome data, we excluded data points through our quality control pipeline, as indicated in the methods section in the paper.
In short, depending on the quality of each sample, for each cell, a maximum of 30,000/150,000 and a minimum of 1,000 ATAC counts, a
maximum of 10,000/50,000 and a minimum of 600 RNA counts, a minimum o 250 detected genes, a maximum of 0.8/1.5 nucleosomal signal,
a TSS minimum enrichment of 2 and a maximum percentage of mitochondrial information of 15/50 were prerequisites to consider a given cell
for the downstream analysis. One EAE early time point sample collected on day 8 post-immunization with a score of O was removed from the
analysis due to no EAE symptom and similar gene expression as CFA-Ctrl. A cluster of 1973 cells specific at 97.86% to one Early sample, was
removed from the analysis.

For the bulk RNA-Seq and ATAC-Seq experiments, for each treatment and control data 3 replicates were collected and sequenced. After
preprocessing and QC with RNA-seq nf-core pipeline QC statistics, one of the replicates from the second dose of IFN-g treatment of one of the
replicates showed significant differences compared to the other replicates, based on PCA inspection of similarity between replicates and
Euclidean distance between replicates between others. For consistency reasons, this replicate from all the treatments and control was
discarded. All downstream analyses were performed with 2 replicates for both RNA-seq and ATAC-seq in all data points.

RNAscope ISH and immunohistochemistry were performed with n = 3 independent biological replicates per condition. Multiome experiments
included 7 (14 mice) early-stage, 5 (10 mice) peak-stage, and 6 (14 mice) late-stage EAE experiments; 5 (10 mice), 2 (4 mice), and 2 (4 mice)
CFA-control experiments at early, peak, and late stages respectively; and 3 (6 mice) naive controls, all independently replicated successfully.
IFN-y treatments were performed with n = 2 primary OPCs and n = 3 Oli-neu samples. Stat3 siRNA experiments included n =5 for gPCR and n
= 4 for flow cytometry, and Stat3 inhibitor treatments were done with n = 6, with all replication attempts successful.

For single-cell RNA-seq, we distributed females and males with similar ages equally in controls and EAE, using the GraphPad randomization
tool (GraphPad by Dotmatics). For cell experiments, cells used within each independent experiment were derived from the same passage
or from the same animals, and therefore allocation to experimental groups was not randomized.

The analysis involving RNAscope ISH were performed blindly. Blinding was not performed for EAE experiments, as disease monitoring and

stage-specific tissue collection required knowledge of group allocation. For cell experiments, blinding was also not performed, as investigators
were responsible for administering specific treatments to designated groups.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? []ves [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChlP-seq
Eukaryotic cell lines |:| IXI Flow cytometry
Palaeontology and archaeology IZI |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Antibodies

Antibodies used

Validation

MHCII (1:50, Invitrogen, 14-5321-85, Clone M5/114.15.2), GFP (1:200, Abcam, ab 13970), Goat anti-Rat Secondary Antibody(1:1000,
Invitrogen, A21434), Goat anti-Chicken Secondary Antibody(1:1000, Abcam, ab150169), and PD-L1-APC-conjugated antibody (1:100,
BiolLegend, 124312, Clone 10F.9G2)

All antibodies used in this study are broadly used in the field and have been tested by the company.

-MHCII (Invitrogen, 14-5321-85, rat) : Host/Isotype Rat / 1gG2b, kappa; applications: Western blot, immunohistochemistry , IHC on
paraffin and frozen sections, immunocytochemistry/immunofluorescence, flow cytometry, ELISA, immunoprecipitation,
neutralization, functional assays, inhibition assays, blocking assays, and in vitro assays. https://www.thermofisher.com/antibody/
product/MHC-Class-II-I-A-I-E-Antibody-clone-M5-114-15-2-Monoclonal /14-5321-82

-GFP (Abcam, ab 13970, chicken): Host/Isotype: Chicken/IgY; applications: Western blot and immunocytochemistry/
immunofluorescence. https://www.abcam.com/en-us/products/primary-antibodies/gfp-antibody-ab13970

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Oli-neu Mouse Oligodendroglial Precursor Cell Line (RRID:CVCL_IZ82, obtained from Dr. Jacqueline Trotter, Johannes
Gutenberg University, Germany).

Cell line was not specifically authenticated but was used in genomic studies that were consistent with their identity.

Mycoplasma contamination Cell line was regularly checked for mycoplasma contaminations and was found negative.

Commonly misidentified lines  oligneu is not listed as a misidentified cell line.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance
Specimen deposition

Dating methods

n/a

n/a

n/a

D Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

Sox10:Cre-RCE:LoxP (EGFP) transgenic mice between 9-13 weeks were used in this study. Sox10:Cre-RCE:LoxP (EGFP) mice are a
strain of mice obtained originally by crossing mice with Cre recombinase under the control of the Sox10 promoter (The Jackson
Laboratories; with a C57BL/6 genetic background) with reporter mice RCE:loxP-EGFP (with CD1 background).

No wild animals were used in this study.

Both male and female mice were included in this study.

No field-collected samples were used in this study.

All experimental procedures on animals were performed following the European Directive 2010/63/EU, local Swedish directive L150/
SJVFS/2019:9, Saknr L150, and Karolinska Institutet complementary guidelines for procurement and use of laboratory animals, Dnr.
1937/03-640 and Karolinska Institutet Comparative Medicine veterinary guidelines and plans (version 2020/12/18). The procedures

described were approved by the local committee for ethical experiments on laboratory animals in Sweden (Stockholms Norra
Djurférsoksetiska namnd), license numbers: 1995-2019 and 7029-2020.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration n/a

Study protocol n/a
Data collection n/a
Outcomes n/a
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Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] public health

[ ] National security
|:| Crops and/or livestock
|:| Ecosystems
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|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

—~<
™
%)

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

XXX XNXXXX &
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Any other potentially harmful combination of experiments and agents

Plants

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a
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ChlIP-seq

Data deposition

D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

D Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links n/a
May remain private before publication.
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Files in database submission n/a
Genome browser session n/a
(e.g. UCSC)

Methodology
Replicates n/a
Sequencing depth n/a
Antibodies n/a

Peak calling parameters n/a
Data quality n/a

Software n/a

Flow Cytometry

Plots

Confirm that:
X] The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
X] All plots are contour plots with outliers or pseudocolor plots.

X] A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Mouse spinal cords were collected. Spinal cord tissues were then dissociated into a single cell suspension according to the
manufacturer’s protocol of Adult Brain Dissociation Kit, mouse and rat (Miltenyi Biotec, 130-107-677, we did not perform the
red blood cells removal step since the majority of the red blood cells had been removed with PBS perfusion)

Instrument BD FACS Aria Ill Cell Sorter was used for sorting. BD Cantoll was used for analysis.

Software FlowJo_v10.8.1 was used for analysis.

Cell population abundance The percentages of GFP+ cells out of live cells differ across samples (1-15%), with EAE samples showed lower percentage
compared to control. The percentages of PD-L1+ cells out of live cells differ across samples with different treatments
(7.65-36.5%).

Gating strategy Cells were identified first on FSC/SSC plots, dead cells were gated away using DAPI staining (sorting) or LIVE/DEAD Fixable

Near-IR Dead Cell Stain Kit (analysis). For cell sorting, live cells were plotted on GFP (FITC channel was used) for collecting the
GFP+ population. For PD-L1 expression analysis, live cells were plotted on APC channel for detecting PD-L1 expression.

X] Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
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Design type n/a




Design specifications n/a

Behavioral performance measures  n/a

Acquisition
Imaging type(s) n/a
Field strength n/a
Sequence & imaging parameters n/a
Area of acquisition n/a
Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software n/a
Normalization n/a
Normalization template n/a
Noise and artifact removal n/a
Volume censoring n/a

Statistical modeling & inference

Model type and settings n/a
Effect(s) tested n/a

Specify type of analysis: [ | whole brain || ROI-based
Statistic type for inference n/a

(See Eklund et al. 2016)
Correction n/a

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis
Functional and/or effective connectivity n/a
Graph analysis n/a

Multivariate modeling and predictive analysis n/a

|:| Both
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