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Abstract
Background: Observational epidemiologic studies on the association of anthropometric traits and colorectal cancer (CRC) survival provide 
inconsistent results, and potential limitations prohibit the investigation of causality. We examined the associations between seven genetically 
predicted anthropometric traits [height, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist–hip circumference 
ratio, birth weight and body fat percentage] and CRC-specific mortality among CRC cases using two-sample Mendelian randomization (MR).
Methods: Analyses were performed using 16 964 CRC cases, out of which 4010 died due to their disease, from the Genetics and 
Epidemiology of Colorectal Cancer Consortium and Colon Cancer Family Registry. We further conducted stratified analyses by anatomical site 
and stage. We applied the inverse variance weighted approach, and sensitivity analyses were conducted to assess the impact of potential viola
tions of MR assumptions and adjust for collider bias.
Results: One standard deviation (SD 13.4 cm) higher genetically predicted levels of WC were associated with worse CRC survival [hazard ratio 
(HR); 1.22, 95% confidence interval (CI); 1.02–1.47]. Positive associations were further observed for a SD higher genetically predicted BMI (SD; 
4.8 kg/m2, HR; 1.5, 95% CI; 1.15–1.95) and HC (SD; 9.2 cm, HR; 1.32, 95% CI; 1.02–1.73) and CRC-specific mortality in cases of stages II/III. 
The latter associations were generally robust to sensitivity analyses. Positive but imprecisely estimated associations were found for most other 
anthropometric traits.
Conclusions: Despite the limitations of cancer survival research, our findings support that CRC cases should avoid obesity. Further research 
should inform the development of recommendations targeting overweight/obesity management during cancer surveillance.
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Introduction
Colorectal cancer (CRC) was the third most common and 
second deadliest malignant tumor among adults in 2022 [1]. 
Specifically, over 1.9 million individuals were diagnosed with 
the disease, and approximately 904 000 deaths occurred dur
ing the same year, accounting for almost 10% of all cancer 
cases and deaths globally [1]. Thanks to advancements in 
early detection and treatment, the number of CRC survivors 
is increasing [2]. Tumor and therapeutic characteristics are 
important in prognosis since survival depends significantly 
on disease stage and tumor location, as well as on patients’ 
access and response to therapy [2].

Additional important drivers of CRC survival could be 
non-disease-related factors, such as body fatness and physical 
activity [3]. A substantive body of epidemiologic studies has 
indicated that elevated levels of anthropometric measures 
may be a causal risk factor for CRC incidence [4–10], but 
evidence regarding their association with survival after CRC 
diagnosis is inconsistent and potentially biased [11–16]. 
Differences in the timing of anthropometry assessment, reverse 
causation, collider bias, residual confounding, and survival 
bias are potential limitations of observational studies that tend 
to undermine the validity of their results. Furthermore, most 
studies focus on body mass index (BMI) and, hence, evidence 
on any other anthropometry-related trait is limited.

Mendelian randomization (MR) uses germline genetic var
iants as instruments of the risk factors of interest for testing 
hypotheses of causal inference. This method exploits the ran
dom allocation of genetic variants at meiosis and hence 
mimics the structure of a “natural” randomized controlled 
trial [17]. By using genetic variants as instrumental variables 
to evaluate the magnitude of association of lifetime exposure 
to a risk factor on disease outcomes, MR is less prone to re
sidual confounding and reverse causation bias than tradi
tional observational studies [18].

Following the MR approach, we aimed to investigate the 
associations between seven genetically predicted anthropo
metric traits, namely height, BMI, waist circumference (WC), 
hip circumference (HC), waist–hip circumference ratio 
(WHR), birth weight and body fat percentage, with CRC- 
specific mortality among CRC cases. Additionally, we con
ducted stratified analyses by anatomical site and tumor stage. 
We considered collider bias by CRC incidence, a selection 
bias structure that arises when conditioning on CRC inci
dence, which is the common effect of anthropometry and 
other measured or unmeasured factors (Fig. 1) [19]. For this 
purpose, we adjusted the CRC survival estimates using three 

recently proposed methods [20–22] and re-conducted the 
MR analyses.

Methods
This study is reported as per the guidelines for strengthening 
the reporting of Mendelian randomization studies (STROBE- 
MR) [23].

Data on CRC survival
The Genetics and Epidemiology of Colorectal Cancer 
Consortium (GECCO) and Colon Cancer Family Registry 
(CCFR) comprise genetic, environmental and survival data 
from 15 studies of 16 964 individuals of European ancestry 
(50.3% males, median age at diagnosis; 67 years), diagnosed 

Key Messages
� Using the Mendelian randomization framework, we investigated the association between genetically predicted height, body mass

index, waist circumference, hip circumference, waist–hip circumference ratio, birth weight and body fat percentage and colorectal
cancer (CRC) mortality among CRC cases.

� Positive associations were observed between genetically predicted levels of waist circumference and CRC-specific mortality overall,
and hip circumference and body mass index with CRC-specific mortality in stages II/III, whereas positive but imprecisely estimated
associations were found for most other anthropometric traits.

� Future research should focus on the development of targeted recommendations for overweight/obesity management in patients
with CRC.

Figure 1. Directed acyclic graph demonstrating a typical example of 
collider bias in the anthropometry-colorectal cancer survival association in 
the two-sample Mendelian randomization setting. The genetic instrument 
is strongly associated with anthropometry, anthropometry is associated 
with risk of colorectal cancer incidence, and a measured or unmeasured 
confounder works as a common cause of both colorectal cancer 
incidence and survival (black solid lines). Conditioning on colorectal cancer 
incidence induces the association between the previously independent 
genetic instrument and the confounder (red dashed line). This would 
cause the violation of the second Mendelian randomization assumption, 
and hence threaten the validity of the survival estimate.

2                      Kanellopoulou et al. 



with incident, invasive CRC out of which 4010 died due to 
their disease during follow-up (Supplementary Table S1) 
[24]. Both consortia were accessed to obtain the genetic asso
ciation estimates of single nucleotide polymorphisms (SNPs) 
with risk of CRC-specific mortality after diagnosis overall, by 
anatomical site [proximal colon (4881 cases, 978 deaths), 
distal colon (6214 cases, 1433 deaths), rectum (4749 cases, 
1045 deaths)] and tumor stage at the time of diagnosis [stage 
I (3338 cases, 157 deaths), stages II/III as they are both con
sidered regional (6420 cases, 1209 deaths), stage IV (1847 
cases, 1448 deaths)]. Cox proportional hazards regression 
models were adjusted for age at diagnosis, sex, a joint vari
able encompassing genotyping platform and study, and the 
first five principal components to account for population 
stratification [24].

Instruments of anthropometric traits
Genetic association estimates for height reaching genome- 
wide significance (P<5×10−8) were obtained from a meta- 
analysis of 173 studies of the Genetic Investigation of 
Anthropometric Traits (GIANT) consortium, including up to 
4 080 687 individuals of European ancestry, and adjusted for 
age, sex, and the first 10 genetic principal components [25]. 
Similarly, SNPs associated with BMI and WHR at genome- 
wide significance (P< 5×10−8) were derived from a meta- 
analysis of genome-wide association studies (GWASs) by 
GIANT and the UK Biobank, comprising up to 806 834 
individuals of European ancestry [26]. These estimates were 
adjusted for sex, age at assessment, age squared, and assess
ment center. Summary genetic association estimates for WC, 
HC, birth weight, and body fat percentage were also obtained 
from a separate GWAS of 349 376 UK Biobank participants 
[27]. Adjustments included sex, age at assessment, age 
squared, their interactions, and the first 20 genetic principal 
components. To ensure independence, SNPs in linkage dis
equilibrium (LD; r2 > 0.001 within a 10 000-kb window, 
based on the 1000 Genome reference panel) were excluded, 
retaining only the SNP with the lowest P-value per locus.

Statistical analysis
MR analysis
We conducted a two-sample MR for CRC overall, by ana
tomical site and CRC stage using the random-effects inverse 
variance weighted (IVW) method. All associations were 
reported using hazard ratios (HRs) for CRC-specific mortal
ity per standard deviation (SD) increment in the genetically 
predicted anthropometric traits (SD¼9.47 cm for height, 
4.81 kg/m2 for BMI, 0.09 for WHR, 9.27 cm for HC, 
13.4 cm for WC, 0.67 kg for birth weight and 8.5% for body 
fat percentage).

Sensitivity analyses
As in any MR analysis, the selected SNPs must (i) be strongly 
associated with the anthropometric trait, (ii) be independent 
of any confounder of the anthropometry–CRC survival asso
ciation, and (iii) affect CRC survival only through the 
anthropometry-related trait being instrumented and not via 
any other biological pathway (e.g. existence of horizontal 
pleiotropy) [28]. To measure the strength of the genetic 
instruments, we calculated the F-statistic and the proportion 
of the variance of the anthropometric traits explained by the 
corresponding genetic instrument (R2). To examine for the 
potential violation of the second and third MR assumption, 

we computed Cochran’s Q statistic, which expresses the 
degree to which differences in the measures of association 
among the selected SNPs are due to real variation rather 
than sampling error [29]. Horizontal pleiotropy was further 
investigated using MR-Egger regression, where the corre
sponding statistical test is based on its intercept term, when it 
is different from zero [30]. In the presence of horizontal pleiot
ropy, the slope of the MR-Egger regression and the weighted 
median approach may provide more valid MR estimates com
pared to IVW [30, 31]. The MR pleiotropy residual sum and 
outlier test (MR-PRESSO) was also applied to pinpoint and 
correct for potential outlying SNPs [32]. Analyses were imple
mented in the statistical software R 4.0.3 using the packages 
MendelianRandomization and MRPRESSO.

Adjustment for collider bias
In general, collider bias is a form of selection bias occurring 
when a study conditions on or adjusts for a collider. MR studies 
on CRC survival include only CRC cases and are prone to col
lider bias when the risk factor of interest, in this case, anthro
pometry, is also related to CRC incidence [33]. Conditioning on 
CRC incidence can induce an association between the genetic 
instrument and another measured or unmeasured cause for 
both CRC incidence and survival, violating the independence 
MR assumption (Fig. 1).

To detect whether our findings were influenced by collider 
bias, we applied the recently developed methods by 
Dudbridge and colleagues [20] [or Simulation Extrapolation 
(SIMEX) method], Mahmoud and colleagues [21] (or Slope- 
hunter method) and Cai and colleagues [or Corrected 
Weighted Least Squares (CWLS) method] [22].

Bias-correcting factors assessing the magnitude of bias 
were estimated using independent genetic incidence and sur
vival estimates, and were calculated for overall CRC as well 
as by anatomical site and stage. Overall, site- and stage- 
specific CRC survival estimates were adjusted using the cor
responding correcting factors, and IVW MR estimates and 
Cochran’s Q statistic were re-calculated. We compared 
all bias-adjusted estimates to assess the robustness of SNP– 
survival effect estimates across methods. Additionally, we 
compared the initial IVW estimates with the bias-adjusted 
IVW estimates in terms of both direction and magnitude. A 
detailed description of the methods followed is presented in 
the Supplementary Material. Analyses were conducted using 
the R packages indexevent, SlopeHunter and ColliderBias.

Results
The final number of included SNPs was 987, 542, 353, 305, 
267, 97, and 293 for height, BMI, WHR, HC, WC, birth 
weight, and body fat percentage, respectively. Controlling for 
collider bias required the identification of all common SNPs 
between CRC incidence and survival, thus, the final number 
of SNPs being instrumented was 982, 475, 354, 304, 263, 
94, and 290 for height, BMI, WHR, HC, WC, birth weight, 
and body fat percentage, respectively.

The associations between the genetically predicted anthro
pometric traits and CRC survival overall and by anatomical 
site are shown in Table 1. An SD (13.4 cm) higher genetically 
predicted WC was associated with a 22% [95% confidence 
interval (CI); 2%–47%, P ¼ .03] higher risk of CRC-specific 
mortality among CRC cases. The weighted median approach 
confirmed the aforementioned association (HR 1.43; 95% CI 
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1.05–1.93; P ¼ .02), with no evidence of horizontal pleiot
ropy (MR-Egger intercept P ¼ .77). In general, positive but 
imprecisely estimated associations were found for most other 
anthropometric traits, except for height and birth weight, 
which yielded null and non-significant inverse results, respec
tively. Results did not differ by anatomical site.

Stratified analyses by CRC stage showed a positive associa
tion with CRC-specific mortality for HC (HR 1.32; 95% CI 
1.02–1.73, P ¼ .04) and BMI (HR 1.5; 95% CI 1.15–1.95; 
P ¼ .003) among individuals with CRC of stages II/III 
(Table 2). These associations were consistent in the MR- 
Egger and weighted median analyses with no evidence of 
horizontal pleiotropy (MR-Egger intercept P ¼ .35 and .54 
for HC and BMI, respectively). Most of the genetically pre
dicted anthropometric traits appeared to be associated with 
better survival among stage IV CRC cases, but with wide CIs, 
possibly due to the presence of selection bias when analyses 
are restricted to this subpopulation [34].

The F-statistic was >10 for all the included SNPs, implying 
the absence of weak instruments, and the R2 ranged from 2.2% 
(birth weight) to 14.4% (height). The Cochran’s Q statistic was 
not statistically significant in any of the associations mentioned 
above (Supplementary Table S3), and the MR-PRESSO analysis 
did not reveal any outlier SNPs (data not shown).

The estimated magnitude of bias obtained from all adjust
ment methods ranged from −1.404 to 0.568, with most 

estimates being positive. SIMEX and CWLS provided similar 
estimates, and the Slope-hunter method tended to yield either 
larger estimates or estimates with an opposite sign. 
(Supplementary Table S2). The associations between geneti
cally predicted anthropometry-related traits and CRC mor
tality among CRC cases after controlling for collider bias are 
shown in Fig. 2 and Supplementary Table S3. The SIMEX 
and CWLS methods provided almost identical bias-adjusted 
estimates and concordant with the initial IVW estimates, 
with the magnitude of the associations between WC and 
CRC-specific mortality overall, and HC, BMI, and CRC- 
specific mortality in stages II/III ranging from 1.2 to 1.38 per 
SD. The Slope-hunter method led to the attenuation of 
all association estimates, except for HC (HR 1.31; 95% CI 
1–1.71, P ¼ .05), BMI (HR 1.32; 95% CI 1–1.75; P ¼ .05) 
and CRC-specific mortality among individuals with stage 
II/III disease.

Discussion
In the current MR analysis of seven anthropometry-related 
measures with survival after CRC diagnosis, positive associa
tions were observed between genetically predicted levels of 
WC and CRC-specific mortality overall, and HC and BMI 
with CRC-specific mortality in stages II/III. Positive but 

Table 1. Results from the Mendelian Randomization study to evaluate associations between anthropometry-related traits and colorectal cancer survival 
overall and by anatomical site.a

Overall Proximal colon Distal colon Rectal

Height IVW 0.98 (0.91–1.07) 0.89 (0.78–1.02) 1.07 (0.91–1.27) 1.15 (0.98–1.35)
MR-Egger

Intercept P-value .86 .83 .83 .94
Slope 0.98 (0.83–1.14) 0.91 (0.7–1.19) 1.04 (0.76–1.43) 1.13 (0.83–1.54)

WM 1.01 (0.89–1.15) 0.92 (0.74–1.15) 1.04 (0.79–1.35) 1.14 (0.88–1.47)
BMI IVW 1.1 (0.96–1.27) 1.15 (0.91–1.45) 1.18 (0.9–1.54) 1.11 (0.85–1.46)

MR-Egger
Intercept P-value .77 .61 .83 .68

Slope 1.16 (0.81–1.67) 1 (0.55–1.81) 1.1 (0.55–2.2) 0.97 (0.48–1.96)
WM 1.16 (0.9–1.48) 1.08 (0.71–1.64) 1.18 (0.74–1.86) 1.24 (0.76–2.04)

WHR IVW 1.1 (0.92–1.31) 1.06 (0.79–1.42) 0.88 (0.63–1.24) 1.17 (0.84–1.64)
MR-Egger

Intercept P-value .81 .51 .41 .93
Slope 1.17 (0.71–1.92) 1.37 (0.6–3.15) 0.6 (0.23–1.58) 1.22 (0.47–3.18)

WM 1.16 (0.89–1.52) 0.98 (0.62–1.55) 0.86 (0.49–1.5) 1.44 (0.86–2.41)
HC IVW 1.07 (0.92–1.25) 1.19 (0.92–1.53) 1.1 (0.82–1.48) 1.01 (0.75–1.35)

MR-Egger
Intercept P-value .99 .66 .85 .9

Slope 1.07 (0.68–1.68) 1.02 (0.48–2.13) 1.19 (0.5–2.83) 1.06 (0.45–2.5)
WM 1.18 (0.94–1.5) 1.03 (0.69–1.52) 1.17 (0.75–1.85) 0.91 (0.57–1.43)

WC IVW 1.22 (1.02–1.47) 1.13 (0.82–1.55) 1.3 (0.91–1.87) 1.24 (0.86–1.81)
MR-Egger

Intercept P-value .77 .65 .49 .68
Slope 1.32 (0.75–2.31) 0.91 (0.35–2.41) 1.89 (0.62–5.77) 0.99 (0.32–3.12)

WM 1.43 (1.05–1.93) 1 (0.59–1.7) 1.44 (0.81–2.56) 1.63 (0.87–3.06)
Birth weight IVW 0.92 (0.73–1.15) 1.15 (0.81–1.64) 0.98 (0.63–1.51) 0.86 (0.58–1.28)

MR-Egger
Intercept P-value .59 .99 .89 .31

Slope 1.11 (0.54–2.31) 1.16 (0.37–3.61) 1.07 (0.26–4.42) 1.62 (0.45–5.85)
WM 1.03 (0.75–1.42) 1.14 (0.68–1.92) 0.99 (0.53–1.85) 1.06 (0.59–1.9)

% Body fat IVW 1.05 (0.86–1.28) 0.93 (0.66–1.3) 1.25 (0.84–1.87) 0.98 (0.66–1.44)
MR-Egger

Intercept P-value .85 .81 .71 .44
Slope 1.12 (0.55–2.29) 0.8 (0.25–2.64) 0.97 (0.23–4.02) 1.64 (0.42–6.48)

WM 1.2 (0.88–1.64) 0.99 (0.59–1.68) 1.4 (0.76–2.58) 1.27 (0.7–2.33)

a Hazard ratios and 95% confidence intervals were calculated using the inverse variance weighted method and correspond to 1 SD increase in the 
anthropometry-related traits. Statistically significant estimates (P < .05) are shown in italics.
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imprecisely estimated associations were found for most other 
anthropometric traits.

Three different methods were applied to adjust for poten
tial collider bias in our SNP–survival estimates. The SIMEX 
and CWLS methods yielded similar estimates of bias magni
tude; therefore, the corresponding bias-adjusted estimates did 
not differ substantially and were highly similar to the initial 
IVW estimates. On the other hand, the Slope-hunter method 
provided slightly different bias-adjusted estimates with 
greater uncertainty. The differences across methods used to 
adjust for collider bias can potentially be explained by the 
underlying assumptions of each method. The SIMEX and 
CWLS methods may be more sensitive to the positive genetic 
correlation between CRC incidence and CRC-specific mortal
ity [20, 22], which we reasonably believe exists. In contrast, 
the Slope-hunter method addresses this limitation but relies 
on the assumption that there are no common causes of CRC 
incidence and CRC-specific mortality that explain more of 
the variance in incidence than the SNPs that affect incidence 
only [21]. Although our results were generally robust across 
these bias-adjusted methods, they should be interpreted with 
caution, as the aforementioned assumptions cannot be veri
fied using the available data.

Epidemiologic evidence on the association between 
anthropometry and survival among CRC patients comes 
primarily from observational studies, which have assessed 

anthropometric traits at various time points pre-, peri-, or 
post-CRC diagnosis. As part of the work for the Global 
Cancer Update Programme (CUP Global), a recent meta- 
analysis of 20 observational studies concluded that higher 
post-diagnosis BMI was associated with higher risk of overall 
and CRC-specific mortality, and the shape of the associations 
appeared reverse J-shaped with a nadir at 28 kg/m2 [15]. 
While these findings highlighted the aggravating association 
of being high-overweight or obese with CRC outcomes, they 
also showed positive associations with low and low-normal 
BMI, and the CUP Global independent Expert Panel graded 
the totality of this evidence as limited due to methodological 
considerations of the included observational studies [15]. 
There is very little data available on WC and CRC outcomes. 
A relevant meta-analysis including five prospective cohort 
studies assessing WC before or at diagnosis of CRC, sug
gested that elevated WC was associated with increased mor
tality from CRC (HR 1.27; 95% CI 1.08–1.49) [35]. The 
literature on the association between HC and CRC survival is 
scarce as well. We identified only one cohort study involving 
3924 CRC cases, where 1043 cases died due to CRC during a 
mean follow-up of 49 months, reporting that higher pre- 
diagnostic HC was associated with increased CRC-specific 
mortality (per 10 cm; HR 1.09; 95% CI 1.00–1.18) [13]. 
Finally, the association of anthropometry and CRC survival 
by tumor stage is poorly investigated in the literature. A 

Table 2. Results from the Mendelian randomization study to evaluate associations between anthropometry-related traits and colorectal cancer survival 
overall and by tumor stage.a

Stage I Stages II/III Stage IV

Height IVW 0.78 (0.51–1.21) 1.01 (0.87–1.18) 1.07 (0.93–1.24)
MR-Egger

Intercept P-value .56 .81 .05
Slope 0.96 (0.43–2.17) 0.98 (0.73–1.32) 0.84 (0.64–1.11)

WM 0.97 (0.48–1.95) 1.09 (0.85–1.4) 1.03 (0.82–1.3)
BMI IVW 1.19 (0.58–2.4) 1.5 (1.15–1.95) 0.83 (0.66–1.05)

MR-Egger
Intercept P-value .61 0.54 .37

Slope 0.77 (0.13–4.7) 1.23 (0.63–2.41) 1.08 (0.59–1.97)
WM 0.87 (0.25–3.05) 1.84 (1.19–2.85) 0.8 (0.51–1.24)

WHR IVW 0.82 (0.32–2.06) 1.19 (0.86–1.64) 1.11 (0.82–1.52)
MR-Egger

Intercept P-value .66 .56 .13
Slope 0.46 (0.03–7) 0.93 (0.37–2.3) 2.11 (0.88–5.09)

WM 0.37 (0.09–1.5) 1.26 (0.74–2.13) 0.81 (0.51–1.28)
HC IVW 0.64 (0.29–1.41) 1.33 (1.02–1.73) 0.87 (0.67–1.13)

MR-Egger
Intercept P-value .9 .35 .87

Slope 0.74 (0.07–7.28) 1.87 (0.87–4.04) 0.82 (0.38–1.76)
WM 1.12 (0.34–3.72) 1.43 (0.94–2.16) 0.93 (0.62–1.39)

WC IVW 1.16 (0.44–3.04) 1.38 (0.98–1.93) 0.88 (0.64-1.23)
MR-Egger

Intercept P-value .51 .36 .92
Slope 0.46 (0.03–8.29) 2.15 (0.78–5.91) 0.93 (0.34–2.5)

WM 0.76 (0.17–3.49) 1.9 (1.12–3.22) 0.76 (0.44–1.3)
Birth weight IVW 1.3 (0.42–4) 0.89 (0.61–1.31) 0.87 (0.61–1.24)

MR-Egger
Intercept P-value .67 .53 .77

Slope 2.66 (0.08–88.48) 0.62 (0.18–2.08) 1.02 (0.34–3.12)
WM 0.73 (0.14–3.73) 0.82 (0.47–1.45) 0.93 (0.56–1.56)

% Body fat IVW 1.48 (0.52–4.19) 1.18 (0.81–1.72) 0.89 (0.63–1.26)
MR-Egger

Intercept P-value .4 .15 .52
Slope 0.35 (0.01–12) 2.92 (0.8–10.65) 1.29 (0.39–4.28)

WM 1.63 (0.33–8.05) 1.43 (0.81–2.52) 0.82 (0.47–1.41)

a Hazard ratios and 95% confidence intervals were calculated using the inverse variance weighted method and correspond to 1 SD increase in the 
anthropometry-related traits. Statistically significant estimates (P< .05) are shown in italics.
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meta-analysis of 13 prospective and retrospective studies 
assessing anthropometry either pre- or post-diagnosis reported 
that obesity (BMI>30 kg/m2) was associated with worse over
all survival (HR 1.10; 95% CI 1.05–1.15) in the subgroup of 
CRC patients of stages II/III [36]. Another systematic review 
concluded that there was insufficient evidence for a link 
between adiposity measures, such as BMI, and survival among 
stage IV CRC patients due to inherent biases in the included 
studies [37]. Although this evidence is generally concordant 
with our results, MR captures more effectively the effect of 
anthropometry across the lifespan and potentially helps over
come limitations arising from timing discrepancies in anthro
pometry assessment.

The exact biological pathways connecting anthropometry 
and CRC survival are not entirely understood and might be 
related to factors that are associated with CRC incidence. 
Evidence is mainly focused on BMI and suggests that its 
higher levels are associated with increased bioavailability of 
insulin growth factor (IGF) 1, decreased levels of IGF binding 
proteins, and increased production of adipokines and pro- 
inflammatory cytokines that may contribute to carcinogene
sis and tumor progression [38]. Furthermore, WC is a proxy 
for visceral fat, which is metabolically more active in terms 
of secretion of the aforementioned adipokines and pro- 
inflammatory cytokines [39], and potentially related to seri
ous implications in cancer prognosis.

Potential limitations should be considered in the interpreta
tion of our findings. Some of our analyses were underpow
ered, mainly due to the small number of deaths. Larger 

GWASs on CRC patients are required to better investigate 
the link between genetically predicted anthropometry and 
CRC survival. MR analyses of summary-level data do not al
low for stratified analyses by important covariates, such as 
sex and treatment status. Although several anthropometric 
traits exhibit sex-specific genetic architectures, we were 
unable to use sex-stratified summary statistics, as the genetic 
data for CRC-specific mortality were only available in a sex- 
combined format. An additional limitation would be that 
SNP-exposure estimates may differ in CRC cases compared 
to a generally healthy sample, as there may be effect modifi
cations by factors relating to having the disease [33], though 
no GWASs have yet focused on SNPs of anthropometric 
traits in CRC cases alone. MR analyses on CRC survival can 
be susceptible to survival bias, which occurs when CRC cases 
must survive long enough to be included in the GWASs and 
contribute any person-time [33, 40]. IVW MR methods 
assume linear associations between the exposure and out
come, but nonlinear analysis was not performed, as the avail
able methods do not work well with summary-level data, and 
statistical power would have been limited [41]. We also 
acknowledge that genetic correlations may exist among the 
studied anthropometric traits. Future research could select 
and prioritize strongly correlated traits and assess their influ
ence on CRC-specific mortality. Finally, all included GWASs 
had a lack of ethnic diversity in the samples studied, limiting 
our capability to generalize our findings to populations of 
non-European ancestry.

Figure 2. Mendelian randomization estimates for the association between genetically predicted anthropometric traits and colorectal cancer-specific 
mortality, overall and stratified by anatomical site and tumor stage. Hazard ratios and corresponding 95% confidence intervals are presented for each 
anthropometric trait using the main inverse variance weighted method and three approaches accounting for collider bias: Corrected Weighted Least 
Squares, Slope-hunter, and Simulation Extrapolation. Each dot represents the point estimate, and horizontal lines denote 95% confidence intervals.
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Our study also has a number of strengths. To our knowl
edge, this is the first two-sample MR study on the association 
between anthropometry and CRC survival. All instrumental 
variables were robustly associated with anthropometry-related 
traits, included a large number of SNPs and scored an F-value 
>10. Using the two-sample MR design, we were able to atten
uate the effect of significant biases on our results, including
reverse causation, residual confounding, and collider bias.

In conclusion, we conducted the first two-sample MR 
study to investigate whether seven genetically predicted an
thropometric traits were associated with CRC survival. 
Higher levels of WC, HC, and BMI were associated with 
higher mortality from CRC among CRC cases. Future studies 
are needed to replicate these findings and shed light on the 
underlying mechanisms across the CRC continuum.
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