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c-Jun inhibition mitigates chemotherapy-induced neurotoxicity

in iPSC-derived sensory neurons
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Chemotherapy-induced peripheral neuropathy (CIPN) affects up to two-thirds of cancer patients undergoing cytotoxic
chemotherapy. Here, we used human iPSC-derived sensory neurons (iPSC-DSN) to model CIPN in vitro. Administration of various
chemotherapeutic agents (i.e., paclitaxel, vincristine, bortezomib and cisplatin) at clinically applicable concentrations resulted in
reduced cell viability, axonal degeneration, electrophysiological dysfunction and increased levels of phosphorylated c-Jun in iPSC-
DSN. Transcriptomic analyses revealed that the upregulation of c-Jun strongly correlated with the expression of genes of neuronal
injury, apoptosis and inflammatory signatures. To test whether c-Jun plays a central role in the development of CIPN, we applied
the small molecule inhibitor of the Jun N-terminal kinase, SP600125, to iPSC-DSN treated with neurotoxic chemotherapy. c-Jun
inhibition prevented chemotherapy-induced neurotoxicity by preserving cell viability, axonal integrity and electrophysiological
function of iPSC-DSN. These findings identify c-Jun as a key mediator of CIPN pathophysiology across multiple drug types and
present preclinical evidence that c-Jun inhibition is an attractive therapeutic target to prevent CIPN.
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INTRODUCTION

Chemotherapy-induced peripheral neuropathy (CIPN) is an
adverse event frequently incurred by cancer patients undergoing
cytotoxic chemotherapy. Up to two-thirds of these patients
develop CIPN and experience debilitating symptoms which may
include numbness, tingling paresthesia, allodynia and pain,
among other predominantly sensory deficits [1]. Such problems
severely diminish the patients’ quality of life and chronic
symptoms lasting over 20 years have been reported [1].
Furthermore, cancer treatment is often changed or terminated
early when more severe symptoms of neuropathy arise [1, 2].
Unfortunately, many first-line chemotherapeutic agents have been
associated with CIPN [2, 3] and existing clinical efforts aimed at
preventing or treating CIPN remain disappointing due to their low
efficacy [1].

The pathophysiology underlying CIPN is incompletely under-
stood. Although chemotherapeutic agents preferentially act on
rapidly proliferating tumor cells, post-mitotic cells such as
peripheral sensory neurons of the dorsal root ganglion (DRG)
are also susceptible to cell death which may be explained by the
lack of a blood-brain barrier and the presence of an abundant

fenestrated capillary network [2, 3]. Therefore, it is acknowledged
that the absorption and accumulation of the drugs at the DRG
contributes to CIPN [2, 4].

On top of the diverse array of clinical manifestations in CIPN
patients [3] and in animal models [5], the multitude of intracellular
processes targeted by cytotoxic chemotherapy further compli-
cates a clear delineation of CIPN pathophysiology. Amidst the
distinct mechanisms of action by different cytotoxic drugs and
varying sensitivities of sensory neurons, there are still similarities,
which suggest the existence of a common conserved effector
mechanism [2, 3, 6, 7].

The protein c-Jun is a transcription factor of the activator
protein-1 (AP-1) family that facilitates cellular stress response.
Downstream effects of c-Jun activation include neuronal cell
death, inflammation and regeneration [8-12]. Increased expres-
sion and activation of c-Jun have been observed in neurodegen-
erative disorders [13-15], nerve injury [16], as well as in
neuropathies [17, 18]. The activation of c-Jun occurs when its
N-terminal is phosphorylated by the c-Jun amino-terminal kinase
(JNK) cascade and when its C-terminal is dephosphorylated by the
extracellular signal regulated kinase (ERK) cascade [19].
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For an in-depth investigation of c-Jun involvement in CIPN, we
utilized induced pluripotent stem cell-derived sensory neurons
(iPSC-DSN) as this model allows for large-scale in vitro production
of sensory neurons of human origin to facilitate high-throughput
experiments [20-23]. In this study, we treated iPSC-DSN with four
different neurotoxic chemotherapeutic drugs, namely the taxane
paclitaxel (PTX), the vinca alkaloid vincristine (VCR), the protea-
some inhibitor bortezomib (BTZ) and the platinum compound
cisplatin (CDDP) to elicit chemotherapy-induced neurotoxicity. To
elucidate the role of c-Jun and investigate its implications in CIPN,
c-Jun was inhibited by the application of a small molecule JNK
inhibitor, SP600125 [24]. We evaluated multiple aspects of CIPN
pathology in iPSC-DSN (viability, axon integrity, electrophysiology,
transcriptome) to test our hypothesis that pharmacological
inhibition of c-Jun phosphorylation mitigates neurotoxicity.

RESULTS

Human iPSC-DSN were characterized morphologically via immu-
nofluorescence (IF) and functionally via live cell calcium imaging.
The cells expressed typical markers of sensory neurons, such as
peripherin, transient receptor potential vanilloid (TRPV) 1, TRPV4
and Na,1.7 channels, and generated calcium transients in
response to chemical stimulation with capsaicin, icilin and ATP
(Supplementary Fig. S1).

Cytotoxic drugs upregulate phosphorylated c-Jun expression
in iPSC-DSN

Mature iPSC-DSN (defined as iPSC-DSN cultivated for at least
40 days from the initiation of differentiation) treated with
increasing concentrations of chemotherapy drugs (PTX, VCR, BTZ
or CDDP) were imaged with confocal microscopy to observe for
c-Jun expression and axonal damage (Fig. 1). At 72h post-
treatment, distinct morphological changes to axon integrity and
heightened expression of c-Jun become visible (Fig. 1A). Further
quantification revealed that c-Jun was upregulated by all
chemotherapy drug types to varying degrees in a dose-
dependent manner (Fig. 1B). PTX increased c-Jun expression at
higher concentrations of 100 nM or 1 uM, which fall within the
clinically applied dosage range, but not at a subtherapeutic
dosage of 10 nM. VCR increased c-Jun at 10 nM, 50 nM and 100 nM
while BTZ achieved upregulation at 10nM and 100 nM. Mean-
while, this effect was noted in CDDP at the clinically applied
dosages of 1-10 uM.

With the previous discovery of neurofilament proteins as
meaningful biomarkers of CIPN [21], the morphology of neurofila-
ment light chain (Nfl) structures was studied to assess axonal
integrity. From the same set of confocal images, Nfl-positive blebs
from disintegrated axons were quantified as a measure of axon
degeneration (Fig. 1C). Analysis of axonal bleb to axon ratio
revealed that, after 72 h of drug exposure, axonal blebbing was
notably increased upon treatment with 100 nM of PTX, 10 nM of
VCR, or 100 nM of CDDP, but decreased upon treatment with
10 nM of BTZ.

Further investigation via western blot (WB) analysis was
conducted to verify the expression levels as well as the activation
state of c-Jun (Fig. 2). Clinically relevant dosages of PTX, VCR, BTZ
and CDDP were used to treat iPSC-DSN and protein isolates were
subsequently subjected to WB analysis. WB data confirmed that
total c-Jun and total Ser73-phosphorylated c-Jun (p-c-Jun) levels
were both increased upon treatment with the aforementioned
cytotoxic drugs alone. Ratio of p-c-Jun/c-Jun was not calculated as
the proteins were blotted on separate membranes due to limited
availability of validated antibodies from different host species. To
test whether this effect could be suppressed, cells were co-
incubated with 10 uM of the small molecule inhibitor SP600125
(dose selected based on in vivo studies [10]). Results showed
successful reduction of phosphorylated c-Jun levels across all four
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drug types (Fig. 2), thereby establishing SP600125-mediated c-Jun
inhibition.

c-Jun inhibition preserves viability and axon integrity of
cytotoxin-treated iPSC-DSN

To monitor the effects of the inhibition of c-Jun phosphorylation
on neurotoxicity in iPSC-DSN, a series of experiments was
performed for each drug type in combination with SP600125.
Cell viability was measured with a real-time non-lytic biolumines-
cent assay while confocal imaging was used to assess preservation
of axonal integrity. In addition, microelectrode arrays (MEA) were
conducted to examine the electrophysiological properties of iPSC-
DSN. In each case, drug-treated samples were compared with their
respective vehicle counterparts, with and without the presence of
the small molecule inhibitor SP600125.

Paclitaxel. iPSC-DSN that were exposed to 100 nM of PTX for
72 h in conjunction with 10 uM of SP600125 showed markedly
improved viability (222% +93.8% of vehicle) in comparison to
those exposed to 100nM of PTX without SP600125
(86.8% +£23.4% of vehicle, Kruskal-Wallis test, p<0.0001;
Fig. 3A). More subtle improvements were also observed when
treated with 1 pM of SP600125 (110% + 22.0% of vehicle) or with
100 uM of SP600125 (105% =+ 72.1% of vehicle, Kruskal-Wallis test,
p <0.0001; Fig. 3A). The bleb to axon ratio increased upon
treatment with 100nM PTX (vehicle/DMSO: 0.402 +0.0893,
100nM  PTX/DMSO:  0.555+0.0734, Kruskal-Wallis  test,
p <0.0001; Fig. 3A) while addition of 10 uM SP600125 partially
reversed this effect (100 nM PTX/DMSO: 0.555 + 0.0734, 100 nM
PTX/10 uM SP600125: 0.470 £ 0.0426, Kruskal-Wallis test, p < 0.05;
Fig. 3A), suggesting a reduction of axonal degeneration.
Replicating this assay on an alternate patient cell line showed
similarly robust effects (Supplementary Fig. S2).

Vincristine.  Addition of SP600125 improved cell viability at every
dose (100 nM VCR/DMSO: 46.2% + 18.6% of vehicle, 100 nM VCR/
1uM SP600125: 82.0% +22.2% of vehicle, 100 nM VCR/10 uM
SP600125: 115%+45.5% of vehicle, 100nM VCR/100 uM
SP600125: 154% + 105% of vehicle, Kruskal-Wallis test; Fig. 3B).
Increased axonal blebbing was observed upon treatment with
100 nM VCR which was not alleviated by SP600125 (vehicle/DMSO:
0.604 + 0.0962, 100 nM VCR/DMSO: 0.699 +0.0370, 100 nM VCR/
10 uM SP600125: 0.687 + 0.0421, Kruskal-Wallis test; Fig. 3B).

Bortezomib. In BTZ-treated iPSC-DSN, SP600125 improved cell
viability at the 48-h timepoint in a dose-dependent manner (10 nM
BTZ/DMSO: 58.2% +17.1% of vehicle, 10nM BTZ/1 uM SP600125:
78.8% + 36.8% of vehicle, 10 nM BTZ/10 uM SP600125: 92.2% + 33.8%
of vehicle, 10nM BTZ/100 uM SP600125: 126% + 61.1% of vehicle,
Kruskal-Wallis test; Fig. 3C). Incubation with 10 nM of BTZ alone led to
higher axonal bleb count (vehicle/DMSO: 0.674 + 0.0215, 10 nM BTZ/
DMSO: 0.714 £ 0.0285, Kruskal-Wallis test, p < 0.0001; Fig. 3C), which
was ameliorated by co-incubation with 10 uM of SP600125 (10 nM
BTZ/DMSO:  0.714+0.0285, 10nM  BTZ/10uM  SP600125:
0.701 +£0.124, Kruskal-Wallis test, p <0.001; Fig. 3C), indicating
preservation of axon integrity.

Cisplatin. Forty-eight hour exposure of iPSC-DSN to 10 uM of
CDDP showed deteriorating cell viability that was reversed by the
addition of 1uM, 10 uM or 100 uM of SP600125 (10 uM CDDP/
DMSO: 74.5% +12.9% of vehicle, 10 uM CDDP/1 uM SP600125:
106% +24.8% of vehicle, 10uM CDDP/10uM  SP600125:
174% +54.4% of vehicle, 10uM CDDP/100 uM  SP600125:
155% + 39.2% of vehicle, Kruskal-Wallis test; Fig. 3D). Meanwhile,
10 uM of CDDP increased axonal blebbing that was unaffected by
SP600125 (vehicle/DMSO: 0.566 +0.0994, 10 uM CDDP/DMSO:
0.654+£0.0381, 10uM CDDP/10 uM SP600125: 0.644 +0.0336,
Kruskal-Wallis test; Fig. 3D).
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Fig. 1 c-Jun expression and axonal blebs are increased when iPSC-DSN are incubated with cytotoxic drugs. A Representative
immunofluorescent images of DMSO- or PTX-treated iPSC-DSN. After 72 h of treatment with 100 nM of PTX, the iPSC-DSN displayed increased
c-Jun expression and compromised axon integrity in comparison to its vehicle counterpart (scale bar: 20 ym). Selected areas (of the
neurofilament light chain layer), encased by dotted orange box, have been enlarged with axons marked by white arrows and blebs marked by
cyan arrows. B Mean fluorescence intensity (MFI) of c-Jun normalized to MFI of a nuclear dye, DRAQ5, increases upon 72 h treatment with PTX,
VCR, BTZ or CDDP (n = 27 in each group). C Neurofilament bleb count per field normalized to total axon count obtained via ImageJ increases
upon 72 h treatment with 100 nM PTX or 10 nM VCR but decreases with 10 nM BTZ (n =27 in each group). For B and C, data points from 3
wells per treatment condition and 9 fields per well were plotted. Statistical significance was assessed using the Kruskal-Wallis test, followed by
Dunn’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Fig. 2 Upregulation of c-Jun expression and phosphorylation in iPSC-DSN upon treatment with cytotoxic drug is attenuated upon
addition of SP600125. Western blots showing protein expression of c-Jun and phospho-c-Jun quantified by dot plots for iPSC-DSN treated
with A PTX, B VCR, C BTZ or D CDDP, in comparison to vehicle control (DMSO), with and without SP600125 (n =2 per treatment condition).
Cell lysates of iPSC-DSN after 48-h incubation with PTX/BTZ/CDDP or 24-h incubation with VCR showed increased amounts of c-Jun and
phospho-c-Jun, which was reduced in the presence of 10 uyM SP600125. Signal intensities of the bands were normalized to housekeeping

protein GAPDH and to their respective lanes.

Notably, iPSC-DSN cell lines tested in this (BIHi264-A, BIHi265-A)
and in our previous studies (BIHi263-A, BIHi264-A, BIHi004-B,
BIHi005-A) were all susceptible to neurotoxicity in vitro, regardless
of whether the donor was a healthy control (BIHi004-B, BIHi005-A),
or a chemotherapy patient who had developed CIPN (BIHi264-A,
BIHi265-A) or not (BIHi263-A) [21, 25, 26].

Overall, cell viability of iPSC-DSN exposed to any of the
studied cytotoxic drugs improved upon addition of SP600125

SPRINGER NATURE

and axon degeneration induced by PTX or BTZ was reversed in
the presence of SP600125. Importantly, SP600125 treatment on
MCF7 breast cancer cells did not reduce antineoplastic efficacy
of the drugs but suppressed proliferation from concentrations
of 10 uM with a time- and dose-dependent decline of MCF7
viability (Supplementary Fig. S3). Cell viability of iPSC-DSN at all
remaining timepoints (24 h/48 h/72 h) has been compiled in
Supplementary Fig. S4.
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Fig. 3 c-Jun inhibition improves iPSC-DSN cell viability and axon degeneration. iPSC-DSN were treated with A 100 nM PTX for 72 h,
B 100 nM VCR for 48 h, C 10 nM BTZ for 48 h or D 10 uM CDDP for 48 h in conjunction with SP6000125 at increasing concentrations from 1 uM
to 100 pM. Luminescence as a measure of cell viability was normalized to vehicle control (Vehicle/DMSO = 100%). Neurofilament axonal bleb
count was obtained from immunofluorescent images using ImageJ and normalized to total axon count per field. Confocal images obtained
from high content screening display neurofilament light chain in green, c-Jun in yellow and DRAQS5 in red (scale bar: 20 pm). Images have
been enlarged and blebs annotated with cyan arrows. The original, uncropped images can be found in Supplementary Fig. S12. For the
viability assay, 2 batches of differentiation (biological replicates) were seeded across 24 plates (technical replicates) with 6 wells per treatment
condition (n = 24 for PTX, VCR and BTZ, n = 34 for CDDP). For axonal bleb quantification, >3 wells per treatment condition and >6 fields per
well were imaged for each group (n = 18 for PTX, n = 36 for VCR and BTZ, n = 100 for CDDP). Statistical significance was determined using the
Kruskal-Wallis test, followed by Dunn’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

c-Jun inhibition ameliorates effects of chemotherapy on
electrophysiology in iPSC-DSN

Microelectrode array (MEA) recordings at 24-h post-treatment
showed general decrease in Mean Firing Rate (MFR) of the iPSC-
DSN when treated with most cytotoxic drugs (100nM PTX:

Cell Death Discovery (2025)11:529

105% + 105% of vehicle, 100 nM VCR: 60.4% + 27.3% of vehicle,
10 nM BTZ: 66.2% + 50.3% of vehicle, 10 uM CDDP: 34.1% + 29.6%
of vehicle, Mann-Whitney U test, Fig. 4A). As a measure of action
potentials per second [27], the MFR indicates the excitability of
iPSC-DSN and these results demonstrate that iPSC-DSN treated

SPRINGER NATURE
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Fig.4 Electrophysiological response of iPSC-DSN from incubation with cytotoxic drugs in the presence of SP600125. Using MEA, a 10-min
recording of the electrical activity of iPSC-DSN was obtained upon 24-h incubation with 100 nM PTX/100 nM VCR/10 nM BTZ/10 uM CDDP, in
the presence and absence of 10 uM SP600125. Dot plots illustrate parameters of A Mean Firing Rate (MFR), B Mean Interspike Interval (ISI)
within a burst and C Area Under Normalized Cross-correlation as a measure of synchronicity. Dotted line represents vehicle/DMSO = 100%.
Raster plots depict the D burst frequency of iPSC-DSN over 10 min and E a representative example of spikes within a burst for each condition
of PTX with SP600125. Data were obtained from triplicates of 6 wells per treatment condition for combined total of n= 18 per group.
Statistical significance was evaluated with the Mann-Whitney U test (two-tailed). **p < 0.01.
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with VCR, BTZ or CDDP without SP600125 had lower electrical
activity in comparison to vehicle, whereas those treated with
100 nM PTX alone showed no significant change. Varying effects
were observed when SP600125 was supplied. For PTX and for
CDDP, the co-incubation with 10 uM SP600125 further reduces the
MFR whereas for VCR and for BTZ, SP600125 increases the MFR
(100 nM PTX/10 uM SP600125: 74.5% + 47.2% of vehicle, 100 nM
VCR/10 uM SP600125: 67.2% + 48.1% of vehicle, 10 nM BTZ/10 uM
SP600125: 86.3% * 59.0% of vehicle, 10 uM CDDP/10 uM SP600125:
21.7% + 12.2% of vehicle, Mann-Whitney U test, Fig. 4A).

Concurrently, changes in burst activity were monitored from the
Mean Inter-spike Interval (ISI) within Burst, a metric which measures
the time between spikes in a burst and reflects changes in burst
activity caused by chemical alterations [27, 28]. All four chemother-
apy drugs increased the mean ISI within a burst of the iPSC-DSN
(100 nM PTX: 118% + 56.1% of vehicle, 100 nM VCR: 138% =+ 88.4% of
vehicle, 10nM BTZ: 151%+91.2% of vehicle, 10uM CDDP:
201% £ 154% of vehicle, Mann-Whitney U test, Fig. 4B), indicating
that the drugs disrupted burst activity by reducing the frequency of
spikes (Fig. 4E). In the presence of 10 uM SP600125, a general trend
could be observed where the Mean ISI within a burst was normalized
(100nM PTX/10 uM SP600125: 76.6% +26.3% of vehicle, 100 nM
VCR/10 uM SP600125: 87.6% +42.4% of vehicle, 10nM BTZ/10 uM
SP600125: 137% + 57.0% of vehicle, 10 uM CDDP/10 uM SP600125:
149% + 105% of vehicle, Mann-Whitney U test, Fig. 4B).

The Area under Normalized Cross-correlation is a parameter that
represents network connectivity and synchronicity [29, 30]. This
parameter was reduced in the iPSC-DSN when exposed to any of the
chemotherapy agents (100nM PTX: 91.1%+85.1% of vehicle,
100 nM VCR: 47.1% + 46.3% of vehicle, 10 nM BTZ: 53.8% + 93.7%
of vehicle, 10 uM CDDP: 32.1% + 54.1% of vehicle, Mann-Whitney U
test, Fig. 4C), suggesting that iPSC-DSN exposed to cytotoxic drug
alone exhibited less synchrony. For all drugs except CDDP, c-Jun
inhibition via SP600125 was able to normalize this effect in iPSC-DSN
(100nM PTX/10uM SP600125: 100% +81.9% of vehicle, 100 nM
VCR/10 uM SP600125: 116% + 78.6% of vehicle, 10 nM BTZ/10 uM
SP600125: 85.2% + 167% of vehicle, 10 uM CDDP/10 uM SP600125:
11.7% £ 10.9% of vehicle, Mann-Whitney U test, Fig. 4C).

In summary, variations in the electrical response of iPSC-DSN to
co-incubation of a cytotoxic drug with SP600125 were observed in
Mean ISl within Burst and in synchronicity across the four drug
types. Further timepoints (48 h/72 h) are given in Supplementary
Fig. S5.

c-Jun inhibition normalizes neuronal injury markers of iPSC-
DSN following cytotoxic drug treatment

To assess the downstream effects of c-Jun activation compared
to its inhibition, RNA sequencing was performed on iPSC-DSN
that were incubated with cytotoxic drugs or vehicle in the
presence and absence of SP600125. Strong positive correlation
of JUN to markers of neuronal stress response, injury and
apoptosis (HRK, MAP3K14, GADD45A, WEE1), inflammation
(ARID5A, NLRP12, C9, TNFRSF12A) and oxidative stress (HMOX1)
were observed (=0.65 Spearman correlation coefficient, Fig. 5A).
There was also a strong negative correlation (<—0.65) of JUN to
markers of lipid metabolism (SQLE) and neuronal excitability
(GALR1, KCNK9). Samples treated with any of the four cytotoxic
drugs alone showed increased levels of JUN, ARID5A, MAP3K14,
ATF3, GADD45A, HRK and TNFRSF12A, which were partially
reversed when co-incubated with 10 uM SP600125 (Fig. 5B-E).
For PTX-, BTZ- or CDDP-treated iPSC-DSN, the upregulation of
WEE1 was attenuated by 10 uM SP600125 (Fig. 5B, D, E), while
for VCR-, BTZ- or CDDP-treated iPSC-DSN, elevated levels of
NRLP12 and C9 were reduced in the presence of SP600125
(Fig. 5C-E). In all samples, mRNA expression levels of GALRT,
SQLE, KCNK9 were decreased (Fig. 5B-E) and only PTX-treated
iPSC-DSN showed normalized effects with the addition of
SP600125 (Fig. 5B).
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JNK inhibition by 10 uM SP600125 (without chemotherapy) led
to the expected downregulation of JUN as a direct phosphoryla-
tion target of JNK, and the differential expression of a few
additional genes, such as MMP1, MMP10, SLC7A5, ASNSP1,
MTHFD2, ATF4 and ATF5 (Supplementary Fig. S6).

DISCUSSION

Our study demonstrates that c-Jun is an important downstream
mediator of neurotoxicity induced by several cytotoxic com-
pounds that cause CIPN, i.e, PTX, VCR, BTZ and CDDP. Upon
exposure to these neurotoxic agents, sensory neurons derived
from iPSC show increased expression of phosphorylated c-Jun,
followed by a decline in viability, axon integrity, burst activity and
synchronicity. In contrast, pharmacological inhibition of c-Jun
phosphorylation protected iPSC-DSN from the toxic effects of
these compounds. Inhibition of c-Jun in each case yielded overall
positive outcomes according to drug type and transcriptomic
analyses strongly indicate that c-Jun is associated with over-
expression of neuronal damage, neuroinflammation and apoptotic
signatures that could be normalized by c-Jun inhibition.

The hypothesis that c-Jun is a common factor across different
cytotoxic agents is further supported by the fact that upregulation
of c-Jun and axon degeneration in iPSC-DSN occur together in all
four chemotherapeutic agents tested. This result also confirms
findings from animal models [17, 18] and in iPSC-DSN derived
from different donors [21, 25]. The differential effects induced by
each drug could be observed in various aspects. For example, BTZ
displayed a time-dependent propensity for axonal degeneration,
where increased blebbing was observed after 48 h of treatment
but not after 72 h, showcasing that axonal blebbing is an early
marker of axonal degeneration [31].

While phosphorylated c-Jun was attenuated by SP600125,
expression of c-Jun itself was also downregulated despite
SP600125 being a JNK-selective inhibitor. This can be attributed
to an autoregulatory mechanism of c-Jun as the protein regulates
the transcription of its own gene [32]. This finding is consistent
with rodents, where decreased c-Jun mRNA levels were observed
after loss of JNK signaling [33]. The existence of other cellular
mechanisms that modulate c-Jun, such as ubiquitin-dependent c-
Jun degradation mediated by COOH-terminal Src kinase [34], may
further account for this JNK-independent c-Jun downregulation.

By using SP600125, we found that cell viability improved for
iPSC-DSN incubated with any of the four cytotoxic drugs,
reflecting the protective potential of c-Jun inhibition. Such viability
results could consistently be replicated in an iPSC-DSN cell line of
another individual, suggesting a robust finding (Supplementary
Fig. S2). Interestingly, a very high dose of SP600125 (100 uM) did
not improve cell viability in PTX-treated iPSC-DSN, contrary to the
effect observed for the other three drug types. What sets PTX
apart from the rest is likely a combination of its ability to stabilize
microtubules without disrupting intracellular structures and the
ability of SP600125 to promote the formation of polymerized
tubulin [35], alluding to a potential synergistic cytotoxic effect of
high-dose SP600125 with PTX.

Furthermore, the antineoplastic efficacy of chemotherapy in
MCF7 breast cancer cells was maintained when co-incubated with
cytotoxic drugs and SP600125 (Supplementary Fig. S3), suggesting
that c-Jun inhibition with SP600125 preferentially protects
postmitotic neuronal cells but not cancer cells. As pro-apoptotic
mechanisms of JNK activation have been described in a pancreatic
cancer cell line [36], preserved antineoplastic efficiency should be
confirmed for different cancer types and treatments separately.
The prospect of c-Jun targeted therapy in cancer treatment has
gained increasing attention in recent literature [37-40] and is
supported by our data that SP600125 decreases viability of MCF7
cells. Taken together, these observations build confidence in c-Jun
as a potential therapeutic target in CIPN patients.
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Fig. 5 Transcriptomic analyses from iPSC-DSN treated with cytotoxic drug and SP600125. A Spearman correlation bar chart of JUN gene
expression with the expression of selected genes (criteria, see below) in PTX/VCR/BTZ/CDDP- and vehicle-treated iPSC-DSN. mRNA expression
levels of selected genes relative to vehicle from iPSC-DSN treated with B 100 nM PTX for 48 h, C 50 nM VCR for 16 h, D 10 nM BTZ for 16 h, or
E 10 uM CDDP for 16 h, when SP600125 is present or absent (n = 3). Genes were sorted and selected based on overall Spearman correlation
coefficient with reference to JUN, |R|, above 0.65, and based on whether they fulfilled the criterion of being differentially expressed with
approximate absolute log2 fold change greater than 0.5 (RLD[drug] - RLD [mean vehicle] >0.5) in at least 3 out of 4 neurotoxic drugs. In
A, 31 samples were included (drug and vehicle treated cells). In B-E, triplicates per condition were factored into the statistical analysis using
the Mann-Whitney U test. Error bar represents the standard deviation of the mean.

Nonetheless, it should be acknowledged that SP600125 has
implications beyond JNK inhibition and its resultant c-Jun
inhibition since SP600125 alone also positively influences iPSC-
DSN viability. This suggests that there exist other pathways
working in parallel with the c-Jun-mediated pathways. For
instance, SP600125 has been found to activate the p38 MAPK
pathway, which in turn stimulates the cAMP response element
binding protein that is known to promote cell survival [41, 42]. In
our study, potential off-target effects of SP600125 were uncovered
from the differential expression of genes related to extracellular
remodeling (MMP1, MMP10), the integrated neuronal stress
response (ATF4, ATF5), amino acid transport and metabolism
(SLC7A5, ASNSP1, MTHFD2), which may have partially contributed
to the observed endpoints.

Axon degeneration was observed in all cytotoxin-treated iPSC-
DSN. This is in accordance with previous literature where axonal
transport impairments have been reported in drugs that do not
directly affect microtubules, such as BTZ and CDDP [43-46].
Although SP600125 has been reported to promote tubulin
polymerization in leukemia cells [35], our approach with
SP600125 could not save axonal degeneration induced by every
drug type; axon structures were only preserved in PTX- or BTZ-
treated iPSC-DSN. This is interesting to note because it suggests
that c-Jun is only partially associated with axon degeneration and
regeneration. It is likely that other mechanisms are responsible,
and c-Jun inhibition merely halts part of the cellular processes
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triggered by neurotoxic injury. Due to the heterogeneity of cells
within the iPSC-DSN ganglia (Supplementary Fig. S7), it cannot be
excluded that only specific subsets of neuronal cells (nociceptor/
mechanoreceptor/proprioceptor) are affected by c-Jun. The
inhibition of c-Jun phosphorylation has also been reported to
reduce axonal outgrowth in rodent DRG [47], implying that this
approach stops or slows down axon degeneration but does not
promote regeneration.

The effects of blocking c-Jun phosphorylation were further
examined at the electrophysiological level. In iPSC-DSN, c-Jun
upregulation after exposure to cytotoxic agents generally coin-
cided with reduced spontaneous activity, but differential effects of
each drug were observed. For VCR, BTZ and CDDP, the reduced
MFR after 24 h suggests neurotoxicity in the iPSC-DSN, coinciding
with axon degeneration as supported by decreased synchronicity
in MEA and morphological changes seen in parallel cultures on
imaging plates. For PTX, the preserved MFR despite observed axon
degeneration corroborates the reported ability of the ganglia to
maintain or enhance spontaneous activity and excitability
following PTX exposure [48, 49].

For sensory neurons, bursts and synchronous firing are
crucial features of sensory processes for transmitting informa-
tion [50-52]. Thus, impaired bursting and reduced synchrony
would affect the iPSC-DSN'’s ability to relay sensory signals. The
burst activity of sensory neurons has also been documented to
be controlled by either intrinsic cellular mechanisms or by
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inputs onto the dendrites [50]. Within the iPSC-DSN in vitro
network, perhaps the impairment of their axons led to a loss of
such inputs.

Overall, there could be many plausible reasons for electro-
physiological abnormalities apart from axon degeneration, such as
ion channel dysfunction, metabolic stress or synaptic impairment.
Our findings of SP600125 counteracting the drugs’ cytotoxic
effects and protecting the iPSC-DSN imply that their burst firing
ability and synchronicity can be modulated by c-Jun/JNK-related
pathways or even, to some extent, by the pleiotropic effects of
SP600125.

Finally, we studied the effects of c-Jun inhibition on the
transcriptome. Analysis at the RNA sequencing level revealed a
strong correlation of JUN with neuronal stress, injury, inflamma-
tory, metabolic and neuromodulation signatures among all drug
types. In the iPSC-DSN exposed to any of the four cytotoxic drugs,
we observed an upregulation of JUN and ATF3, which are genes of
transcription factors involved in cellular stress response [18, 53], as
well as an increase in SESN2 and HMOX1, which have been
implicated in oxidative stress response pathways [54-56].
Differential expression of apoptosis or neurotransmission-related
genes such as GADD45A [57, 58], HRK [10], C9 [59], DDIT3 [60] and
GALR1 [61-63], was attenuated in the presence of SP600125,
signaling a mechanistic role of c-Jun in mediating the processes
contributing to CIPN. Inflammation may also be associated, as
evidenced by upregulated ARID5A [64, 65] and TNFRSF12 [66]
transcription. The interaction of ARID5A with IL-6 and Stat3 has
even been reported to assist axonal regeneration [67, 68].
Consistently decreased KCNK9 levels suggest that regulation of
two-pore potassium channels is involved in chemotherapy-
induced neurotoxicity [69].

Arguably, one might contend that the focal point of CIPN
pathophysiology could lie further upstream of c-Jun, for instance,
in the JNK phosphorylation cascade. Reports of increased JNK
phosphorylation in PTX-treated cancer cells [70] and in BTZ-
treated rodent DRG [71-73] lean towards the notion that the
ameliorative effects of SP600125 on iPSC-DSN treated with
cytotoxic drugs are due to JNK. Even though transcriptomic data
did not show elevated transcription levels of MAPK (the gene for
JNK), the activation status of JNK depends on its phosphorylation
state rather than its RNA expression levels. However, the activation
state of c-Jun can also be altered by other proteins like ERK, p300
or GSK-3 [74] and, ultimately, the high correlation of JUN with
neuronal injury markers in the transcriptomic data strongly
suggests c-Jun to be the common point of convergence across
all four chemotherapy agents.

In summary, our study identifies a central mechanistic role of
c-Jun in the pathogenesis of CIPN. Through multiple approaches,
we discovered that the inhibition of c-Jun phosphorylation confers
protection to iPSC-DSN when treated with different neurotoxic
drugs of varying mechanisms, thereby providing preclinical
evidence that c-Jun mitigates chemotherapy-induced neurotoxi-
city and opening a promising avenue for targeted therapy. These
findings also pave the way for future investigations into JNK-
specific pathways or direct c-Jun modulations in the context of
CIPN.

MATERIALS AND METHODS

Cell culture and differentiation

iPSCs were generated from two female donors (Berlin Institute of Health
Core Unit Pluripotent Stem Cells and Organoids, BIHi264-A cell line, https://
hpscreg.eu/cell-line/BIHi264-A and BIHi265-A cell line, https://hpscreg.eu/
cell-line/BIHi265-A). The reprogramming and validation processes are
detailed by Lewis et al. [26]. iPSCs were cultured in mTeSR™1 medium
(Stem Cell Technologies) with full media change daily and passaged every
3-4 days upon reaching ~70% confluency with 0.5mM EDTA (Gibco)
diluted in 1x PBS without Ca®>* and Mg®". Two to three days before
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differentiation, the iPSCs were detached with 1x TrypLE™ Select (Gibco)
and single cell-seeded onto Geltrex (Gibco)-coated 6-well plates in
mTeSR™1 medium supplemented with 10 uM Rock inhibitor (Stem Cell
Technologies) at approximately 300,000 cells per well. The rock inhibitor
was removed 24 h after seeding.

The differentiation protocol used was described by Huehnchen et al.
[21]. In brief, differentiation of iPSCs into iPSC-DSN was conducted using
small molecule inhibitors LDN193189 (Sigma), SB431542 (biogem:s),
CHIR99021 (Sigma), DAPT (Sigma) and SU5402 (Sigma) across an 11-day
period. Specifics on media composition and any further details on the
differentiation, purification treatment and maintenance are provided in
Supplementary Information. The exact timeline of differentiation has been
outlined in Table 1 of Supplementary Information. Images confirming the
purity of cultures can be found in Supplementary Fig. S8.

Drug preparation

Upon maturation of iPSC-DSN (>40 days onwards), iPSC-DSNs were treated
with varying concentrations of the chemotherapy drugs, paclitaxel (PTX,
AdipoGen), vincristine (VCR, Cayman Chemical), bortezomib (BTZ, Cayman
Chemical) or cisplatin (CDDP, Sigma) in addition to the JNK inhibitor
SP600125 (Selleckchem). Stock solutions of PTX (6 mM), BTZ (6 mM) or
SP600125 (48 mM) were prepared by reconstituting them in DMSO. VCR
(6 mM) was dissolved in sterile distilled water while CDDP (6 mM) was
dissolved in 0.9% NaCl after sonicating for 30 min-1h at 37°C. Final
concentrations for the experiments were prepared by diluting stock
solutions with N2B27 media with growth factors. For each experiment, the
exact treatment concentrations and experimental timepoints can be found
in the respective figure captions. A summary behind the rationale for
selected timepoints can also be found in Supplementary Information in
Table 2. The maximum concentration of DMSO in the well is 0.208% in co-
incubated samples.

Immunofluorescence (IF) and high content screening

iPSC-DSN seeded at 100,000 cells/cm? onto black 24-well imaging plates
(ibidi) were treated with drugs as mentioned above before fixation with 2%
formaldehyde (Carl Roth) diluted in media for 15 min at room temperature.
Samples were blocked with 10% normal goat serum, 1% bovine serum
albumin and 0.1% Triton X in PBS with Ca®* and Mg?* for 1h at room
temperature before overnight incubation with primary antibodies in 1%
BSA in PBS. Subsequently, samples were incubated with secondary
antibodies in 1% BSA in PBS for 1h at room temperature and then
0.01 mM DRAQ5 (Thermo Scientific) for 30 min at room temperature before
imaging. Between each step, the wells were washed twice using PBS with
Ca®* and Mg?*. Detached wells were excluded from analysis. A list of the
antibodies used can be found in Table 3 of the Supplementary Information.
Confocal imaging was carried out using Revvity Opera Phenix.

Image analysis

For each treatment condition, multiple fields (minimum 6) were imaged for
2-4 replicates which results in a minimum of 12 data points per condition.
Images obtained from high content screening (HCS) were analyzed via
ImageJ (Supplementary Fig. S9). Macros are provided in Supplementary
Information. For the quantification of c-Jun expression, ImageJ-generated
regions of interest measured the Mean Fluorescence Intensity of c-Jun and
of DRAQ5. For axonal damage quantification, particle analysis on Image)
counted Nfl spots in each image to obtain bleb counts, and the total Nfl
area was defined by the total axon area. The total axon bleb count was
normalized to the total axon count of each individual field to attain a
metric of axon degeneration. Detached wells were excluded from analysis.

Western blot and quantification

Full details for Western blot can be found in the Supplementary
Information, including the antibody list in Table 3 and buffer formulas in
Table 4. In brief, whole cell lysates were acquired from drug-treated mature
iPSC-DSNs that were cultured on 6-well plates at 700,000-1,000,000 cells
per well. PTX/BTZ/CDDP-treated samples were harvested after 48 h of
treatment, while VCR-treated samples were harvested after 24 h. For
fluorescent Western blot, proteins were loaded at 10 ug per well and
separated on 4-15% polyacrylamide gels (Bio-Rad), then transferred onto
polyvinylidene fluoride (PVDF) membranes (Millipore). These membranes
were blocked with blocking buffer before incubation with primary
antibodies, which were subsequently visualized with fluorescent-
conjugated secondary antibodies. Scanned images were obtained with
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Li-Cor Odyssey® CLx Image and uncropped images can be found in
Supplementary Fig. S10. Quantitative analysis was performed with Li-Cor
Image Studio™ Lite. Fluorescent values of each band were normalized to
their respective lane and to the housekeeping protein GAPDH.

Live cell viability assay

iPSC-DSN were cultured at 48,000 cells/well in white (Greiner) or
transparent (Falcon) flat, clear-bottomed 96-well plates and, upon
maturation, treated with cytotoxic drugs in combination with 1pM,
10uM or 100 uM of SP600125. Reagents from RealTime-Glo™ MT Cell
Viability Assay (Promega) were added according to the manufacturer’s
protocol. Live luminescence readings were taken every 12h up to 72h
with a microplate reader, Tristar LB941 (Berthold). A measure of cell
viability, expressed as a percentage of vehicle, was obtained after
normalizing raw luminescence values to individual wells and to their
respective vehicle controls. Preselected wells were excluded before the
experiments if morphological quality criteria were not met. The same assay
was applied to MCF7 breast cancer cells and information on their media
can be found in the Supplementary Information.

Microelectrode array (MEA)

iPSC-DSN at 30,000 cells/well were seeded onto the electrodes of 48-well
MEA plates (16 electrodes/well, Axion Biosystems, Supplementary Fig. S11).
Specifics on MEA plate coating can be found in Supplementary
Information. After 60 days of maturation, a baseline of electrophysiological
activity was recorded in Maestro Pro (Axion Biosystems) before the cells
were treated with the aforementioned drugs, after which measurements
occurred every 6 h up to 72 h. Raw values obtained were normalized to the
individual well baseline and to their respective vehicle controls.

RNA extraction and sequencing

Mature iPSC-DSN from 6-well plates (700,000-1,000,000 cells/well) were
treated with PTX for 48 h or VCR/BTZ/CDDP for 16 h, together with 10 uM
of SP600125, prior to RNA extraction using Aurum™ Total RNA Mini Kit (Bio-
Rad) according to the manufacturer’s instructions. RNA samples were
sequenced by Brooks Life Sciences Genewiz® with PolyA selection for RNA
removal, 2 X 150 bp sequencing configuration and 20-30 million reads per
sample. RNA Seq reads were mapped to the human genome (GRCh38.p7)
with STAR version 2.7.3a [75] using the default parameters. Reads were
assigned to genes with featureCounts version 2.0.0 [76] with the following
parameters: -t exon -g gene_id -s 0 -p, gene annotation - Gencode
GRCh38/v25. The differential expression analysis was carried out with
DESeq2 version 1.32.0 [77] using the default parameters. Gene set
enrichment analysis was carried out with R/tmod package version
0.50.07 using MSigDB gene sets [78].

Statistical analyses

Visualization and statistical analyses for IF HCS images, Western blot
quantification, live cell viability assays, MEA and RNA sequencing were
done with Prism 6 (GraphPad Software). As the Shapiro-Wilk normality test
revealed that the data do not follow a normal distribution, nonparametric
tests were chosen. For comparison between two groups, the
Mann-Whitney U test was used, while for comparison across groups of
more than three, the Kruskal-Wallis test corrected with Dunn’s multiple
comparison test was used. Raster plots and Spearman correlations were
generated using R.

All experiments were performed on iPSC-DSN from the BIHi264-A cell
line unless otherwise specified. Biological replicates refer to samples from
separate batches of differentiation, while technical replicates refer to
repeat experiments, including samples from different cell culture wells or
plates. In the IF and microscopy experiments for c-Jun expression and
axonal bleb quantification, at least three wells (technical replicates) for
each treatment condition were used. In the WB, multiple membranes were
blotted for each drug type (technical replicates), and the average of two
bands (technical replicates) was calculated. In the viability assay, two
batches of differentiation (biological replicates) were each seeded onto
two 96-well plates (technical replicates) for a total of four experimental
plates per drug type. In the MEA experiment, two batches of differentiation
(biological replicates) were distributed over six 48-well plates (technical
replicates). In RNA sequencing, at least three samples (technical replicates)
per treatment condition were analyzed, resulting in 48 samples. Exact
sample sizes (n) for each experiment are stated in the respective figure
legends.
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DATA AVAILABILITY

The full material list, including catalog numbers, all Excel spreadsheets, GraphPad
Prism files and R scripts, is available as Supplementary Information. The RNA
sequencing dataset generated from this study is available at NCBI's Gene Expression
Omnibus [79], under accession number GSE305998.

CODE AVAILABILITY
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