
Immunologic effects of locoregional therapies for unresectable 

hepatocellular carcinoma 

Authors 

Robin Schmidt, Bernhard Gebauer, Nilufar Akbari, …, Bernd Hamm, Linda Hammerich, Lynn Jeanette Savic 

Correspondence 

lynn-jeanette.savic@charite.de (L.J. Savic). 

Graphical abstract 

Checkpoints

CD38, CTLA-4, PD1, PD-L1, TIM3, LAG3

HCC patients
undergoing LRT

FACS analysis of immune cells
from peripheral blood samples

Longitudinal immune
cell changes post-LRT

Patient clustering according to
peripheral immune cell profiles

 

CD19

CD56+ CD3- 

CD4+

CD11b, Lin

CD66+

CD66- CD56-

CD14- CD16-

HLA-DR+ CD11c+

CD14+

CD16+

CD1c+ CD141+ XCR1+

Viable CD45+

CD56+ CD3-

CD56- CD3+

CD8+

B
as

el
in

e

MRI

2 
m

on
th

s 
po

st
-L

R
T

MRI

1 
da

y 
 p

os
t-L

R
T

CT

cTACE
and/or iBT

Baseline
cTACE

2 months
post

cTACE

1 day
post

cTACE
Leucocytes

Lymphocytes
Myeloid cells

Classical T cells
CD4+ T cells
CD8+ T cells

CD4+ CD8+ T cells
CD4- CD8- T cells

NKT cells
CD4+ NKT cells
CD8+ NKT cells

B cells
Dendritic cells

Dendritic cellstype1

Dendritic cellstype2

Monocytes
Clas. Monocytes

Non-clas. Monocytes
NK cells

NK cellsbright

NK cellsdiminished

Granulocytes
Neutrophiles
Eosinophiles

PD-1

PD-L1

CTLA-4

CD4+ T cellsPD1
CD8+ T cellsPD1

CD4+ CD8+T cellsPD1
CD4- CD8- T cellsPD1

CD4+ NKT cellsPD1
CD8+ NKT cellsPD1

CD4+ T cellsCD38
CD8+ T cellsCD38

CD4+ CD8+T cellsCD38
CD4- CD8- T cellsCD38

CD4+ NKT cellsCD38
CD8+ NKT cellsCD38

CD4+ T cellsPD-L11
CD8+ T cellsPD-L11

CD4+ CD8+T cellsPD-L11
CD4- CD8- T cellsPD-L11

CD4+ NKT cellsPD-L11
CD8+ NKT cellsPD-L11

CD4+ T cellsCTLA4
CD8+ T cellsCTLA4

CD4+ CD8+ T cellsCTLA4
CD4- CD8- T cellsCTLA4

CD4+ NKT cellsCTLA4
CD8+ NKT cellsCTLA4

Absolute Change (∆ %)

• from baseline to 24 hours post-LRT
Δ from 24 hours post to 8 weeks post-LRT

Δ T cells

-5 50

0

10

-10

2

1

0

Δ B cells

-5 50

0

10

-10

2

1

0

Δ Dendritic cells

-5 50

0

10

-10

2

1

0

Δ Granulocytes

-5 50

0

10

-10

15

20

10

5

0

Δ Monocytes

-5 50

0

10

-10

4

6

2

0

Δ NK cells

-5 50

0

10

-10

1

0

Cluster 1

Cluster 2

LI-RADS TRA

Equivocal
Viable

Non-viable

T-SNE1

T-
SN

E2

-5 50

10

10

0

5

-5

-10

-10

Highlights: 

• ImmuMITT addresses the unmet need to study the immu-
nologic effects of locoregional therapies. 

• Most immune cell changes peaked at 1 day after therapy 
and diminished by 2 months. 

• Compared with interstitial brachytherapy, cTACE led to a 
stronger inflammatory immune response. 

• CD8+ T cells and CTLA-4 expression were notably upre-
gulated after therapy. 

• Profiling of immune cell dynamics differentiated responders 
from non-responders. 

Impact and implications: 

Combining locoregional therapies (LRT) with immune check-
point inhibitors (ICI) in unresectable hepatocellular carcinoma 
(HCC) aims to enhance immune-mediated anti-tumor effects. 
However, potential immunological targets remain unknown. 
Immune profiling could be facilitated as a tool to predict tumor 
response to LRT and may inform personalized treatment 
planning, selecting patients who may benefit from an addi-
tional ICI therapy. The study’s design may guide future in-
vestigations to identify the temporal dynamics of immune cell 
alterations following LRT to identify the appropriate time point 
to co-administer the ICI application. 

https://doi.org/10.1016/j.jhepr.2025.101555 
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Background & Aims: The combination of locoregional therapies (LRT) with immune checkpoint inhibitors (ICIs) in unresectable 
hepatocellular carcinoma (HCC) is expected to enhance immune-mediated anti-tumor effects. Although clinical trials are un-
derway, an unmet need exists to understand the immunological effects of LRT and how they evolve. This study aimed to 
longitudinally assess immune cell subpopulations and checkpoint expression after LRT.

Methods: This prospective, single-center study (DRKS00026994) enrolled 128 consecutive patients with unresectable HCC, who 
underwent conventional transarterial chemoembolization (cTACE), interstitial high-dose-rate brachytherapy (iBT), or a combi-
nation of cTACE and iBT (from July 2020 to September 2021). Peripheral blood samples were collected at baseline, 1 day after 
LRT, and 2 months after LRT. Immune cells were quantified using spectral flow cytometry. Immune cell subpopulations and 
checkpoint molecule expression were compared longitudinally and among treatment groups. Cluster analyses were used to 
explore immune profiles and their relationship with treatment response.

Results: Changes in absolute immune cell counts were detected 1 day after LRT, which largely diminished by 2 months. Myeloid 
populations increased significantly, whereas most lymphoid cells decreased after LRT. However, relative proportions of anti-
tumoral CD56 diminished NK cells (Cohen’s D = 0.40, 95% CI 0.19–0.61, p <0.01), CD8 + T cells (Cohen’s D = 0.15, 95% CI 
-0.06 to 0.35, p = 0.01), and CTLA-4 expression on T cells (CD4 + : Cohen’s D = 0.54, 95% CI 0.33–0.75, p <0.01; CD8 + : Cohen’s 
D = 0.15, 95% CI 0.36–0.78, p <0.01) were upregulated at 1 day, particularly after cTACE. Cluster analysis distinguished re-
sponders from non-responders based on distinct immune profiles.

Conclusions: LRT induce an early pro-inflammatory immune response with increased myeloid, CTLA-4 + T cells, and cytotoxic 
lymphocytes, particularly after cTACE. These findings support the potential of immune profiling to guide personalized combi-
nation strategies with LRT and systemic immunotherapies.

Clinical trial number: DRKS00026994 (https://drks.de/search/de/trial/DRKS00026994).

© 2025 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Hepatocellular carcinoma (HCC) is the most common primary 
liver cancer and the third leading cause of cancer-related 
death worldwide. 1 In unresectable HCC, image-guided 
locoregional therapies (LRT) are guideline-approved first-line 
therapies in early- and intermediate-stage HCC, achieving 
good local tumor control with limited adverse events. 2 Of 
these, conventional transarterial chemoembolization (cTACE) 
is considered the standard of care for intermediate-stage HCC 
(Barcelona Clinic Liver Cancer [BCLC] B), although there is 
substantial evidence for percutaneous ablation in early-stage 
HCC (BCLC A). 3 In contrast to thermal ablation techniques, 
the therapeutic efficacy of interstitial CT-guided high-dose-

rate brachytherapy (iBT) is not limited by tumor size or heat 
dissipation. Therefore, iBT can also be used to treat larger 
tumors in the vicinity of vessels or other thermosensitive 
structures. 4,5 In addition, iBT can be combined with cTACE to 
treat hypervascularized, large HCC. 6,7

HCC tumorigenesis is mainly driven by underlying chronic 
liver diseases, which are hypothesized to generate an immu-
nosuppressive tumorigenic milieu, leading to the characteristic 
metachronous and multicentric occurrence of HCC. 8 Novel 
systemic immunotherapies aim at lowering the barrier of 
immunosuppression while restoring the resources of the pa-
tients’ immune system to overcome cancer immune evasion. 9 

Among these therapies, immune checkpoint inhibitors (ICIs)
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are the most studied tools and have already been included in 
the first-line treatment of advanced-stage HCC (BCLC C) 
following the IMbrave-150 (atezolizumab/bevacizumab) and 
HIMALAYA trials (durvalumab/tremelimumab). 10,11 However, 
the response to ICIs in HCC is inferior to that of other cancer 
entities and varies among patients, and therapy-limiting 
adverse events occur frequently, calling for further strategies 
to improve tumor susceptibility.

In this regard, ongoing phase III trials are investigating the 
synergistic potential of ablative and embolic LRT combined 
with systemic therapies to improve tumor response and patient 
survival in different disease stages. 12–15 To date, available re-
sults from such trials are promising, demonstrating prolonged 
recurrence-free survival in patients with early HCC undergoing 
ablation or resection (IMbrave-050, NCT04102098, although 
not sustained in the long-term follow-up 16 ), or intermediate-
stage HCC undergoing cTACE (EMERALD-1 trial, 
NCT03778957) combined with systemic therapies. 17,18 The 
underlying rationale for combining LRT with ICI is based on the 
hypothesis that LRT induce unregulated, unprogrammed 
immunogenic cell death. Consequently, cell debris, including 
tumor-associated antigens, is presented via antigen-
presenting cells, which subsequently activate CD8 + T cell 
response. 19–24 In addition, with increasing evidence supporting 
the importance of hydrophobicity in immune system activation, 
Lipiodol ® -based cTACE may be a favorable modality for 
this endeavor. 25–27

Although this commonly cited rationale is reasonable, 28 the 
biophysiological mechanisms of LRT-induced immunological 
effects and their temporal dynamics are not yet well under-
stood or characterized. 29 An improved understanding of the 
systemic immune response induced by LRT may help exploit 
their potential as conditioning tools to convert immune-
resistant tumor habitats toward a more susceptible tumor 
microenvironment that could be targeted with ICIs even in 
earlier disease stages.

Therefore, this study aims to longitudinally quantify the 
absolute cell counts and relative proportions of peripheral 
immune cell subpopulations and their functional status in pa-
tients with unresectable HCC following different ablative and 
embolic LRT, including cTACE, iBT, and cTACE/iBT.

Materials and methods

Study design and participants

Patients with a primary diagnosis of unresectable HCC and the 
multidisciplinary tumor board consensus recommendation for 
LRT were consecutively recruited at the Charité—University 
Medicine Berlin between July 29, 2020, and September 15, 
2021, as part of this prospective, single-center, investigator-
initiated observational clinical trial (DRKS00026994). LRT 
comprised cTACE or iBT or a combination of both in curative 
or palliative intent or for bridging to transplant. Moreover, 
eligible patients had to have preserved liver function (Child– 
Pugh A or B), an Eastern Cooperative Oncology Group of 0 or 
1, no systemic treatment or prior LRT on the target lesion, and 
no contraindications for LRT, such as decompensated liver 
cirrhosis with ascites, coagulopathy, thrombocytopenia, and 
incompliance (Fig. 1). Cross-sectional, peri-interventional im-
aging, including MRI and CT, was obtained using standardized 
protocols as described below. Peripheral blood sampling for

flow cytometry analysis was performed at baseline, 1 day after 
LRT, and 2 months after LRT, along with routine diagnostic 
blood sampling to avoid additional patient harm. For patients 
who received cTACE/iBT, blood samples were obtained 1 day 
after iBT.

Study objectives

The primary endpoint of this study was to provide longitudinal 
immunological profiles of peripheral blood samples and the 
immune cells’ functional status at baseline, 1 day after LRT, 
and 2 months after LRT to characterize LRT-specific immune 
cell alterations following ablation and or embolization. Next, 
patients were stratified according to their type of treatment 
(iBT, cTACE, or cTACE/iBT) to compare the immunologic 
response among their different mechanisms. Secondary end-
points included the prediction of response to therapy using 
cluster analysis based on lymphoid and myeloid immune cell 
counts and their functional molecules, as well as the correla-
tion of baseline immune profiles and immune cell alterations 1 
day after LRT with clinical, disease, and laboratory parameters.

Immunostaining and FACS

The detailed staining protocol is described in the Supple-
mentary material. Briefly, samples were analyzed using a 
Cytek ® Aurora flow cytometer (Cytek Biosciences, Fremont, 
CA, USA). Unmixing and spillover correction were performed 
using SpectroFlo software (Cytek Biosciences). Data were 
analyzed using FCS Express V7 (De Novo Software, Pasadena, 
CA, USA) to assess CD45 + lymphoid and myeloid immune cell 
populations. 30 The gating strategy is shown in Fig. S1 and 
described in the Supplementary material. Briefly, cells were 
grouped into three morphological subsets: (1) T cell responses, 
(2) antigen-presenting cells, and (3) inflammatory and phago-
cytic cells. Checkpoint molecules and exhaustion markers 
were assessed on these subpopulations (Fig. S2).

Multiplex cytokine and chemokine assay analyses

Serum samples from patients undergoing cTACE were 
collected at baseline and 1 day after cTACE and analyzed for 
pro- and anti-inflammatory cytokines and chemokines using V-
PLEX assay plates from Meso Scale Discovery (MSD, Rock-
ville, MD, USA). The target antigens were immobilized on in-
dividual carbon spots within the wells, where diluted serum 
samples were applied. After washing, the plates were pro-
cessed using the MSD QuickPlex instrument, which generates 
electrical currents to induce chemiluminescent reactions. The 
emitted light is captured by the device’s camera and lens 
system, and a calibrator system adjusts the signals to calculate 
the minimum detectable concentrations based on international 
reference standards.

Completed and sequential treatment cycles

The standardized protocols of cTACE and iBT are described in 
the Supplementary material. A treatment cycle was considered 
completed when all target lesions defined at baseline were 
completely irradiated with the target dose of 20 Gy during iBT 
(both following iBT and cTACE/iBT) or when Lipiodol ® was 
distributed within the whole tumor mass during cTACE. To 
achieve completed treatment cycles, some patients underwent
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sequential treatments to avoid adverse effects from tumor lysis 
or to reduce cumulative puncture risk when the patient had 
multifocal or large lesions at baseline that could not be 
addressed within one session. If a patient developed a new 
target lesion during follow-up that was not present at baseline, 
and LRT was recommended by the multidisciplinary tumor 
board and performed for these new lesions within the recruit-
ment time frame, the respective independent treatment cycles 
were considered separate, recorded in the study cohort, and 
followed the same study protocol as previously described.

Imaging time points and image analysis

Baseline multiparametric MRI was acquired within 30 days 
before the first completed treatment cycle, and follow-up MRI 
scans were obtained at approximately 2 months after each 
completed cycle, then every 3 months for the first year, and 
then every 6 months for the following years. CT imaging 
without the use of contrast media was performed 1 day after 
cTACE for the assessment of Lipiodol ® distribution and could 
be used for iBT planning in the cTACE/iBT group. Details on 
image acquisition and protocols are provided in the Supple-
mentary material.

Tumor response was assessed after each completed 
treatment cycle at each available follow-up time point within 
the first year using the Response Evaluation Criteria In Solid 
Tumors (RECIST) 1.1, the modified (m)RECIST criteria, and the

Liver Imaging and Data Reporting System (LI-RADS) Treatment 
Response Algorithm (TRA) v2017, in consensus by two radi-
ologists with 3 and 8 years of experience in abdominal imag-
ing, who did not allocate or perform LRT. 31–33 Patients with 
complete or partial response (RECIST or mRECIST) or LI-
RADS TRA non-viable were considered responders. In 
contrast, the group of non-responders consisted of patients 
with stable or progressive disease (RECIST or mRECIST) or LI-
RADS TRA viable and LI-RADS TRA equivocal. Images were 
viewed, and calculations were performed using Visage Picture 
Archiving and Communication Systems (PACS) client version 7 
(Visage Imaging, EU HQ, Berlin, Germany).

Statistics

Sample size calculation

A statistical a priori sample size calculation was performed 
using GPower 3.1 (Heinrich-Heine-Universität, Düsseldorf, 
Germany). Effect sizes for alterations in T cells, B cells, NK 
cells, monocytes, granulocytes, and classical dendritic cells 
(cDCs) were estimated for each treatment group using data 
from 47 consecutively enrolled patients during active recruit-
ment. Parameters for high probability (1 - β, 80% power) and 
detection of a significant change (α, 5%) were set, and mini-
mum sample sizes were calculated for each of the three 
treatment groups. Among these, the most homogeneous

Treatment assignement for 
hepatocellular carcinoma (HCC) 

patients to locoregional therapy by a 
multidisciplinary tumor board

Consecutive patient recruitment 
(n = 128)

Total study cohort (N = 122)

Conventional transarterial 
chemoembolization (cTACE, n = 27)

Completed treatments (n = 27)

Interstitial brachytherapy 
(iBT, n = 54)

Completed treatments (n = 68)

Chemoembolization + 
brachytherapy (cTACEiBT, n = 41)

Completed treatments (n = 43)

Exclusion:
- Progressive disease/portal vein thrombosis 
  before locoregional therapy (n = 2)

- Intraprocedural change of embolization 
  regimen (no Lipiodol © -based conventional 
  transarterial chemoembolization, n = 4)

Eligiblility/inclusion criteria:
- Age
- Child-Pugh A or B
- Eastern Cooperative Oncology Group of 0 or 1
- No systemic immunomodulatory treatment
- No prior locoregional therapy on target lesion
- No contraindications for locoregional therapies 
  (severe ascites, coagulopathy, thrombocytopenia, 
  incompliance)

Fig. 1. Study cohort flowchart.

JHEP Reports, ■■■ 2025. vol. 7 | 101555 3

Research article



values were observed in the population of B cells (effect 
sizes for patients following cTACE = 0.28, iBT = 0.14, and 
cTACE/iBT = 0.19), which was chosen as a reference param-
eter for the estimation of the overall cohort’s sample size. The 
minimum estimated sample size was the lowest in patients 
treated with transarterial chemoembolization (TACE), given 
that the largest effects were observed in this group in the 
preliminary analysis. Assuming a drop-off rate of 5%, the total 
sample size was 128 patients to be enrolled.

Statistical analysis

The evaluation was explorative and descriptive. Baseline 
characteristics were analyzed. For continuous variables, 
descriptive statistics included the mean, standard deviation, 
median, first and third quartiles, minimum, and maximum 
values. For categorical variables, statistics included absolute 
and relative frequencies. The focus of the study’s analysis was 
to estimate effect sizes. Because of the exploratory study 
design, p values (if calculated) do not enable confirmatory 
conclusions. Statistical analyses were performed using R 
software v4.3 (R Foundation for Statistical Analysis, 
Vienna, Austria).

LRT-specific effects on immune alterations

Cohen’s D effect sizes of immune cell alterations were calcu-
lated between baseline and 1 day after LRT, and between 1 
day after LRT and 2 months after LRT. In addition, Cohen’s D 
effect sizes of the cytokine/chemokine alterations were 
calculated between baseline and 1 day after cTACE only. 
Heatmaps were generated to summarize longitudinal immune 
cell changes and compare them among treatment groups 
using the median of standardized rank-transformed parame-
ters. Taking outliers and partially skewed data into account, all 
parameters were rank-transformed, ranging from 0 to 1.

Cluster analysis and effects of immune profiles on treat-
ment response

Patients were stratified into treatment responders versus non-
responders according to radiological response assessed at 6 
months after LRT. T-distributed stochastic neighbor embed-
ding (t-SNE) was used for dimensionality reduction. Hierar-
chical cluster analysis was performed to identify immune 
profiles. The choice of hyperparameters was based on previ-
ous publications. 34 Different cluster analyses containing the 
cube root-transformed immune parameters were conducted 
using major baseline immune cell counts as well as the im-
mune alterations of T cells, B cells, NK cells, monocytes, 
granulocytes, and cDCs, as well as PD1 + , PDL-1 + , and 
CTLA4 + -expressing CD4 + and CD8 + T cells to account for the 
impact of the most relevant ICI targets.

Subsequently, the clusters adjusted by immune cell alter-
ations were further analyzed for differences in general 
immune profiles as well as the distribution of clinical parame-
ters and treatment response. In addition, within a two-way 
linear correlation matrix, Spearman’s correlation coefficient 
and linear regression analyses were performed to compare 
baseline immune parameters and dynamic immune alterations, 
respectively, with selected patients, disease, and labora-
tory parameters.

Results

Study cohort

A total of 128 consecutive patients were enrolled. Two patients 
experienced progressive disease and did not undergo LRT as 
planned. Four patients, who were originally scheduled to un-
dergo cTACE, were excluded from the analysis because of a 
intraprocedural decision to perform TACE with degradable 
starch microspheres (DSM-TACE) instead. Ultimately, 122 
consecutive enrolled patients receiving 183 separate treat-
ments, including 138 completed treatment cycles for the 
treatment of 171 target lesions, were considered as the final 
study cohort. Characterizing completed treatment cycles, 27 
patients were treated with cTACE, 54 patients were treated 
with iBT, and 41 with cTACE/iBT (Fig. 1). Specifically, 15 pa-
tients treated with cTACE (55.6%), three with iBT (5.6%), and 
seven with cTACE/iBT (17.1%) received sequential treatment 
cycles to achieve treatment completion. Meanwhile, 14 pa-
tients treated with iBT (25.9%) and two with cTACE/iBT (4.9%) 
received separate completed treatments targeting individual 
lesions that occurred metachronously during active study 
recruitment. Most patients had BCLC A disease when sched-
uled for ablation and TACE, as they were being bridged to 
transplantation. Patients, tumor, and disease characteristics 
are summarized in Table 1.

Immune cell subpopulations over time

In the entire study cohort, the absolute lymphoid cell numbers 
decreased 1 day after LRT (Cohen’s D = -0.48, 95% CI -0.69 to 
-0.26, p <0.01) and increased again by 2 months (Cohen’s D = 
0.43, 95% CI 0.19–0.44, p <0.01). In contrast, the myeloid cell 
counts largely increased 1 day after LRT (Cohen’s D = 0.73, 
95% CI 0.51–0.95, p <0.01) and decreased by 2 months 
(Cohen’s D = -0.67, 95% CI -0.91 to -0.44, p <0.01). Overall, 
most cell counts at 2 months after LRT were comparable to 
those at baseline (Fig. 2).

Specifically, regarding T cell response, the absolute counts 
of CD4 + T helper cells decreased the most 1 day after LRT 
(Cohen’s D = -0.56, 95% CI -0.77 to -0.34, p <0.01). Among 
antigen-presenting cells, classical monocytes increased the 
most 1 day after LRT (Cohen’s D = 0.39, 95% CI 0.17–0.61, p 
<0.01). Of all inflammatory and phagocytic cells, the absolute 
numbers of CD56 bright NK cells decreased the most 1 day after 
LRT (Cohen’s D = -0.77, 95% CI -0.99 to -0.54, p <0.01), 
whereas neutrophils increased the most in absolute numbers 
(Cohen’s D = 0.77, 95% CI 0.54–0.99, p <0.01).

With regard to the relative alterations of the major immune 
cell subpopulations, a relative increase in the proportions of 
CD8 + T effector cells (p = 0.01), classical monocytes (p <0.01), 
type 1 cDCs (p = 0.13), and CD56 diminished NK cells (p <0.01) 
was observed. In contrast, a relative decrease in the pro-
portions of CD4 + T helper cells (p <0.01), non-classical 
monocytes (p <0.01), type 2 cDCs (p = 0.03), and CD56 bright 

NK cells (p <0.01) was observed 1 day after LRT (Fig. 3 and 
Table S1–S3).

Regarding the changes in cytokines and chemokines 
following cTACE, most humoral factors decreased 1 day after 
cTACE, including IL-13 (p = 0.03), IL-17 (p = 0.01), pro-
inflammatory cytokines INFγ (p = 0.03) and TNFα (p = 0.11), 
chemokines MCP1 (p <0.01) and MIP1α (p <0.01), and the
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Table 1. Baseline characteristics including patient, disease, and laboratory parameters.

Demographics All cTACE iBT cTACE/iBT

Patient characteristics
Patients, n 122 27 54 41
Age (years), median [IQR] 70.0 [64.3, 77.8] 65.0 [57.5, 68.0] 71.0 [67.3, 78.0] 71.0 [65.0, 78.0]
Male/female, % (n) 78.7/21.3 (96/26) 74.1/25.9 (20/7) 87.0/13.0 (47/7) 70.7/29.3 (29/12)

Disease characteristics
Cirrhosis (by imaging or histology), % (n) 95.1 (116) 92.6 (25) 96.3 (52) 95.1 (39)
Etiology of cirrhosis, % (n)
Hepatitis B 12.1 (14) 20.0 (5) 9.6 (5) 10.3 (4)
Hepatitis C 16.3 (19) 12.0 (3) 15.4 (8) 20.5 (8)
Alcoholic-associated liver disease 41.4 (48) 40.0 (10) 44.2 (23) 38.5 (15)
MASLD 18.1 (21) 20.0 (5) 21.2 (11) 12.8 (5)
Others 12.1 (14) 8.0 (2) 9.6 (5) 17.9 (7)

CP class
A, % (n) 92.2 (107) 61.1 (18) 100.0 (52) 94.9 (37) 
B, % (n) 7.8 (9) 38.9 (7) 0.0 (0) 5.1 (2) 
CP points, mean ± SD 5.3 ± 0.7 5.8 ± 1.1 5.1 ± 0.3 5.3 ± 0.5 
MELD score, mean ± SD 9.7 ± 2.6 10.2 ± 2.8 9.8 ± 2.9 9.1 ± 2.2

Target tumor characteristics
Completed treatments, n 138 27 68 43
Lesions per patient, mean ± SD 1.4 ± 0.6 1.4 ± 0.7 1.4 ± 0.6 1.3 ± 0.6
Unifocal/multifocal, % (n) 69.6/30.4 (96/42) 74.1/25.9 (20/7) 64.7/35.3 (44/24) 74.4/25.6 (32/11)
Index lesion size, median [IQR] 25.2 [17.2, 35.8] 22.9 [14.4, 30.0] 25.1 [17.2, 35.7] 28.0 [20.9, 51.3]
Barcelona Clinic Liver Cancer stage, % (n) 
A 90.6 (125) 70.4 (19) 100.0 (68) 88.4 (38)
B 9.4 (13) 29.6 (8) 0.0 (0) 11.6 (5)

Laboratory parameters of liver function
Albumin (g/L), mean ± SD 39.4 ± 4.2 36.4 ± 3.0 40.1 ± 4.0 38.9 ± 4.4
Bilirubin (mg/dl), median [IQR] 0.75 [0.49, 1.13] 1.04 [0.69, 1.56] 0.70 [0.44, 0.95] 0.76 [0.49, 1.17]
ALT (U/L), median [IQR] 33.0 [24.0, 52.0] 40.0 [22.0, 63.0] 33.0 [26.8, 48.8] 29.0[ 21.0, 48.0]
AST (U/L), median [IQR] 45.0 [36.0, 60.0] 54.0 [39.5, 84.5] 44.5 [32.8, 42.3] 45.0 [36.0, 66.0]
γ-GT (U/L), median [IQR] 125.0 [63.0, 268.0] 89.0 [52.8, 218.3] 112.0 [66.8, 298.5] 142.0 [77.0, 217.0]
AP (U/L), median [IQR] 115.5 [85.3, 157.8] 121.0 [88.5, 149.0] 108.5 [79.0, 170.3] 125.0 [88.0, 156.5]
INR, median [IQR] 1.23 [1.13, 1.32] 1.22 [1.15, 1.31] 1.10 [1.05, 1.18] 1.11 [1.06, 1.17]

γ-GT gamma-glutamyl transferase; ALT, alanine aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; CP, Child–Pugh; cTACE, conventional transarterial 
chemoembolization; iBT interstitial brachytherapy; MASLD, metabolic dysfunction-associated steatotic liver disease; MELD, model for end-stage liver disease.
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angiogenesis factor VEGF (p <0.01). Only IL-1β showed a 
significant increase (p <0.01; Fig. S3 and Table S5). In contrast, 
several humoral factors decreased 1 day after TACE, including 
IL-4, IL-5, IL-8, IL-17, IFNγ, TNFα, MIP1α, MCP1, VEGF, and 
βFGF. Among these, only IL-13 (p = 0.03), IL-17 (p = 0.01), 
MIP1α (p = 0.01), MCP1 (p <0.01), and IFNγ (p = 0.03) showed 
statistically significant reductions (Table S4).

Immune cell subpopulations over time stratified by type 
of LRT

Baseline standardized medians of both lymphoid and myeloid 
cell counts were lower in patients following cTACE compared 
with patients following iBT or cTACE/iBT. The largest alter-
ations in standardized medians of immune cell counts were 
also observed 1 day and 2 months after cTACE. Specifically, 
the standardized medians of T cells, non-classical monocytes, 
cDCs, CD56 bright NK cells, and eosinophils showed a larger 
decrease, and classical monocytes and neutrophils showed a 
larger increase 1 day after LRT compared with patients 
following iBT or cTACE/iBT. In addition, by 2 months after LRT, 
significantly higher standardized medians were observed for 
CD4 + T helper cells, CD4 + NK-T cells, B cells, and CD56 bright

NK cells after cTACE compared with patients following iBT or 
cTACE/iBT (Fig. 4).

Functional immune cell markers over time

Similarly, the majority of activation markers expressing im-
mune cells decreased 1 day after LRT. Only CTLA-4 
expressing CD4 + and CD8 + T cells increased significantly in 
absolute numbers (Cohen’s D = 0.54, 95% CI 0.33–0.75, p 
<0.01) and relative numbers (Cohen’s D = 0.57, 95% CI 
0.36–0.78, p <0.01). In addition, there was a distinct increase in 
classical monocytes expressing functional immune markers (e. 
g. CD1c, CTLA-4, HLA-DR, and TIM3). However, this increase 
was not confirmed in terms of the relative cell fractions. The 
absolute cell concentrations and effect sizes of the alterations 
at each time point are provided in Fig. 5 and Table S1–S3.

Functional immune cell markers over time stratified by 
type of LRT

Longitudinal changes in the expression of checkpoint, activa-
tion, and exhaustion molecules are provided in Fig. S4. Simi-
larly, at baseline, patients following cTACE had comparable or
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lower standardized medians for each marker compared with 
patients following iBT and cTACE/iBT. However, 1 day after 
LRT, patients following cTACE demonstrated lower standard-
ized medians of activation and exhaustion molecules on 
monocytes and B cells but higher CTLA-4 expression on both 
CD4 + and CD8 + T cells. In contrast, nearly no change was 
observed in CTLA-4 expression in patients following iBT. 
Moreover, following cTACE, higher standardized medians of 
PD-1 + , CD38 + , and HLA-DR + T cells and functional molecules 
on B cells were observed 2 months after LRT compared with 
patients following iBT or cTACE/iBT.

Associations of immune cell profiles with 
treatment response

Higher and lower myeloid cell counts were found in responders 
at both 2 and 6months after LRT. In addition, in responders 
according to LI-RADS TRA v2017, lymphoid cells steadily 
increased from baseline, over 1 day to 2 months after LRT. In 
non-responders, lymphoid cells showed a bidirectional trend, 
first decreasing 1 day after LRT and then increasing 2 months 
after LRT. Conversely, in responders according to LI-RADS 
TRA, myeloid cells largely increased 1 day after LRT, 
whereas in non-responders, they steadily increased from 
baseline, over 1 day to 2 months after LRT. These findings 
were most evident in patients following cTACE (Fig. S5).

Overall treatment response according to RECIST, mRECIST, 
and LI-RADS TRA v2017 criteria is summarized in Table S5.

Immune profile clustering analysis

Overall, clustering analysis based on baseline immune cell 
counts revealed four clusters showing similar immunological 
profiles and no differences in treatment response at any follow-
up interval. However, clustering analysis based on immune cell 
alterations revealed two more comprehensive clusters 
demonstrating different immunological profiles and differences 
in treatment response. The first cluster includes patients with a 
trend of decreasing T cell, B cell, NK-cell, monocyte, and cDC 
counts, whereas the second cluster included patients with no 
trends in lymphoid populations but largely increasing mono-
cyte and granulocyte counts (Fig. 6). Regarding treatment 
response to LI-RADS TRA v2017, patients in the first cluster 
had higher rates of tumor viability at any follow-up interval 
(cluster 1 vs. cluster 2: first follow-up 43.5% vs. 24.4%, second 
follow-up 55.3% vs. 26.3%, and third follow-up 48.6% vs. 
30.0%). In contrast, patients in the second cluster had higher 
rates of equivocal tumor response at any follow-up interval 
(cluster 1 vs. cluster 2: first follow-up 30.6% vs. 46.7%, second 
follow-up 12.8% vs. 36.8%, and third follow-up 13.5% vs. 
16.7%) (Table 2). Probabilities for LI-RADS TRA non-viable did 
not differ between clusters and follow-up intervals. Additional
cluster analysis, including the immune cell parameters of PD1 + ,
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Fig. 4. Longitudinal changes in immune cell populations stratified by LRT type. Heatmap showing standardized medians (0–1) of immune cell counts at baseline 
and at 1 day and 2 months after iBT, cTACE, and combined cTACE/iBT. At baseline, patients in the cTACE group showed generally lower immune cell counts 
compared with the other groups. The strongest immunological effects of LRT were observed after cTACE, with standardized medians of immune cell populations 
decreasing substantially 1 day after LRT, followed by a larger increase 2 months after LRT. cTACE, conventional transarterial chemoembolization; iBT, interstitial 
brachytherapy; LRT, locoregional therapies.
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PD-L1 + , and CTLA4 + -expressing CD4 + and CD8 + T cells, did 
not reveal any different trends (Fig. S6 and Table S6).

Correlation of immune cell counts with patient, disease, 
and laboratory features

Spearman’s correlation matrix analysis revealed a stronger 
correlation between baseline lymphoid cell counts and pa-
tients, disease, and laboratory values than myeloid cell counts. 
Particularly, the Child–Pugh and MELD scores showed a 
negative correlation with T cell counts (Child–Pugh: r s = -0.29; 
MELD score: r s = -0.37) and B-cell counts (Child–Pugh: r s = 
-0.18, MELD score: r s = -0.25). In contrast, only cDCs showed 
a positive, conclusive correlation with the BCLC stage. 
Regarding laboratory parameters, positive correlations were 
found for immune cell counts with albumin and gamma-
glutamyl transferase levels, whereas negative correlations 
were observed for most immune cell counts with C-reactive 
protein, bilirubin, urea, and creatinine (Fig. S7). Linear regres-
sion analysis revealed BCLC stages B and C (compared with 
BCLC stage A) as the strongest predictors of immune cell

alterations, namely, decreased dendritic cells and increased 
granulocytes (Fig. S8).

Discussion
This prospective observational study analyzed immune cell 
dynamics in 122 patients with unresectable HCC undergoing 
138 LRT. Longitudinal flow cytometry of peripheral blood 
revealed transient but distinct immunomodulatory effects after 
LRT, with significant changes observed 1 day after LRT that 
largely diminished by 2 months.

One day after LRT, a predominantly pro-inflammatory 
response was observed, characterized by increased myeloid 
cell counts and decreased lymphoid populations across all 
treatment modalities. In addition, immune checkpoint mole-
cules were measured, as they are common targets of immu-
notherapies and are currently being exploited in ongoing 
clinical trials alongside LRT. 28,35,36 In this context, cTACE 
induced a relative increase in CD8 + T cells and CTLA-4-
expressing CD4 + and CD8 + T cells, suggesting early T cell 
activation followed by potential immune regulatory feedback.
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Previous studies have investigated certain cell populations 
or cytokines as surrogates of a pro-inflammatory immune 
response in the context of LRT. Erinjeri et al. 37 reported sig-
nificant increases in IL-6 and IL-10 plasma levels after thermal 
ablation compared with baseline, which varied depending on 
the treatment modality and tumor type, respectively. IL-6 may 
mediate immune cell invasion by promoting the activation and 
recruitment of cytotoxic T cells. 37

Cytokine analysis after TACE in the ImmuMITT cohort 
revealed elevated IL-1β and IL-6 (pro-inflammatory, neutrophil-

recruiting), IL-2 (regulatory T cell [Treg]- and effector T cell-
recruiting), and IL-10 (immunomodulatory), likely driven by 
anitgen prensenting cells (APC)-mediated processing of tumor-
associated antigens released after embolization. 15 In contrast, 
levels of IL-4, IL-5, IL-8, IL-17, INFγ, TNFα, MIP1α, MCP1, 
VEGF, and βFGF declined, with VEGF/βFGF reduction poten-
tially indicating decreased pro-angiogenic signaling. Given that 
VEGF/FGF-mediated angiogenesis functions as a ‘vascular 
barrier’ impeding immune cell infiltration (angiogenic immune 
evasion), these findings suggest a shift in the tumor microen-
vironment favoring immune infiltration. 38 VEGF also modulates 
immune function by inhibiting dendritic cell maturation, pro-
moting Tregs, and enhancing myeloid-derived suppressor cells, 
further linking angiogenesis to immune regulation. 17 cTACE 
triggers rapid necrosis through ischemia and chemotherapy-
induced damage, promoting a robust inflamma-
tory response. 39,40

In contrast, iBT induces tumor cell death gradually via ra-
diation, leading to mitotic catastrophe and apoptosis, followed 
by an early monocyte response without acute inflammation. 41 

Although radiation has been described as immunogenic, the 
delayed onset of its effects raises questions about the optimal 
timing for ICI combination. Additionally, apoptotic clearance by 
macrophages and dendritic cells may limit early inflammatory 
responses after iBT. 42 Notably, cTACE alone induced stronger 
immune alterations than the cTACE/iBT combination, sug-
gesting no additional immune benefit of combining emboliza-
tion with brachytherapy.
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Table 2. Immune cell alterations from baseline to 1 day after LRT and 
treatment responses according to LI-RADS TRA v2017, based on immune 
clustering revealed by t-SNE analysis.

Cluster 1 (n = 64) 
Cohen’s D (95% CI)

Cluster 2 (n = 47) 
Cohen’s D (95% CI)

Immune cell population
B cells -0.45 (-0.65 to -0.29) 0.06 (-0.25 to 0.45)
T cells -0.44 (-0.56 to -0.34) -0.03 (-0.17 to 0.22)
NK cells -0.42 (-0.62 to -0.28) -0.05 (-0.24 to 0.29)
Monocytes -0.18 (-0.48 to 0.30) 0.91 (0.6 to 2.09)
Granulocytes 0.23 (-0.36 to 0.94) 1.70 (0.30 to 4.73)
cDCs -0.57 (-0.84 to -0.29) 0.26 (-0.18 to 1.04)

LI-RADS TRA v2017 6 months after LRT, n (%)
Non-viable 15 (31.9) 14 (36.8)
Equivocal 6 (12.8) 14 (36.8)
Viable 26 (55.3) 10 (26.3)

cDC, classical dendritic cell; LI-RADS TRA, Liver Imaging and Data Reporting System 

Treatment Response Algorithm; LRT, locoregional therapies; t-SNE, T-distributed 
stochastic neighbor embedding.
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CD8 + T cells, classical monocytes, type 1 cDCs, and 
CD56 diminished NK cells increased after LRT, reflecting an 
activated immune response. However, the simultaneous 
upregulation of CTLA-4 on CD4 + and CD8 + T cells 1 day after 
cTACE suggests a negative feedback mechanism to regulate 
excessive activation and prevent clonal overexpansion. 43 

Given the transient nature of these changes, initiating ICI 
therapy soon after LRT may optimize synergistic efficacy.

In contrast to T cell activation, checkpoint and exhaustion 
marker levels on B cells decreased. Because radiation can lead 
to lymphodepletion, the observed T cell decline after LRT may 
reflect their migration to lymph nodes for expansion before 
returning to the tumor site, a process supported by preclinical 
animal models. 44,45 Although lymphocytopenia is generally 
associated with poor outcomes in patients with cancer 
receiving radiotherapy, 46 studies on stereotactic body radia-
tion therapy combined with ICI have shown increased CD8 + T 
cells after treatment. 47 However, recent data suggest that 
CD8 + T cells may be less radiosensitive than B cells or CD4 + T 
cells, suggesting dose-dependent immunomodulation after 
radiotherapy. 48 As iBT delivers significantly higher radiation 
doses than stereotactic body radiation therapy, results from 
this study are potentially challenging previous observations 
while acknowledging that the predefined time points may not 
fully capture gradual changes after iBT.

In this study, only a subset of immune parameters remained 
sustainably elevated in patients following cTACE. This subset 
included CD4 + helper T cells, NK-T cells, CD56 bright NK cells, 
and expression levels of PD-1, CD38, and HLA-DR on T cell 
populations. Although several studies have also shown 
increasing peripheral CD4 + T helper cells and Tregs and 
increasing PD-1 expression levels on Tregs after cTACE, it re-
mains unclear whether these alterations represent an impaired 
response to residual tumor cells or an immunological state of 
surveillance and regulation. 49–51 Early evidence suggests a link 
between the upregulation of Tregs and the expression of 
inhibitory molecules such as PD-1 and CTLA-4 after cTACE, 
which may exert tumor-mediated immunosuppression. 52 

Moreover, hypoxia-induced VEGF signaling, which is upregu-
lated after cTACE, may additionally impair T cell functionality 
and modulate increased checkpoint expression. 53,54

Patients with higher baseline myeloid and lower lymphoid 
cell counts exhibited poorer responses to LRT, aligning with 
prior studies linking elevated monocytes and reduced lym-
phocytes to worse outcomes in HCC after iBT. 55

Preprocedural monocyte levels are established predictors 
of poor prognosis following HCC resection and ablation owing 
to their role in tumor-associated macrophage differentiation, 
which suppresses anti-tumor immunity. 56

In addition, lower baseline CD4 + and CD8 + T cell counts 
have been associated with worse tumor response and survival. 
Specifically, previous studies showed that high neutrophil- and 
platelet-to-leucocyte ratios at baseline and increased CD4 + 

CD25 + Treg counts after treatment were associated with 
poorer response to TACE. 57–59

Interestingly, cluster analysis identified a subset of pa-
tients with an increasing myeloid response who

demonstrated better tumor outcomes according to LI-RADS 
TRA v2017, contradicting the general assumption that 
higher myeloid levels predict poor prognosis. This finding 
underscores the importance of dynamic immune profiling 
over static baseline assessments in predicting treat-
ment response.

As potential biases resulting from consecutive recruitment 
and heterogeneity of this cohort cannot be entirely excluded, 
linear (Supplementary material) and logistic regression (not 
included in this paper) were conducted to assess the influ-
ence of disease characteristics on immune profiles and dy-
namics. However, no strong correlations were identified 
between peripheral immune cell profiles and patient de-
mographics, disease characteristics, or laboratory values, 
potentially because of high statistical uncertainty caused by 
an insufficient number of events. Notably, previous studies 
suggest that immune exhaustion differs between viral and 
non-viral cirrhosis. 59 In this study, however, viral cirrhosis was 
associated with only a minor, statistically insignificant in-
crease in granulocytes and monocytes compared with non-
viral liver disease.

This study has several limitations. It was conducted as a 
single-center, real-world cohort, resulting in certain hetero-
geneities in tumor burden, liver function, and cirrhosis etiol-
ogy. Treatment allocation followed multidisciplinary tumor 
board recommendations rather than randomization, intro-
ducing potential biases. Regression analyses, however, did 
not reveal strong correlations between immune profiles and 
patient or disease characteristics. Despite comprehensive 
flow cytometry and cytokine analyses, some immune cell 
subsets (e.g. Tregs, myeloid-derived suppressor cells, and 
circulating tumor cells) were not measured because of tech-
nical constraints. However, these immune cells and circu-
lating tumor cells are rarely detectable in human peripheral 
blood samples and may require separate FACS protocols for 
staining intracellular antigens (e.g. FoxP3). 60,61 Blood sam-
pling was limited to baseline, 1 day after LRT, and 2 months 
after LRT, potentially missing delayed immune effects. 
Although incorporating thermal ablation techniques could 
have provided additional insights, particularly in the context 
of adjuvant trial discussions, ablation therapy was restricted 
to iBT, as it represents the institution’s standard-of-care 
ablation modality. Furthermore, although tissue biopsies 
were obtained, local immune responses were not analyzed in 
this study.

In conclusion, this study demonstrates that LRT induce 
systemic immune modulation in HCC, with early but transient 
inflammatory responses that vary by treatment type. The 
pronounced upregulation of CTLA-4-expressing T cells after 
cTACE suggests potential synergy with ICI therapy as explored 
in ongoing trials. Furthermore, despite the complexity of the 
findings, distinct immune response patterns correlated with 
treatment outcomes, highlighting the potential of immune 
profiling to guide personalized therapeutic strategies. Future 
research should focus on optimizing the timing of ICI admin-
istration and validating these findings in larger, longitudinal, 
multi-center cohorts.
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